H filtering for singular bilinear systems with application to a single-link flexible-joint robot

  • Mohamed Zerrougui
  • Mohamed Darouach
  • Latifa Boutat-Baddas
  • Harouna Souley Ali
Regular Papers Control Theory

Abstract

In this paper, we consider the H filters design for singular bilinear systems. The approach is based on the parameterized solution of a set of constrained Sylvester equations. The exponential convergence and l2 gain attenuation problems are solved by using the bounded real lemma, which leads to linear matrix inequalities (LMI) formulation. Finally, a detailed design procedure is given for the estimation of the states of a flexible joint robot, which demonstrates the effectiveness of the proposed method.

Keywords

Bilinear systems filter design H LMI uncertainties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Derese, P. Stevens, and E. J. Noldus, “Observers for bilinear systems with bounded input,” Internatinal Journal of System Science, vol. 10, no. 6, pp. 649–668, 1979.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    Y. Funahashi, “Stable state estimator for bilinear systems,” International Journal of Control, vol. 29, no. 2, pp. 181–188, 1979.CrossRefMATHMathSciNetGoogle Scholar
  3. [3]
    W. Wang and C. C. Kao, “Estimator design for bilinear systems with bounded input,” Journal of Chinese Institute of Engineering, vol. 14, no. 2, pp. 157–163, 1991.CrossRefMATHMathSciNetGoogle Scholar
  4. [4]
    K. Nagpal and P. P. Khargonekar, “Filtering and smoothing in an H setting,” IEEE Trans. on Automatic Control, vol. 36, no. 2, pp. 152–166, 1991.CrossRefMATHMathSciNetGoogle Scholar
  5. [5]
    K. Grigoriadis and J. T. Watson, “Reduce order H and L2H filtering via linear matrix inequalities,” IEEE Trans. on Aerospace and Electronics Systems, vol. 33, no. 4, pp. 1326–1338, 1997.CrossRefGoogle Scholar
  6. [6]
    J. T. Watson and K. Grigoriadis, “Optimal unbiased filtering via linear matrix inequalities,” Systems and Control Letters, vol. 35, no. 2, pp. 111–118, 1998.CrossRefMATHMathSciNetGoogle Scholar
  7. [7]
    H. Souley Ali, M. Zasadzinski, H. Rafaralahy, and M. Darouach, “Robust HH reduced order filtering for bilinear systems,” Automatica, vol. 42, no. 3, pp. 405–415, 2006.CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    M. Zerrougui, L. Boutat-Baddas, M. Darouach, and H. Souley Ali, “Hinfini observers design for singular bilinear systems,” Proc. of American Control Conference, Baltimore, Maryland, USA, June 30–July 2, 2010.Google Scholar
  9. [9]
    L. Ze, X. Shengyuan, Z. Yun, and C. Yuming, “Robust H filter design of uncertain T-S fuzzy neutral systems with time-varying delays,” International Journal of System Science, vol. 42, no. 7, pp. 1231–1238, 2011.CrossRefMATHGoogle Scholar
  10. [10]
    Z. Qi, X. Shengyuan, C. Bing, and C. Yuming, “H filtering for stochastic systems with time-varying delay,” International Journal of System Science, vol. 42, no. 1, pp. 235–244, 2011.CrossRefMATHGoogle Scholar
  11. [11]
    S. Bo, X. Shengyuan, X. Jianwei, Z. Yun, and C. Yuming, “Design of robust non-fragile H filters for uncertain neutral stochastic systems with distributed delays,” Asian Journal of Control, vol. 12, no. 1, pp. 39–45, 2010.MathSciNetGoogle Scholar
  12. [12]
    L. Ze, C. Yuming, and X. Shengyuan, “Delay-dependent nonfragile robust H filtering of T-S fuzzy time-delay systems,” Circuits Systems Signal Process, vol. 29, no. 3, pp. 361–375, 2010.CrossRefMATHMathSciNetGoogle Scholar
  13. [13]
    S. Hao, X. Shengyuan, S. Xiaona, and C. Yuming, “Delay-dependent H filtering for stochastic systems with Markovian switching and mixed mode-dependent delays,” Nonlinear Analysis: Hybrid Systems, vol. 4, no. 1, pp. 122–133, 2010.MATHMathSciNetGoogle Scholar
  14. [14]
    L. Dai, Singular Control Systems, Springer-Verlag, New York, 1989.CrossRefMATHGoogle Scholar
  15. [15]
    S. L. Campbell, Singular Systems of Differential Equations, I and II, Pitman, San Francisco, CA, 1980, 1982.Google Scholar
  16. [16]
    M. Darouach and M. Zasadzinski, “Data reconciliation in generalized linear dynamic systems,” AIChE Journal, vol. 37, no. 2, pp. 193–201, 1991.CrossRefMathSciNetGoogle Scholar
  17. [17]
    D. J. Luenberger, “Nonlinear descriptor systems,” Journal of Economics Dynamics and Control, vol. 1, no. 3, pp. 219–242, 1979.CrossRefMathSciNetGoogle Scholar
  18. [18]
    M. Darouach, M. Zasadzinski, and M. Hayar, “Reduced-order observer design for descriptor systems with unknown inputs,” IEEE Trans. Autom. Contr., vol. 41, no. 7, pp. 1068–1072, 1996.CrossRefMATHMathSciNetGoogle Scholar
  19. [19]
    M. Darouach and L. Boutat-Baddas, “Observers for a class of nonlinear singular systems,” IEEE Trans. Automat. Contr., vol. 53, no. 11 pp. 2627–2633, 2008.CrossRefMathSciNetGoogle Scholar
  20. [20]
    S. Boyd, L. El Ghaoui, E. Féron, and V. Balakrishnan, Linear Matrix Inequality in Systems and Control Theory, SIAM, Philadelphia, PA, 1994.CrossRefGoogle Scholar
  21. [21]
    H. Li and M. Fu, “A linear matrix inequality approach to robust H filtering,” IEEE Trans. on Signal Processing, vol. 45, no. 9, pp. 2338–2350, 1997.CrossRefMathSciNetGoogle Scholar
  22. [22]
    M. Fu, C. E. de Souza, and L. Xie, “H estimation for uncertain systems,” International Journal of Robust and Nonlinear Control, vol. 2, no. 2 pp. 87–105, 1992.CrossRefMATHGoogle Scholar
  23. [23]
    S. Raghavan and J. K. Hedrick, “Observer design for a class of nonlinear systems,” International Journal of Control, vol. 59, no. 2, pp. 515–528, 1994.CrossRefMATHMathSciNetGoogle Scholar
  24. [24]
    F. Li and X. Zhang, “Delay-range-dependent robust H1 filtering for singular LPV systems with time variant delay,” Int. J. Innov. Comput. Inf. Control, vol. 9, no. 1, pp. 339–353, 2013.Google Scholar
  25. [25]
    F. Li and X. Zhang, “A delay-dependent bounded real lemma for singular LPV systems with time-variant delay,” Int. J. Robust. Nonlinear Control, vol. 22, no. 4, pp. 559–574, 2012.CrossRefMATHGoogle Scholar

Copyright information

© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mohamed Zerrougui
    • 1
  • Mohamed Darouach
    • 2
  • Latifa Boutat-Baddas
    • 2
  • Harouna Souley Ali
    • 2
  1. 1.LSIS CNRS UMR 7296Aix-Marseille University Av. Escadrille NormandieMarseille Cedex 20France
  2. 2.CRAN-CNRS UMR 7039Nancy University IUT de LongwyCosnes et RomainFrance

Personalised recommendations