Skip to main content
Log in

Adaptive nonlinear control of induction motor

  • Technical Notes and Correspondence
  • Published:
International Journal of Control, Automation and Systems Aims and scope Submit manuscript

Abstract

This work addresses the problem of controlling a rigid arm (one degree of freedom robot manipulator) directly driven by an induction motor. A Lyapunov-based adaptive nonlinear controller is designed. The developed controller compensates for parametric uncertainty associated with the resistance of the rotor windings and it is capable to track asymptotically a trajectory for an angular position keeping all the internal signals bounded and guarantees the asymptotical stability of the system. Simulations are presented to illustrate the performance of this controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Taylor, “Nonlinear control of electric machines: an overview,” IEEE Control Systems, pp. 41–51, December 1994.

  2. A. M. Trzynadlowski, Control of Induction Motors, Academic Press, San Diego, 2001.

    Google Scholar 

  3. M. A. Mendez Bolio, Controladores de Motores de Induccion: Un Analisis Comparativo, Master’s Thesis, Centro Nacional de Investigacion y Desarrollo Tecnologico, Mexico, 2001.

    Google Scholar 

  4. R. Marino, S. Peresada, and P. Valigi, “Adaptive input-output linearizing control of induction motors,” IEEE Trans. on Automatic Control, vol. 38, no. 2, pp. 208–211, February 1993.

    Article  MathSciNet  MATH  Google Scholar 

  5. G. Cortes Lozano, Control Robusto de Motores de Induccion Utilizando la Tecnica de Rediseno de Lyapunov, Master’s Thesis, Centro Nacional de Investigacion y Desarrollo Tecnologico, 2002.

  6. R. Marino, S. Peresada, and P. Tomei, “Global adaptive output feedback control of induction motors with uncertain rotor resistance,” IEEE Trans. on Automatic Control, vol. 44, no. 5, pp. 967–983, May 1999.

    Article  MathSciNet  MATH  Google Scholar 

  7. J.-J. Liou and L.-C. Fu, “Nonlinear adaptive speed tracking control of induction motors with unknown rotor resistance and load torque,” International Conference Mechatronic Technology, pp. 127–134, 1998.

  8. D. M. Dawson, J. Hu, and T. C. Burg, Nonlinear Control of Electric Machinery, Marcel Dekker, Inc, New York, 1998.

    Google Scholar 

  9. R. Kelly, Control de Movimiento de Robots Manipuladores, Pearson Education, 2001.

  10. J.-J. E. Slotine and W. Li, Applied Nonlinear Control, Prentice Hall, 1991.

  11. J.-B. Pomet and L. Praly, “Adaptive nonlinear regulation: Estimation from the lyapunov equation,” IEEE Trans. on Automatic Control, vol. 37, no. 6, pp. 729–740, June 1992.

    Article  MathSciNet  MATH  Google Scholar 

  12. M. Krstic, I. Kanellakopoulos, and P. Kokotovic, Nonlinear and Adaptive Control Design, John Wiley & Sons, Inc., New York, 1995.

    Google Scholar 

  13. R. Marino, S. Peresada, and P. Tomei, “Adaptive observer-based control of induction motors with unknown rotor resistance,” International Journal of Adaptive Control and Signal Processing, vol. 10, no. 4–5, pp. 345–363, 1996.

    Article  MATH  Google Scholar 

  14. G. C. Verghese and S. R. Sanders, “Observer for flux estimation in induction machines,” IEEE Trans. on Industrial Electronics, vol. 35, no. 1, pp. 85–94, February 1988.

    Article  Google Scholar 

  15. G. V. Guerrero Ramírez, Impulsores de Motores de Inducción Trifásicos, Master’s Thesis, Centro Nacional de Investigación y Desarrollo Tecnológico, México, 1994.

    Google Scholar 

  16. E. E. Vidal Rosas, Diagnóstico y Reconfiguración de Fallas en el Motor de Inducción Utilizando Observadores no Lineales, Master’s Thesis, Centro Nacional de Investigación y Desarrollo Tecnológico, Mexico, 2006.

    Google Scholar 

  17. M. A. Durán Fonseca, Diseño de un Controlador no Lineal Basado en Pasividad de un Motor Síncrono, Master’s Thesis, Centro Nacional de Investigación y Desarrollo Tecnológico, January 2004.

  18. G. V. Guerrero Ramírez, Control de Manipuladores de Robots Accionados por Motores de Induccion, Ph.D. Dissertation, Universidad Nacional Autónoma de México, México, 2001.

    Google Scholar 

  19. J. D. Munoz Frias, Control Avanzado de Maquinas de Induccion, Ph.D. Dissertation, Universidad Pontificia Comillas de Madrid, Madrid, 2002.

    Google Scholar 

  20. P. C. Krause and O. Wasynczuk, Analysis of Electric Machinery and Drive Systems, 2nd ed. IEEE Press Series on Power Engineering, New York, 2002.

    Book  Google Scholar 

  21. R. Marino and P. Tomei, Nonlinear Control Design: Geometric, Adaptive and Robust, Prentice Hall, 1995.

  22. J. Chiasson, Modeling and High-Performance Control of Electric Machines, IEEE Press Series on Power Engineering, 2005.

  23. J. B. Dabney and T. L. Harman, Mastering Simulink, Pearson Prentice Hall, 2004.

  24. H. J. Marquez, Nonlinear Control Systems, John Wiley & Sons, 2003.

  25. C.-M. Ong, Dynamic Simulation of Electric Machinery: Using Matlab/Simulink, Prentice Hall, New Jersey, 1998.

    Google Scholar 

  26. R. Isermann, Adaptive Control Systems, Prentice Hall, New York, 1992.

    MATH  Google Scholar 

  27. K. J. Astrom, Adaptive Control, Addison Wesley, Massachusetts, 1995.

    Google Scholar 

  28. E. Kreyszig, Matematicas Avanzadas Para Ingenieria, vol. I, 3rd ed., LIMUSA, Mexico, 2000

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Adam Medina.

Additional information

Recommended by Editorial Board member Guang-Hong Yang under the direction of Editor Young Il Lee.

Gerardo V. Guerrero Ramírez was born in Oaxaca, México. He received his professional diploma in Electrical Engineering from the Instituto Tecnológico de Morelia, México, in 1985, and an M.Sc. degree in Electronic Engineering from the Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Cuernavaca, Morelos, México, in 1994, and a Ph.D. degree in Engineering from the Universidad Nacional Autónoma de México (UNAM), México, in 2001. He is currently professor of department of electronic engineering at the Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET).

Luís G. Vela Valdés received Industrial Engineer in Electronics (1986), Master of Science in Electrical Engineering (1989), both by the La Laguna Institute of Technology, and Doctor by the Université Henri Poincaré, Nanci I, France (1998). He holds a Professor-Researcher position at the National Research and Development Centre in the Electronics Department. His areas of research include control and diagnosis of electrical machines, robotics and adaptive control.

Manuel Adam Medina was born in Minatitlán, Ver., México. He received his professional diploma in Electronic Engineering of Intrumentation from the Instituto Tecnológico de Minatitlán, México, in 1991, an M.Sc. degree in Electronic Engineering from the Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Cuernavaca, Morelos, México, in 1995, and a Ph.D. degree in Engineering from the Université Henri Poincaré, Nancy I, France, in 2004. He is currently professor of department of electronic engineering at the Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET).

Carlos D. García Beltrán was born in San Luis Potosí, México. He received his professional diploma in Electronics Engineering from the San Luis Potosí University, México, in 1992, an M.Sc. degree in Electronic Engineering from the Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Cuernavaca, Morelos, México, in 1997, and a Ph.D. degree in Engineering from the INPG, France, in 2004. He is currently professor of department of electronic engineering at the Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET).

César A. Villanueva López was born in Mexico City, México. He received his professional diploma in Electronic Engineering from Instituto Tecnológico de Mérida, México in 2001, and his M.Sc. degree in Electronic Engineering from the Centro Nacional de Investigación y Desarrollo Tecnológico (CENIDET), Cuernavaca, Morelos, México, in 2007. He is currently a professor of Departament of Mechatronic Engineering at Facultad de Ingeniería de la Universidad Autónoma de Yucatán.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guerrero Ramírez, G.V., Vela Valdés, L.G., Medina, M.A. et al. Adaptive nonlinear control of induction motor. Int. J. Control Autom. Syst. 9, 176–186 (2011). https://doi.org/10.1007/s12555-011-0123-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12555-011-0123-5

Keywords

Navigation