Advertisement

Intelligent digital redesign for nonlinear systems using a guaranteed cost control method

  • Geun Bum Koo
  • Jin Bae Park
  • Young Hoon Joo
Control Theory

Abstract

In this paper, a novel intelligent digital redesign (IDR) technique using the guaranteed cost control method is proposed for nonlinear systems which can be represented by a Takagi-Sugeno (T-S) fuzzy model. The IDR technique, which is one of the sampled-data fuzzy controller design methods, guarantees not only the stability condition of the sampled-data closed-loop system with the sampleddata fuzzy controller and the state-matching error is presented. By using the concept of the guaranteed cost control method, sufficient conditions are obtained for both minimization of the state-matching error and stabilization of the sampled-data closed-loop system and derived in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to verify the effectiveness of the proposed technique.

Keywords

Intelligent digital redesign (IDR) linear matrix inequality (LMI) sampled-data fuzzy controller state-matching error Takagi-Sugeno (T-S) fuzzy model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    H. K. Khalil, Nonlinear Systems, 3rd edition, Upper Saddle River, NJ: Prentice-Hall, 2000.Google Scholar
  2. [2]
    K. Tanaka and H. O. Wang, Fuzzy Control Systems Design and Analysis: A Linear Matrix Inequality Approach, Wiley, New York, 2001.CrossRefGoogle Scholar
  3. [3]
    H. J. Lee, J. B. Park, and G. Chen, “Robust fuzzy control of nonlinear systems with parametric uncertainties,” IEEE Trans. Fuzzy Syst., vol. 9, no. 2, pp. 369–379, 2001.CrossRefGoogle Scholar
  4. [4]
    E. Kim and H. Lee, “New approach to relaxed quadratic stability conditions of fuzzy control systems,” IEEE Trans. Fuzzy Syst., vol. 8, no. 5, pp. 523–534, 2000.CrossRefGoogle Scholar
  5. [5]
    S. Tong and H. H. Li, “Observer-based robust fuzzy control of nonlinear systems with parametric uncertainties,” Fuzzy Sets Syst., vol. 131, no. 2, pp. 165–184, 2002.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    G. B. Koo, J. B. Park, and Y. H. Joo, “Robust fuzzy controller for large-scale nonlinear systems using decentralized static output-feedback,” Int. J. Control, Autom. Syst., vol. 9, no. 4, pp. 649–658, 2011.CrossRefGoogle Scholar
  7. [7]
    G. B. Koo, J. B. Park, and Y. H. Joo, “Exponential mean-square stabilization for non-linear systems: sampled-data fuzzy control approach,” IET Control Theory Appl., vol. 6, no. 18, pp. 2765–2774, 2012.MathSciNetCrossRefGoogle Scholar
  8. [8]
    M. K. Song, J. B. Park, and Y. H. Joo, “Stability and stabilization for discrete-time Markovian jump fuzzy systems with time-varying delays: partially known transition probabilities case,” Int. J. Control, Autom. Syst., vol. 11, no. 1, pp. 136–146, 2013.CrossRefGoogle Scholar
  9. [9]
    B. C. Kuo, Digital Control System, Holt, Rinehart and Winston, New York, 1980.Google Scholar
  10. [10]
    L. S. Shieh, W. M. Wang, and J. S. H. Tsai, “Digital modelling and digital redesign of sampled-data uncertain systems,” IEE Control Theory, vol. 142, pp. 585–594, 1995.CrossRefzbMATHGoogle Scholar
  11. [11]
    L. S. Shieh, W. M. Wang, and J. B. Zheng, “Robust control of sampled-data uncertain systems using digitally redesigned observer-based controllers,” Int. J. Control, vol. 66, pp. 43–64, 1997.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    S. M. Guo, L. S. Shieh, G. Chen, and C. F. Lin, “Effective chaotic orbit tracker: a prediction-based digital redesign approach,” IEEE Trans. Circ. Syst. I, vol. 47, no. 11, pp. 1557–1570, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    W. Chang, J. B. Park, H. J. Lee, and Y. H. Joo, “LMI approach to digital redesign of linear timeinvariant systems,” IEE Proc. Control Theory Appl., vol. 149, pp. 297–302, 2002.CrossRefGoogle Scholar
  14. [14]
    C. A. Rabbath, N. Hori, and N. Lechevin, “Convergence of sampled-data models in digital redesign,” IEEE Trans. Autom. Control, vol. 49, no. 5, pp. 850–855, 2004.MathSciNetCrossRefGoogle Scholar
  15. [15]
    Y. H. Joo, G. Chen, and L. S. Shieh, “Hybrid statespace fuzzy model-based controller with dual-rate sampling for digital control of chaotic systems,” IEEE Trans. Fuzzy Syst., vol. 7, no. 4 pp. 394–408, 1999.CrossRefGoogle Scholar
  16. [16]
    W. Chang, J. B. Park, Y. H. Joo, and G. Chen, “Design of sampled-data fuzzy-model-based control systems by using intelligent digital redesign,” IEEE Trans. Circ. Syst. I, vol. 49, no. 4, pp. 509–517, 2002.CrossRefGoogle Scholar
  17. [17]
    H. J. Lee, H. B. Kim, Y. H. Joo, W. Chang, and J. B. Park, “A new intelligent digital redesign for T-S fuzzy systems: global approach,” IEEE Trans. Fuzzy Syst., vol. 12, no. 2, pp. 274–284, 2004.CrossRefGoogle Scholar
  18. [18]
    H. J. Lee, J. B. Park, and Y. H. Joo, “Digitalizing a fuzzy observer-based output-feedback control: intelligent digital redesign approach,” IEEE Trans. Fuzzy Syst., vol. 13, no. 5, pp. 701–716, 2005.CrossRefGoogle Scholar
  19. [19]
    H. C. Sung, D. W. Kim, J. B. Park, and Y. H. Joo, “Robust digital control of fuzzy systems with parametric uncertainties: LMI-based digital redesign approach”, Fuzzy Sets Syst., vol. 161, pp. 919–933, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    D. W. Kim, J. B. Park, and Y. H. Joo, “Effective digital implementation of fuzzy control systems based on approximate discrete-time models,” Automatica, vol. 43, no. 10, pp. 1671–1683, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    X. P. Guan and C. L. Chen, “Delay-dependent guaranteed cost control for T-S fuzzy systems with time delays,” IEEE Trans. Fuzzy Syst., vol. 12, no. 2, pp. 236–249, 2004.CrossRefzbMATHGoogle Scholar
  22. [22]
    J. V. D. Oliveira, J. Bernussou, and J. C. Geromel, “A new discrete-time robust stability condition,” Syst. Control Lett., vol. 37, pp. 261–265, 1999.CrossRefzbMATHGoogle Scholar
  23. [23]
    K. S. Tang, K. F. Man, G. Q. Zhong, and G. Chen, “Generating chaos via x|x|,” IEEE Trans. Circ. Syst. I, vol. 48, no. 5, pp. 636–641, 2001.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Institute of Control, Robotics and Systems and The Korean Institute of Electrical Engineers and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of Electrical and Electronic EngineeringYonsei UniversitySeoulKorea
  2. 2.Department of Control and Robotics EngineeringKunsan National UniversityKunsan, ChonbukKorea

Personalised recommendations