Skip to main content
Log in

Microdosimetry in BNCT

  • Original Paper
  • Published:
Health and Technology Aims and scope Submit manuscript

Abstract

Purpose

This paper explores the application of microdosimetry in the context of Boron Neutron Capture Therapy (BNCT). In particular it aims to elucidate the crucial role of microdosimetry in measuring dose enhancement resulting from elevated boron-10 concentrations in tumor cells during BNCT.

Methods

A critical survey on microdosimetry is first given, to underline the relevance of the stochastic fluctuations of the radiation interactions at the microscopic level. Successively, the methodology of microdosimetric application to BNCT is reviewed. Significant examples are reported that help understanding the potentialities of microdosimetry on BNCT. The analysis involves examining the energy spectra in mixed radiation fields, taking into account both small and large energy events influenced by the stopping power and range of the particle.

Results

The findings of this study reveal valuable insights into the contribution of microdosimetry in BNCT. The analysis of energy spectra enables the differentiation of various components within the radiation field, both in terms of dose and of biological effectiveness. The results shed light on the dose enhancement attributed to higher concentrations of boron-10 in tumor cells, providing a comprehensive understanding of the biological effectiveness of boron neutron capture reaction products.

Conclusions

This paper underscores the pivotal role of microdosimetry in BNCT, emphasizing its capability to unravel the intricacies of energy deposition and dose distribution at the micrometric scale. The application of microdosimetry emerges as a valuable tool in optimizing BNCT protocols and advancing our comprehension of radiation effects in targeted cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of data and materials

On request.

Code availability

Not applicable.

References

  1. Goodhead DT. Initial events in the cellular effects of ionizing radiations: Clustered damage in DNA. Int J Radiat Biol. 1994;65(1):7–17. https://doi.org/10.1080/09553009414550021.

    Article  CAS  PubMed  Google Scholar 

  2. ICRU Report 36. Microdosimetry. Bethesda, Maryland 20824: International Commission on Radiation Units and Measurements; 1983.

    Google Scholar 

  3. Braby LA, Conte V, Dingfelder M, et al. ICRU report 98, stochastic nature of radiation interactions: Microdosimetry. J ICRU. 2023;23(1):1–168. https://doi.org/10.1177/14736691231211380.

    Article  Google Scholar 

  4. Nichols TL, Miller LF, Kabalka GW, Dudney TM. Microdosimetric study for interpretation of outcomes from boron neutron capture therapy clinical trials. Radiat Prot Dosimetry. 2007;126(1–4):645–7. https://doi.org/10.1093/rpd/ncm130.

    Article  CAS  PubMed  Google Scholar 

  5. Sato T, Masunaga SI, Kumada H, Hamada N. Microdosimetric modeling of biological effectiveness for boron neutron capture therapy considering intra- and intercellular heterogeneity in 10B distribution. Sci Rep. 2018;8(1):988. https://doi.org/10.1038/s41598-017-18871-0.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hu N, Tanaka H, Takata T, Endo S, Masunaga S, Suzuki M, Sakurai Y. Evaluation of PHITS for microdosimetry in BNCT to support radiobiological research. Appl Radiat Isot. 2020;161:109148. https://doi.org/10.1016/j.apradiso.2020.109148.

    Article  CAS  PubMed  Google Scholar 

  7. Wuu CS, Amols HI, Kliauga P, Reinstein LE, Saraf S. Microdosimetry for boron neutron capture therapy. Radiat Res. 1992;130(3):355–9. https://doi.org/10.2307/3578381.

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Kota C, Maughan RL. A dosimetry system for boron neutron capture therapy based on the dual counter microdosimetric technique. Bulletin du Cancer Radiotherapie. 1996;83(Suppl):173s–5s. https://doi.org/10.1016/0924-4212(96)84906-1.

    Article  Google Scholar 

  9. Burmeister J, Kota C, Maughan RL, Waker AJ, Riley K, Wielopolski L. Application of TEPC microdosimetry to boron neutron capture therapy. Radiat Prot Dosimetry. 2002;99(1–4):351–2. https://doi.org/10.1093/oxfordjournals.rpd.a006799.

    Article  CAS  PubMed  Google Scholar 

  10. Hsu FY, Hsiao HW, Tung CJ, Liu HM, Chou FI. Microdosimetry study of THOR BNCT beam using tissue equivalent proportional counter. Appl Radiat Isot. 2009;67(7–8 Suppl):S175–8. https://doi.org/10.1016/j.apradiso.2009.03.043.

    Article  CAS  PubMed  Google Scholar 

  11. Endo S, Onizuka Y, Ishikawa M, Takada M, Sakurai Y, Kobayashi T, Tanaka K, Hoshi M, Shizuma K. Microdosimetry of neutron field for boron neutron capture therapy at Kyoto university reactor. Radiat Prot Dosimetry. 2004;110(1–4):641–4. https://doi.org/10.1093/rpd/nch150.

    Article  CAS  PubMed  Google Scholar 

  12. De Nardo L, Seravalli E, Rosi G, Esposito J, Colautti P, Conte V, Tornielli G. BNCT microdosimetry at the tapiro reactor thermal column. Radiat Prot Dosimetry. 2004;110(1–4):579–86. https://doi.org/10.1093/rpd/nch206.

    Article  CAS  PubMed  Google Scholar 

  13. Moro D, Colautti P, Gualdrini G, Masi M, Conte V, De Nardo L, Tornielli G. Two miniaturised TEPCS in a single detector for BNCT microdosimetry. Radiat Prot Dosimetry. 2006;122(1–4):396–400. https://doi.org/10.1093/rpd/ncl484.

    Article  CAS  PubMed  Google Scholar 

  14. Moro D, Colautti P, Lollo M, Esposito J, Conte V, De Nardo L, Ferretti A, Ceballos C. BNCT dosimetry performed with a mini twin tissue-equivalent proportional counters (TEPC). Appl Radiat Isot. 2009;67(7–8 Suppl):S171–4.

    Article  CAS  PubMed  Google Scholar 

  15. Colautti P, Moro D, Chiriotti S, Conte V, Evangelista L, Altieri S, Bortolussi S, Protti N, Postuma I. Microdosimetric measurements in the thermal neutron irradiation facility of LENA reactor. Appl Radiat Isot. 2014;88:147–52. https://doi.org/10.1016/j.apradiso.2014.01.005.

    Article  CAS  PubMed  Google Scholar 

  16. Vohradsky J, Guatelli S, Davis JA, Tran LT, Rosenfeld AB. Evaluation of silicon based microdosimetry for boron neutron capture therapy quality assurance. Physica Med. 2019;66:8–14. https://doi.org/10.1016/j.ejmp.2019.09.072.

    Article  Google Scholar 

  17. Vohradsky J, Tran LT, Guatelli S, Chartier L, Vandevoorde C, de Kock EA, Nieto-Camero J, Bolst D, Peracchi S, Höglund C, Rosenfeld AB. Response of SOI microdosimeter in fast neutron beams: Experiment and Monte Carlo simulations. Physica Med. 2021;90:176–87. https://doi.org/10.1016/j.ejmp.2021.09.008.

    Article  Google Scholar 

  18. Hu N, Tanaka H, Takata T, Okazaki K, Uchida R, Sakurai Y. Microdosimetric quantities of an accelerator-based neutron source used for boron neutron capture therapy measured using a gas-filled proportional counter. J Radiat Res. 2020;61(2):214–20. https://doi.org/10.1016/j.apradiso.2009.03.042.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Selva A, Bellan L, Bianchi A, Giustiniani G, Colautti P, Fagotti E, Pisent A, Conte V. Microdosimetry of an accelerator based thermal neutron field for boron neutron capture therapy. Appl Radiat Isot. 2022;182:110144. https://doi.org/10.1016/j.apradiso.2022.110144.

    Article  CAS  PubMed  Google Scholar 

  20. Selva A, Bianchi A, Bellan L, Fagotti E, Pisent A, Conte V. Comparison of biological weighting functions to estimate the microdosimetric RBE in BNCT. Radiat Prot Dosimetry. 2023;199(15–16):1963–7. https://doi.org/10.1093/rpd/ncad007.

    Article  CAS  PubMed  Google Scholar 

  21. Conte V, Bianchi., A., Selva, A. Boron neutron capture therapy: Microdosimetry at different boron concentrations. Appl Sci. 2024;14(1):216. https://doi.org/10.3390/app14010216.

    Article  CAS  Google Scholar 

  22. Tilikidis A, Lind B, Nafstadius P, Brahme A. An estimation of the relative biological effectiveness of 50 MV bremsstrahlung beam by microdosimetric techniques. Phys Med Biol. 1996;41:55–69.

    Article  CAS  PubMed  Google Scholar 

  23. Barth RF, Mi P, Yang W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun (London, England). 2018;38(1):35. https://doi.org/10.1186/s40880-018-0299-7.

    Article  Google Scholar 

  24. International Atomic Energy Agency. Advances in boron neutron capture therapy. IAEA, Vienna: Non-serial Publications; 2023.

    Google Scholar 

  25. Sato T, Furusawa Y. Cell survival fraction estimation based on the probability densities of domain and cell nucleus specific energies using improved microdosimetric kinetic models. Radiat Res. 2012;178:341–56. https://doi.org/10.1667/rr2842.1.

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Marusyk A, Almendro V, Polyak K. Intra-tumour heterogeneity: A looking glass for cancer? Nat Rev Cancer. 2012;12(5):323–34.

    Article  CAS  PubMed  Google Scholar 

  27. Bhatia S, Frangioni JV, Hoffman RM, Iafrate AJ, Polyak K. The challenges posed by cancer heterogeneity. Nat Biotechnol. 2012;30(7):604–10.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research was supported by the fifth Commission of Istituto Nazionale di Fisica Nucleare (INFN).

Author information

Authors and Affiliations

Authors

Contributions

V. Conte: writing, conceptualization, review. A. Bianchi, A. Selva: data taking, revision of text.

Corresponding author

Correspondence to Valeria Conte.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflict of interest

No conflict nor competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Hadrontherapy and BNCT: Current Status and Future Trends

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conte, V., Bianchi, A. & Selva, A. Microdosimetry in BNCT. Health Technol. (2024). https://doi.org/10.1007/s12553-024-00830-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12553-024-00830-1

Keywords

Navigation