Skip to main content

Advertisement

Log in

Malaria cell image classification by explainable artificial intelligence

  • Original Paper
  • Published:
Health and Technology Aims and scope Submit manuscript

Abstract

Malaria is one of the most common diseases in the world. It is caused by Plasmodium parasites and spreads among humans by the bite of female Anopheles mosquitoes. Only in 2019, children under the age of five accounted for 67% of all malaria deaths. The diagnosing process of malaria can be error-prone due to an inexperienced pathologist and may take a longer time. In this paper, we have presented a malaria detection framework based on wavelet packet 2d, Convolutional Neural Network.

(CNN), and Whale Optimization Algorithm (WOA). We have extracted a global feature set using the wavelet packet 2D and CNN. Further, we removed noisy features and selected an effective feature using WOA and XGBoost. The selected feature set is almost half of the initial feature set. Additionally, we have used SHapley Additive exPlanations (SHAP) to interpret the trained model and assess the significance of each feature. Based on the selected feature set, the XGBoost algorithm provides accuracy, precision, recall, and F1 score of 94. 78%, 94. 39%, 95. 21%, and 94. 80% respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

https://lhncbc.nlm.nih.gov/LHC-downloads/downloads.html#malariadatasets

Code availability

Not available.

References

  1. Al-Awadhi M, Ahmad S, Iqbal J. Current Status and the Epidemiology of Malaria in the Middle East Region and Beyond. Microorganisms. 2021;9(2):338. https://doi.org/10.3390/microorganisms9020338.

    Article  Google Scholar 

  2. C.-C. for D. C. and Prevention, “CDC - Malaria - About Malaria - Biology,” Jul. 16, 2020. https://www.cdc.gov/malaria/about/biology/index.html (accessed Jul. 22, 2021).

  3. “Malaria: Causes, Symptoms, and Diagnosis,” Healthline, Nov. 09, 2017. https://www.healthline.com/health/malaria (accessed Jul. 15, 2021).

  4. “World malaria report 2020.” https://www.who.int/publications-detail-redirect/9789240015791 (accessed Jul. 15, 2021).

  5. “Fact sheet about Malaria.” https://www.who.int/news-room/fact-sheets/detail/malaria (accessed Jul. 23, 2021).

  6. Ahmad A, et al. Comparison of polymerase chain reaction, microscopy, and rapid diagnostic test in malaria detection in a high burden state (Odisha) of India. Pathogens and Global Health. 2021;115(4):267–72. https://doi.org/10.1080/20477724.2021.1893484.

    Article  Google Scholar 

  7. Alam MS, et al. Real-time PCR assay and rapid diagnostic tests for the diagnosis of clinically suspected malaria patients in Bangladesh. Malar J. 2011;10:175. https://doi.org/10.1186/1475-2875-10-175.

    Article  Google Scholar 

  8. Snounou G, et al. High sensitivity of detection of human malaria parasites by the use of nested polymerase chain reaction. Mol Biochem Parasitol. 1993;61(2):315–20. https://doi.org/10.1016/0166-6851(93)90077-b.

    Article  Google Scholar 

  9. Ajakaye OG, Ibukunoluwa MR. Performance evaluation of a popular malaria RDT in Nigeria compared with microscopy. J Parasit Dis. 2020;44(1):122–5. https://doi.org/10.1007/s12639-019-01170-y.

    Article  Google Scholar 

  10. Sathpathi S, et al. Comparing Leishman and Giemsa staining for the assessment of peripheral blood smear preparations in a malaria-endemic region in India. Malar J. 2014;13(1):512. https://doi.org/10.1186/1475-2875-13-512.

    Article  Google Scholar 

  11. Berzosa P, et al. Comparison of three diagnostic methods (microscopy, RDT, and PCR) for the detection of malaria parasites in representative samples from Equatorial Guinea. Malar J. 2018;17(1):333. https://doi.org/10.1186/s12936-018-2481-4.

    Article  Google Scholar 

  12. Das DK, Ghosh M, Pal M, Maiti AK, Chakraborty C. Machine learning approach for automated screening of malaria parasite using light microscopic images. Micron. 2013;45:97–106. https://doi.org/10.1016/j.micron.2012.11.002.

    Article  Google Scholar 

  13. Park HS, Rinehart MT, Walzer KA, Chi JT, Wax A. Automated detection of P. falciparum using machine learning algorithms with quantitative phase images of unstained cells. PloS one. 2016;11(9):e0163045. https://doi.org/10.1371/journal.pone.0163045.

  14. Liang Z, et al. CNN-based image analysis for malaria diagnosis. in 2016 IEEE Intern Conf Bioinform Biomed (BIBM). 2016;493–496. https://doi.org/10.1109/BIBM.2016.7822567.

  15. Bibin D, Nair MS, Punitha P. Malaria Parasite Detection From Peripheral Blood Smear Images Using Deep Belief Networks. IEEE Access. 2017;5:9099–108. https://doi.org/10.1109/ACCESS.2017.2705642.

    Article  Google Scholar 

  16. Rajaraman S, et al. Pre-trained convolutional neural networks as feature extractors toward improved malaria parasite detection in thin blood smear images. PeerJ. 2018;6: e4568. https://doi.org/10.7717/peerj.4568.

    Article  Google Scholar 

  17. Umer M, Sadiq S, Ahmad M, Ullah S, Choi GS, Mehmood A. A Novel Stacked CNN for Malarial Parasite Detection in Thin Blood Smear Images. IEEE Access. 2020;8:93782–92. https://doi.org/10.1109/ACCESS.2020.2994810.

    Article  Google Scholar 

  18. Rajaraman S, Jaeger S, Antani SK. Performance evaluation of deep neural ensembles toward malaria parasite detection in thin-blood smear images. PeerJ. 2019;7: e6977. https://doi.org/10.7717/peerj.6977.

    Article  Google Scholar 

  19. Khan A, Gupta KD, Venugopal D, Kumar N. CIDMP: Completely Interpretable Detection of Malaria Parasite in Red Blood Cells using Lower-dimensional Feature Space. in 2020 Intern Joint Conf Neural Networks (IJCNN). 2020;1–8. https://doi.org/10.1109/IJCNN48605.2020.9206885.

  20. Montalbo FJP, Alon AS. Empirical Analysis of a Fine-Tuned Deep Convolutional Model in Classifying and Detecting Malaria Parasites from Blood Smears. KSII Transactions on Internet and Information Systems (TIIS). 2021;15(1):147–65. https://doi.org/10.3837/tiis.2021.01.009.

    Article  Google Scholar 

  21. Reddy ASB, Juliet DS. Transfer Learning with ResNet-50 for Malaria Cell-Image Classification. in 2019 International Conf Comm Signal Processing (ICCSP). 2019;0945–0949. https://doi.org/10.1109/ICCSP.2019.8697909.

  22. Virmani J, Kumar V, Kalra N, Khandelwal N. SVM-Based Characterization of Liver Ultrasound Images Using Wavelet Packet Texture Descriptors. J Digit Imaging. 2013;26(3):530–43. https://doi.org/10.1007/s10278-012-9537-8.

    Article  Google Scholar 

  23. Garcia C, Zikos G, Tziritas G. Wavelet packet analysis for face recognition. Image Vis Comput. 2000;18(4):289–97. https://doi.org/10.1016/S0262-8856(99)00056-6.

    Article  Google Scholar 

  24. Wang Y, Zheng H. An Improved Iris Recognition Method Based on Wavelet Packet Transform. In J  Phys: Conf Series. 2021;1744(4):042239. IOP Publishing. https://doi.org/10.1088/1742-6596/1744/4/042239.

  25. Tian Y, Lan L, Guo H. A review on the wavelet methods for sonar image segmentation. Int J Adv Rob Syst. 2020;17(4):1729881420936091. https://doi.org/10.1177/1729881420936091.

    Article  Google Scholar 

  26. Wolter M, Blanke F, Hoyt CT, Garcke J. Wavelet-Packet Powered Deepfake Image Detection. arXiv preprint arXiv:2106.09369. 2021 Jun 17. [Online]. Available: http://arxiv.org/abs/2106.09369

  27. Barbhuiya AA, Karsh RK, Jain R. CNN based feature extraction and classification for sign language. Multimed Tools Appl. 2021;80(2):3051–69. https://doi.org/10.1007/s11042-020-09829-y.

    Article  Google Scholar 

  28. Boyd A, Czajka A, Bowyer K. Deep learning-based feature extraction in iris recognition: Use existing models, fine-tune or train from scratch?. In2019 IEEE 10th International Conference on Biometrics Theory, Applications and Systems (BTAS) 2019 Sep 23 (pp. 1-9). IEEE. https://doi.org/10.1109/BTAS46853.2019.9185978.

  29. Alaslani MG. Convolutional Neural Network Based Feature Extraction for IRIS Recognition. Social Sci Res Network, Rochester, NY, SSRN Scholarly Paper ID 3609860, 2018. Accessed: Jul. 22, 2021. [Online]. Available: https://papers.ssrn.com/abstract=3609860

  30. Sujana DVRS. An Effective CNN based Feature Extraction Approach for Iris Recognition System. Turkish J Comp Mathematics Education (TURCOMAT). 2021;12(6):6.

  31. Seal A, Ganguly S, Bhattacharjee D, Nasipuri M, Gonzalo-Martin C. Feature selection using particle swarm optimization for thermal face recognition. InApplied Computation and Security Systems 2015 (pp. 25-35). Springer, New Delhi. https://doi.org/10.1007/978-81-322-1985-9_2.

  32. Zamani H, Nadimi-Shahraki MH. Feature selection based on whale optimization algorithm for diseases diagnosis. Intern J Comp Sci Inform Sec. 2016;14(9):1243. https://doi.org/10.13140/RG.2.2.29065.88161.

  33. Sharawi M, Zawbaa HM, Emary E. Feature selection approach based on whale optimization algorithm. In 2017 Ninth international conference on advanced computational intelligence (ICACI) 2017;163-168. IEEE. https://doi.org/10.1109/ICACI.2017.7974502.

  34. Mohammed HM, Umar SU, Rashid TA. A Systematic and Meta-Analysis Survey of Whale Optimization Algorithm. Comput Intell Neurosci. 2019;2019: e8718571. https://doi.org/10.1155/2019/8718571.

    Article  Google Scholar 

  35. Adadi A, Berrada M. Peeking inside the black-box: A survey on explainable artificial intelligence (xai). IEEE Access. 2018;6:52138–52160. https://doi.org/10.1109/ACCESS.2018.2870052.

  36. Linardatos P, Papastefanopoulos V, Kotsiantis S. Explainable ai: A review of machine learning interpretability methods. Entropy. 2021;23(1):18. https://doi.org/10.3390/e23010018.

  37. Ribeiro MT, Guestrin C. " Why should i trust you?" Explaining the predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery and data mining 2016;1135-1144. https://doi.org/10.1145/2939672.2939778.

  38. Lundberg SM, Lee SI. A Unified Approach to Interpreting Model Predictions. Adv Neural Inform Proc Sys. 2017;30. Accessed: Jul. 19, 2021. [Online]. Available: https://proceedings.neurips.cc/paper/2017/hash/8a20a8621978632d76c43dfd28b67767-Abstract.html

  39. Parsa AB, Movahedi A, Taghipour H, Derrible S, Mohammadian AK. Toward safer highways, application of XGBoost and SHAP for real-time accident detection and feature analysis. Accident Analysis & Prevention. 2020;136:105405. https://doi.org/10.1016/j.aap.2019.105405.

  40. Meng Y, Yang N, Qian Z, Zhang G. What makes an online review more helpful: an interpretation framework using XGBoost and SHAP values. Journal of Theoretical and Applied Electronic Commerce Research. 2021;16(3):466-90. https://doi.org/10.3390/jtaer16030029.

  41. “Free Vector Icons and Stickers - PNG, SVG, EPS, PSD and CSS.” https://www.flaticon.com/ (accessed Oct. 06, 2021).

  42. “Lister Hill National Center for Biomedical Communications.” https://lhncbc.nlm.nih.gov/ (accessed Jul. 16, 2021).

  43. Vibhute A. Feature Extraction Techniques in Speech Processing A Survey. International Journal of Computer Applications. 2014;107:1–8. https://doi.org/10.5120/18744-9997.

    Article  Google Scholar 

  44. Huang K, Aviyente S. Wavelet Feature Selection for Image Classification. IEEE Trans Image Process. 2008;17(9):1709–20. https://doi.org/10.1109/TIP.2008.2001050.

    Article  MathSciNet  Google Scholar 

  45. Liu YH. Feature extraction and image recognition with convolutional neural networks. In J Phys: Conf Series. 2018;1087(6):062032. https://doi.org/10.1088/1742-6596/1087/6/062032.

  46. Nahid AA, Kong Y. Local and global feature utilization for breast image classification by convolutional neural network. In 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA) 2017;1-6. IEEE. https://doi.org/10.1109/DICTA.2017.8227460.

  47. Chen T, Guestrin C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining 2016;785-794. https://doi.org/10.1145/2939672.2939785.

  48. Molnar C. Interpretable Machine Learning. Accessed: Jul. 31, 2021. [Online]. Available: https://christophm.github.io/interpretable-ml-book/

  49. Mirjalili S, Lewis A. The Whale Optimization Algorithm. Adv Eng Softw. 2016;95:51–67. https://doi.org/10.1016/j.advengsoft.2016.01.008.

    Article  Google Scholar 

  50. Loyola-González O. Black-Box vs. White-Box: Understanding Their Advantages and Weaknesses From a Practical Point of View. IEEE Access. 2019;7:154096–113. https://doi.org/10.1109/ACCESS.2019.2949286.

    Article  Google Scholar 

  51. Rai A. Explainable AI: from black box to glass box. J of the Acad Mark Sci. 2020;48(1):137–41. https://doi.org/10.1007/s11747-019-00710-5.

    Article  Google Scholar 

Download references

Funding

The paper received no funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors have contributed equally.

Corresponding author

Correspondence to Abdullah-Al Nahid.

Ethics declarations

Conflicts of interest

The author declares that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raihan, M., Nahid, AA. Malaria cell image classification by explainable artificial intelligence. Health Technol. 12, 47–58 (2022). https://doi.org/10.1007/s12553-021-00620-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12553-021-00620-z

Keywords

Navigation