Robot technology for future welfare: meeting upcoming societal challenges – an outlook with offset in the development in Scandinavia

Abstract

In many countries, a demographic change has been recognized and is subject to public discussions, either directly or indirectly by social systems being challenged with the growing demands. However, with the increase of life expectancy, also the type of needs change due to an increase of co-morbidity and multi-chronic conditions asking for an increased focus on the patient as a whole rather than the individual diseases. Recent technological advances provide new opportunities for technical solutions that interact with end users and the utilization of robots is considered one potential mean for addressing this challenge. This article outlines the changes in the demands, with particular examples taken from the Danish health care system as an example, together with the technological achievements within the robotics domain. We identify where technologies that to a large degree are existing already today can be utilized to support the social systems in the near future. We show that several of the challenges related to the demographic change can be addressed with technology that is already available and that for some cases have reached the mass market already. We also outline the to be expected opportunities and challenges in the development of future robots in the health-care domain.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Notes

  1. 1.

    Based on a search for “‘Human-Robot Interaction”’ in Google Scholar

  2. 2.

    Based on researchandmarkets.com

  3. 3.

    http://www.turtlebot.com/turtlebot2/

  4. 4.

    www.magazino.eu

  5. 5.

    https://www.joanneum.at/en/robotics/reference-projects/collaborative-robotics/

  6. 6.

    https://www.ssi.dk/Aktuelt/Nyheder/2015/2015_10_Hver%20femte%20lever%20med%20kronisk%20sygdom_21102015.aspx

References

  1. 1.

    5e NannyBot. Five Elements Robotics. http://5elementsrobotics.com/5enannybot.

  2. 2.

    8 best robot vacuum cleaners. https://www.independent.co.uk/extras/indybest/house-garden/vacuum-cleaners/best-robot-vacuum-cleaners-reviews-uk-do-they-work-a7370191.html (visited on 07/09/2017).

  3. 3.

    ABS. Australian Bureau of Statistics. http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4102.0main+features82014.

  4. 4.

    Adalgeirsson SO, Breazeal C. MeBot:a robotic platform for socially embodied presence. 5th ACM/IEEE International Conference on Human-robot interaction; 2010. p. 15–22. http://dl.acm.org/citation.cfm?id=1734454.1734467.

  5. 5.

    Aggestrup S, et al. Fremtidens hospital. In: Pedersen KM and Petersen NC, editors. 1st ed.; 2014.

  6. 6.

    Alberto E, Mukul T, Andrew P, Michael S. The ReWalk Powered Exoskeleton to Restore Ambulatory Function to Individuals with Thoracic-Level Motor-Complete Spinal Cord Injury. Amer J Phys Med Rehabil 2012;91: 911–921. https://doi.org/10.1097/PHM.0b013e318269d9a3.

    Article  Google Scholar 

  7. 7.

    Alias NA, Huq MS, Ibrahim BSKK, Omar Rx. The Efficacy of State of the Art Overground Gait Rehabilitation Robotics: A Bird’s Eye View. Procedia Comput Sci 2017;105.2:365–370. https://doi.org/10.1016/j.procs.2017.01.235.

    Article  Google Scholar 

  8. 8.

    Amazon Echo. Amazon.com, Inc. http://www.amazon.com/echo (visited on 12/20/2017).

  9. 9.

    Andrade AO, Pereira AA, Walter S, Almeidac R, Loureiro R, Compagna D, Kyberd PJ. Bridging the gap between robotic technology and health care. Biomed. Signal Process. Control 2014;10 :65–78. https://doi.org/10.1016/j.bspc.2013.12.009.

    Article  Google Scholar 

  10. 10.

    Ars B, Lambert D. 2016. Medical robotics: a few ethical guidelines. World Federation of Catholic Medical Associations. https://bioethicsfiamc.com/2016/06/29/medical-robotics-a-few-ethical-guidelines/ (visited on 11/22/2018).

  11. 11.

    Ates S, Mora-Moreno I, Wessels M, Stienen AHA. 2016. Combined active wrist and hand orthosis for home use: Lessons learned. In: IEEE International Conference on Rehabilitation Robotics. https://doi.org/10.1109/ICORR.2015.7281232.

  12. 12.

    Bähler C, Huber CA, Brüngger B, Reich O. Multimorbidity, health care utilization and costs in an elderly community-dwelling population: a claims data based observational study. In: BMC Health Services Research. 2015;15.23. https://doi.org/10.1186/s12913-015-0698-2.

  13. 13.

    Balasingam M. Drones in medicine? The rise of the machines. In: International Journal of Clinical Practice. 2017;71.9.

  14. 14.

    Barabas C, Bavitz C, Matias JN, Xie C, Xu J. Legal And Ethical Issues In The Use Of Telepresence Robots: Best Practices And Toolkit. In: We Robot 2015 Fourth Annual Conference on Robotics, Law & Policy. 2015.

  15. 15.

    Pro B. Blue Ocean Robotics. https://suitabletech.com/products/beam-pro (visited on 03/30/2018).

  16. 16.

    Benyon Dx, Mival O. Introducing the Companions Project: Intelligent, Persistent, Personalised Interfaces to the Internet. In: Proceedings of the 21st British HCI Group Annual Conference on People and Computers: HCI...But Not As We Know It - Volume 2. BCS-HCI’07. 2007;193–194.

  17. 17.

    Bickmore TW, Kimani E, Trinh H, Pusateri A, Paasche-Orlow MK, Magnani JW. Managing Chronic Conditions with a Smartphone-based Conversational Virtual Agent. In: Conference: the 18th International Conference. 2018;119–124. https://doi.org/10.1145/3267851.3267908.

  18. 18.

    Biundo S, Höller D, Schattenberg B, Bercher P. Companion-Technology: An Overview. KI - Künstliche Intell 2016;30.1:11–20. https://doi.org/10.1007/s13218-015-0419-3.

    Article  Google Scholar 

  19. 19.

    Bogue R. Growth in e-commerce boosts innovation in the warehouse robot market. Ind Robot: Int J 2016;43.6: 583–587. https://doi.org/10.1108/IR-07-2016-0194.

    Article  Google Scholar 

  20. 20.

    Buddy. Blue Frog Robotics. http://www.bluefrogrobotics.com/en/buddy.

  21. 21.

    Budgee. Five Elements Robotics. http://5elementsrobotics.com/budgee-main.

  22. 22.

    Cabibihan J-J, Javed H, Ang M Jr, Aljunied SM. Why Robots? A Survey on the Roles and Benefits of Social Robots in the Therapy of Children with Autism. Int J Soc Robot 2013;5:593–618. https://doi.org/10.1007/s12369-013-0202-2.

    Article  Google Scholar 

  23. 23.

    Calo CJ, Hunt-Bull N, Lewis L, Metzler T. Ethical Implications of Using the Paro Robot, with a Focus on Dementia Patient Care. In: Human-Robot Interaction in Elder Care, Papers from the AAAI Workshop. 2011.

  24. 24.

    CareCart. Fraunhofer IPA. https://www.ipa.fraunhofer.de/en/press/2015-05-18_Fraunhofer-IPA-develops-prototype-of-intelligent-care-cart.html (visited on 12/20/2017).

  25. 25.

    Census - United States Bureu. U.S. Department of Commerce. https://www.census.gov.

  26. 26.

    Cheng N, et al. Prosthetic jamming terminal device: A case study of untethered soft robotics. Soft Robot 2016; 3.4:205–212. https://doi.org/10.1089/soro.2016.0017.

    Article  Google Scholar 

  27. 27.

    Coeckelbergh M. Health Care, capabilities and AI assistive technologies. Undefined. In: Ethical theory and moral practice. 2009;2009.2. https://doi.org/10.1007/s10677-009-9186-2.

  28. 28.

    Cohen P, Cheyer A, Horvitz E, Kaliouby RE, Whittaker S. On the Future of Personal Assistants. Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems. CHI EA’16; 2016. p. 1032–1037. https://doi.org/10.1145/2851581.2886425.

  29. 29.

    Cohen-Mansfield J, Biddison JR. The Potential of Wash-and-Dry Toilets to Improve the Toileting Experience for Nursing Home Residents. Gerontol 2005;45.1:694–699. https://doi.org/10.1093/geront/45.5.694.

    Article  Google Scholar 

  30. 30.

    Cortana. Microsoft. https://www.microsoft.com/en-us/windows/cortana (visited on 12/20/2017).

  31. 31.

    Dario P, Laschi C, Guglielmelli E. Design and experiments on a personal robotic assistant. Adv Robot 1998;13.2:153–169. https://doi.org/10.1163/156855399X00199.

    Article  Google Scholar 

  32. 32.

    DASH. Five Elements Robotics. http://5elementsrobotics.com/dash-robotic-shopping-cart.

  33. 33.

    Digitaliseringsstyrelsen. Danmark i den internationale superliga for telemedicin. Technical report Digitaliseringsstyrelsen. 2015.

  34. 34.

    Diment LE, Thompson MS, Bergmann JHM. Three-dimensional printed upper-limb prostheses lack randomised controlled trials: A systematic review. Prosthetics Orthot Int 2018;42.1:7–13. https://doi.org/10.1177/0309364617704803.

    Article  Google Scholar 

  35. 35.

    Ding J, Lim Y-J, Solano M, Shadle K, Park C, Lin C, Hu J. 2014. Giving Patients A Lift – The Robotic Nursing Assistant (RoNA). In: IEEE International Conference on Technologies for Practical Robot Applications (TePRA). https://doi.org/10.1109/TePRA.2014.6869137.

  36. 36.

    Double. Double Robotics, Inc. https://www.doublerobotics.com.

  37. 37.

    Double Robotics says it has sold 8,000 robots and generated $20 million in sales since 2013. Venture Beat. https://venturebeat.com/2017/01/16/double-robotics-says-it-has-sold-8000-robots-and-generated-20-million-in-sales-since-2013/ (visited on 01/23/2018).

  38. 38.

    ER5. EasyRobotics ApS. https://www.easyrobotics.biz/ (visited on 12/07/2017).

  39. 39.

    Ersen M, Oztop E, Sariel S. Cognition-Enabled Robot Manipulation in Human Environments. In: IEEE Robotics & Automation Magazine. 2017.

  40. 40.

    Eurostat - European Statistic. European Commision. http://ec.europa.eu/eurostat/data/statistics-a-z/abc.

  41. 41.

    Evans JM. 1994. HelpMate: An Autonomous Mobile Robot Courier for Hospitals. In: IEEE/RSJ/GI International Conference on Intelligent Robots and Systems. Advanced Robotic Systems and the Real World. https://doi.org/10.1109/IROS.1994.407629.

  42. 42.

    Feil-Seifer D, Matarý MJ. Dry Your Eyes: Examining the Roles of Robots for Childcare Applications. In: Interaction Studies. 2010;11.2.

  43. 43.

    Flodgren G, Rachas A, Farmer AJ, Inzitari M, Shepperd S. Interactive telemedicine: effects on professional practice and health care outcomes. In: Cochrane Database of Systematic Reviews. 2015;9. https://doi.org/10.1002/14651858.CD002098.pub2.

  44. 44.

    FloorWashing Robot (RA660-navi). Blue Ocean Robotics. https://blue-ocean-robotics.com/ra660-navi.

  45. 45.

    Force S. The Role of Telehealth in Reducing Readmissions, Readmissions News. In: Health Policy Publishing. 2013.

  46. 46.

    Ford M. Rise of the Robots: Technology and the Threat of a Jobless Future. 2016.

  47. 47.

    freight500. Fetch Robotics Inc. http://fetchrobotics.com/automated-material-transport-v3.

  48. 48.

    Friedman B, Kahn PH, Borning A. Value Sensitive Design: Theory and Methods. In: 2003.

  49. 49.

    Gloreha. Gloreha. http://www.gloreha.com/sinfonia (visited on 10/26/2018).

  50. 50.

    Google Assistant. Google Inc. https://assistant.google.com.

  51. 51.

    GoPal. Robotize Aps. http://www.robotize.com/the-robot/functionality.

  52. 52.

    Gouaillier D, et al. 2008. The NAO humanoid: a combination of performance and affordability. In: arXiv:0807.3223.

  53. 53.

    Gross H-M, et al. ROREAS: robot coach for walking and orientation training in clinical post-stroke rehabilitation–prototype implementation and evaluation in field trials. Auton Robot 2017;41.3:679–698. https://doi.org/10.1007/s10514-016-9552-6.

    Article  Google Scholar 

  54. 54.

    Health-CAT. 2018. http://www.healthcat.eu (visited on 11/22/2018).

  55. 55.

    hmishelf15. Fetch Robotics Inc. http://fetchrobotics.com/automated-material-transport-v3.

  56. 56.

    Huang G, Liu Z, van der Maaten L, Weinberger KQ. 2017. Densely Connected Convolutional Networks. In: Conference on Computer Vision and Pattern Recognition.

  57. 57.

    IPSS. National Institute of Population and Social Security Research. http://www.ipss.go.jp/index-e.asp.

  58. 58.

    JACO, Utra Lightweight Robotic Arm. Kinova. https://www.kinovarobotics.com/en/products/robotic-arm-series/jaco-prosthetic-robotic-arm (visited on 06/20/2018).

  59. 59.

    Jamwal PK, Hussain S, Mir-Nasiri N, Ghayesh MH, Xie SQ. 2017. Telerehabilitation using in-house wearable ankle rehabilitation robot. In: Assistive Technology. https://doi.org/10.1080/10400435.2016.1230153.

  60. 60.

    Jibo. Jibo, Inc. https://www.jibo.com (visited on 03/30/2018).

  61. 61.

    Jiralerspong T, Heung KHL, Tong RKY, Li Z. 2018. A Novel Soft Robotic Glove for Daily Life Assistance. In: IEEE International Conference on Biomedical Robotics and Biomechatronics. https://doi.org/10.1109/BIOROB.2018.8488060.

  62. 62.

    Joosse M, Lohse M, Evers V. Lost in proxemics: spatial behavior for cross-cultural HRI. In: HRI 2014Workshop on Culture-Aware Robotics. 2014.

  63. 63.

    Joy For All Cat. Hasbro’s Joy for All Companion Pets. https://joyforall.hasbro.com (visited on 12/20/2017).

  64. 64.

    Juel WK, Krüger N, Bodenhagen L. 2018. Robots for Elderly Care Institutions: How They May Affect Elderly Care. In: Envisioning Robots In Society - Power, Politics, And Public Space. Proceedings of Robophilosophy 2018 / TRANSOR 2018. https://doi.org/10.3233/978-1-61499-931-7-221.

  65. 65.

    Juel WK, et al. The SMOOTH Robot: Design for a Novel Modular Welfare Robot. In: ICRA Workshop on Elderly Care Robotics – Technology and Ethics (WELCARO). 2018.

  66. 66.

    Karabegović I, Karabegović E, Mahmić M, Husak E. The application of service robots for logistics in manufacturing processes. Adv Prod Eng Manag 2015;10.4:185–194.

    Google Scholar 

  67. 67.

    ten Kate J, Smit G, Breedveld P. 3Dprinted upper limb prostheses: a review. Disabil Rehabil: Assist Technol 2017;12.3:300–314. https://doi.org/10.1080/17483107.2016.1253117.

    Google Scholar 

  68. 68.

    Kidholm K, Ekeland AG, Jensen LK, Rasmussen J, Pedersen CD. A Model for Assessment of Telemedicine Applications: MAST. Int J Technol Assess Health Care 2012;28.1:44–51. https://doi.org/10.1017/S0266462311000638.

    Article  Google Scholar 

  69. 69.

    Kiesler S, Goodrich MA. The Science of Human-Robot Interaction. ACM Trans Hum - Robot Interact 2018; 7.1:9:1–9:3. https://doi.org/10.1145/3209701.

    Google Scholar 

  70. 70.

    Kim SJ, Lim GJ, Cho J, Côté MJ. Drone-Aided Healthcare Services for Patients with Chronic Diseases in Rural Areas. J Intell Robot Syst 2017;71.9:1–18.

    Google Scholar 

  71. 71.

    Kittmann R, Frölich T, Schäfer J, Reiser U, Weisshardt F, Haug A. Let me Introduce Myself: I am Care-O-bot 4, a Gentleman Robot. In: Mensch und Computer 2015 Tagungsband. 2015.

  72. 72.

    Klein B, Cook G, Moyle W. Emotional Robotics in the Care of Older People: A Comparison of Research Findings of PARO- and PLEOInterventions in Care Homes from Australia, Germany and the UK. Domýnguez-Rué, E, Nierling, L (eds). 2016;Chap. 2:205–224.

  73. 73.

    Kristoffersson A, Coradeschi S, Loutfi A. 2013. A Review of Mobile Robotic Telepresence. In: Advances in Human-Computer Interaction. https://doi.org/10.1155/2013/902316.

  74. 74.

    Krüger N, Dolriis O. Five reasons why robots won’t take over the world. English. Other. 2018.

  75. 75.

    Krüger N, Bodenhagen L, Juel WK. Robots for elderly care institutions. English. In: International Research Conference Robophilosophy 2018, TRANSOR 2018; Conference date: 14-02-2018 Through 17-02-2018. 2018.

  76. 76.

    Kubi. Revolve Robotics, Xandex Inc. https://www.revolverobotics.com (visited on 03/30/2018).

  77. 77.

    Kvedar J, Coye MJ, Everett W. 2014. Connected Health: A Review Of Technologies And Strategies To Improve Patient Care With Telemedicine And Telehealth. In: Health Affairs. https://doi.org/10.1377/hlthaff.2013.0992.

  78. 78.

    Laut J, Porfiri M, Raghavan P. The Present and Future of Robotic Technology in Rehabilitation. Curr Phys Med Rehabil Report 2016;4.4:312–319. https://doi.org/10.1007/s40141-016-0139-0.

    Article  Google Scholar 

  79. 79.

    Lindborg A-L, Lindén M. Development of an eating aid-from the user needs to a product. In: pHealth. 2015;191–198.

  80. 80.

    Lokomat. Hocoma. https://www.hocoma.com/solutions/lokomat/ (visited on 06/20/2018).

  81. 81.

    Luna. Ergolet. https://www.ergolet.com/en/products-products-with-function-og-elegance/ceiling-lifts-overhead-tracking/lunaipx4ceilinglift.

  82. 82.

    Madsen MH, Meier N. 2017. Reorganisering og sygehusbyggeri – Erfaringer fra udviklingsarbejdet i de fem regioner. https://www.kora.dk/aktuelt/nyheder/2017/nye-sygehuse-kraever-ny-organisering/.

  83. 83.

    Majidi C. Soft robotics: a perspective?current trends and prospects for the future. Soft Robot 2014;1.1:5–11.

    Article  Google Scholar 

  84. 84.

    Martins M, Santos C, Frizera A, Ceres R. A review of the functionalities of smart walkers. Med Eng Phys 2015;37:917–928. https://doi.org/10.1016/j.medengphy.2015.07.006.

    Article  Google Scholar 

  85. 85.

    Masiero S, Armani M, Ferlini G, Rosati G, Rossi A. Randomized Trial of a Robotic Assistive Device for the Upper Extremity During Early Inpatient Stroke Rehabilitation. In: Neurorehabilitation and Neural Repair. 2014;28.4:377–386. PMID: 24316679. https://doi.org/10.1177/1545968313513073.

  86. 86.

    Matarić MJ, Scassellati B. Socially Assistive Robotics. In: Springer Handbook of Robotics. Siciliano, B, Khatib, O (eds). 2016;1973–1994. https://doi.org/10.1007/978-3-319-32552-173.

  87. 87.

    Matsuda A, Rekimoto J. ScalableBody: A Telepresence Robot Supporting Socially Acceptable Interactions and Human Augmentation through Vertical Actuation. In: Annual Symposium on User Interface Software and Technology. 2016. https://doi.org/10.1145/2984751.2985718.

  88. 88.

    McCormick A, Alazem H, Morbi A, Beranek R, Adler R, Tibi G, Vilé E. Power Walker Helps a Child with Cerebral Palsy. In: International Conference on Control, Dynamic Systems, and Robotics. 2016. https://doi.org/10.11159/cdsr16.129.

  89. 89.

    Mehrholz J, Platz T, Kugler J, Pohl M. 2015. Electromechanical and robot-assisted arm training for improving arm function and activities of daily living after stroke. Cochrane Database of Systematic Reviews. In: Cochrane Stroke Group. https://doi.org/10.1002/14651858.CD006876.pub4.

  90. 90.

    Melvin. Melvin Aps. http://www.en.mymelvin.com (visited on 03/30/2018).

  91. 91.

    MiR100. Mobile Industrial Robots. http://www.mobile-industrial-robots.com.

  92. 92.

    Mossialos E, Wenzl M, Osborn R, Sarnak D, (eds). 2015 International Profiles of Health Care Systems. 2016.

  93. 93.

    Moyle W, Jones C, Cooke M, O’Dwyer S, Sung B, Drummond S. Connecting the person with dementia and family: a feasibility study of a telepresence robot. BMC Geriatr 2014;14.7:1–11. https://doi.org/10.1186/1471-2318-14-7.

    Google Scholar 

  94. 94.

    Multi Tower. Multi Tower Company IVS. http://multi-tower-company.com (visited on 12/20/2017).

  95. 95.

    NAO, Romeo and Pepper. Softbank Robotics. https://www.ald.softbankrobotics.com/en/robots (visited on 12/21/2017).

  96. 96.

    Nemiroski A, et al. “Arthrobots”. Soft Robot 2017;4.3:183–190.

    Article  Google Scholar 

  97. 97.

    Neo. Avidbots. https://www.avidbots.com/#product (visited on 06/21/2018).

  98. 98.

    Nielsen J, Sørensen AS, Christensen TS, Savarimuthu TR, Kulvicius T. Individualised and adaptive upper limb rehabilitation with industrial robot using dynamic movement primitives. In: ICRA 2017 Workshop on Advances and challenges on the development, testing and assessment of assistive and rehabilitation robots: Experiences from engineering and human science research. 2017.

  99. 99.

    OECD. “Hospital beds”. In: OECD Health Statistics 2017. 2017. http://stats.oecd.org/.

  100. 100.

    Ohmni. OhmniLabs, Inc. https://ohmnilabs.com (visited on 11/17/2017).

  101. 101.

    Omron LD. Omron Corporation. https://industrial.omron.eu/en/products/mobile-robot (visited on 12/20/2017).

  102. 102.

    Orlandini A, et al. ExCITE Project: A Review of Forty-Two Months of Robotic Telepresence Technology Evolution. Presence 2016;25.3:204–221. https://doi.org/10.1162/PRESa00262.

    Article  Google Scholar 

  103. 103.

    Otto. Samsung. 2016. https://techviral.net/samsung-launched-personal-assistant-robot.

  104. 104.

    Özkil AG, Fan Z, Dawids S, Kristensen JK, Christensen KH, Aanæs H. Service Robots for Hospitals: A Case Study of Transportation Tasks in a Hospital. In: IEEE International Conference on Automation and Logistics. 2009.

  105. 105.

    PadBot. Inbot Technology Ltd. http://www.padbot.com.

  106. 106.

    Palankar M, De Laurentis KJ, Alqasemi R, Veras E, Dubey R, Arbel Y, Donchin E. Control of a 9-DoF Wheelchair-mounted robotic arm system using a P300 Brain Computer Interface: Initial experiments. In: IEEE International Conference on Robotics and Biomimetics. 2009;348–353.

  107. 107.

    Parks JA. Lifting the Burden of Women’s Care Work: Should Robots Replace the human touch. Hypatia 2010; 25.1:100–120.

    Article  Google Scholar 

  108. 108.

    PARO Robot. PARO Robots U.S., Inc. http://www.parorobots.com (visited on 12/20/2017).

  109. 109.

    Pedersen KM, Bech KVM. The Danish Health Care System: An Analysis of Strengths, Weaknesses, Opportunities and Threats (SWOT analysis). In: 2011 Health Economics Papers Odense: Research Unit of Health Economics. 2011.

  110. 110.

    Pedersen KM, Christiansen T, Bech M. The Danish health care system: evolution - not revolution - in a decentralized system. In: Health Economics. 2005;14.51. https://doi.org/10.1002/hec.1028.

  111. 111.

    Pennisi P, Tonacci A, Tartarisco G, Billeci L, Ruta L, Gangemi S, Pioggia G. Autism and social robotics: A systematic review. Autism Res 2016;9.2:165–183. https://doi.org/10.1002/aur.1527.

    Article  Google Scholar 

  112. 112.

    PLEN Cube. PLENGoer Robotics. http://plengoer.com (visited on 12/21/2017).

  113. 113.

    Population Statistics: Population estimates and projections, 1960–2050. Knoema. https://knoema.com.

  114. 114.

    Porter ME. Value-based health care delivery. Ann Surg 2008;248.4:503–9.

    Google Scholar 

  115. 115.

    Quashie RY, Lerman AF. The Promise of Telehealth For Hospitals, Health Systems and Their Communities. Technical report American Hospital Association. 2015.

  116. 116.

    Rafi U, Leibe B, Gall J, Kostrikov I. 2016. An Efficient Convolutional Network for Human Pose Estimation. In: Proceedings of the British Machine Vision Conference (BMVC). https://doi.org/10.5244/C.30.109.

  117. 117.

    Redmon J, Farhadi A. 2016. YOLO9000: Better, Faster, Stronger. In: arXiv:1612.08242.

  118. 118.

    Reimer HD, Keller HH. 2009. Mealtimes in Nursing Homes: Striving for Person-Centered Care. In: Journal of Nutrition For the Elderly. https://doi.org/10.1080/01639360903417066.

  119. 119.

    ReoGo. Motorika. http://motorika.com/reogo/ (visited on 10/26/2018).

  120. 120.

    ReWalk. ReWalk Robotics. http://rewalk.com/ (visited on 03/30/2018).

  121. 121.

    Riek LD. Artificial Intelligence in Behavioral Health and Mental Health Care. Chap. Robotics Technology in Mental Health Care. In: Luxton D, editors; 2015. https://doi.org/10.1016/B978-0-12-420248-1.00008-8.

  122. 122.

    Riek LD. Healthcare Robotics. Commun ACM 2017;60.11:68–78. https://doi.org/10.1145/3127874.

    Article  Google Scholar 

  123. 123.

    Riener R. Technology of the Robotic Gait Orthosis Lokomat. In: Reinkensmeyer DJ and Dietz V, editors; 2016. p. 395–407. https://doi.org/10.1007/978-3-319-28603-7_19.

  124. 124.

    Robertson JVG, Jarrassé N, Roby-Brami A. Rehabilitation robots: a compliment to virtual reality. Schedae Prepubl 2010;105.6:77–94.

    Google Scholar 

  125. 125.

    RoboCourier. Swisslog. http://www.swisslog.com/en/Products/HCS/Automated-Material-Transport/RoboCourier-Autonomous-Mobile-Robot.

  126. 126.

    RoboFit. Robofit ApS. http://robofit.dk/ (visited on 12/10/2017).

  127. 127.

    Rossiter JM, Hauser H. Soft Robotics - The Next Industrial Revolution?. IEEE Robot Autom Mag 2016; 23.3:17–20. https://doi.org/10.1109/MRA.2016.2588018.

    Article  Google Scholar 

  128. 128.

    Maja Rudinac. LEA - Lean Elderly Assistant. Robot Care Systems. https://vimeo.com/171714584 (visited on 12/20/2017).

  129. 129.

    Sale P, et al. Recovery of hand function with robot-assisted therapy in acute stroke patients: A randomizedcontrolled trial. In: International journal of rehabilitation research. 2014;37. https://doi.org/10.1097/MRR.0000000000000059.

  130. 130.

    Scott J, Scott C. Drone delivery models for healthcare. In: Proceedings of the 50th Hawaii International Conference on System Sciences. 2017.

  131. 131.

    Selvaganapathy S, Ilangumaran A. Design of Quadcopter for Aerial View and Organ Transportation Using Drone Technology. Asian J Appl Sci Technol 2017;1.3:311–315.

    Google Scholar 

  132. 132.

    Sethi C. Innovation on Wheels. In: Mechanical Engineering. 2013;135.11.

  133. 133.

    Sharkey N, Sharkey A. The Eldercare Factory. Gerontol 2011;58:282–8. https://doi.org/10.1159/000329483.

    Article  Google Scholar 

  134. 134.

    Sheridan TB. Human-Robot Interaction: Status and Challenges. Hum Factors 2016; 58.4: 525–532. https://doi.org/10.1177/0018720816644364.

    Article  Google Scholar 

  135. 135.

    Shiomi M, Abe K, Pei Y, Zhang T, Ikeda N, Nagai T. 2016. Chi-CaRo: Tele-presence Robot for Interacting with Babies and Toddlers. In: Fourth Int. Conf. on Human Agent Interaction. https://doi.org/10.1145/2974804.2980496.

  136. 136.

    Siciliano B, Khatib O. 2016. Springer Handbook of Robotics. https://doi.org/10.1007/978-3-319-32552-1.

  137. 137.

    Sillice MA, Morokoff PJ, Ferszt G, Bickmore T, Bock BC, Lantini R, Velicer WF. Using Relational Agents to Promote Exercise and Sun Protection: Assessment of Participants’ Experiences With Two Interventions. J Med Internet Res 2018;20.2:e48. https://doi.org/10.2196/jmir.7640, http://www.jmir.org/2018/2/e48/.

    Article  Google Scholar 

  138. 138.

    Siri. Apple Inc. https://www.apple.com/ios/siri (visited on 12/21/2017).

  139. 139.

    Sørensen AS, Nielsen J, Maagaard J, Skriver M, Lin CC, Schultz UP. 2016. Low-cost modular robotic system for neurological rehabilitative training. In: IEEE International Conference on Industrial Technology. https://doi.org/10.1109/ICIT.2016.7474997.

  140. 140.

    Sparrow R, Sparrow L. In the hands of machines? The future of aged care. Minds Mach 2006;16:141–161. https://doi.org/10.1007/s11023-006-9030-6.

    Article  Google Scholar 

  141. 141.

    Suvei S-D, Vroon J, Somoza Sanchez VV, Bodenhagen L, Englebienne G, Krüger N, Evers V. I would like to get close to you: Making robot personal space invasion less intrusive with a social gaze cue. In: 20th International Conference on Human-Computer Interaction. 2018.

  142. 142.

    Suzuki K, Mito G, Kawamoto H, Hasegawa Y, Sankai Y. Intentionbased walking support for paraplegia patients with Robot Suit HAL. Adv Robot 2007;21.12:1441–1469.

    Google Scholar 

  143. 143.

    Tenorth M, Beetz M. KnowRob: A knowledge processing infrastructure for cognition-enabled robots. In: The International Journal of Robotics Research; 2013. p. 32.5. https://doi.org/10.1177/0278364913481635.

  144. 144.

    2014. The TRL Scale as a Research & Innovation Policy Tool, EARTO Recommendations. European Association of Research and Technology Organisations. http://www.earto.eu/fileadmin/content/03_Publications/The_TRL_Scale_as_a_R_I_Policy_Tool_-_EARTO_Recommendations_-_Final.pdf.

  145. 145.

    TiaGo. Pal Robotics. http://tiago.pal-robotics.com (visited on 10/26/2018).

  146. 146.

    Triebel R, et al. SPENCER: A socially aware service robot for passenger guidance and help in busy airports. In: Field and service robotics. 2016;607–622. https://doi.org/10.1007/978-3-319-27702-8_40.

  147. 147.

    Tug. Aethon Inc. http://www.aethon.com/tug/tughealthcare (visited on 12/21/2017).

  148. 148.

    Turchetti G, Palla I, Pierotti F, Cuschieri A. Economic evaluation of da Vinci-assisted robotic surgery: a systematic review. Surg Endosc 2012;26.3:598–606. https://doi.org/10.1007/s00464-011-1936-2.

    Article  Google Scholar 

  149. 149.

    Utami D, Bickmore T, Nikolopoulou A, Paasche-Orlow M. Talk About Death: End of Life Planning with a Virtual Agent. Intelligent Virtual Agents. In: Beskow J, Peters C, Castellano G, O’Sullivan C, Leite I, and Kopp S, editors; 2017. p. 441–450.

  150. 150.

    UV Disinfection Robot. Blue Ocean Robotics. https://blue-ocean-robotics.com/uv-disinfection (visited on 12/20/2017).

  151. 151.

    Vallgårda S, Krasnik A, Vrangbæk K. Health care systems in transition: Denmark. Thomson S, Mossialos, E. 2001;3.7. http://www.who.int.iris/handle/10665/108408.

  152. 152.

    Vandemeulebroucke T, de CasterlÃⒸ BD, Gastmans C. The use of care robots in aged care: A systematic review of argument-based ethics literature. Arch Gerontol Geriatr 2018;74:15–25. https://doi.org/10.1016/j.archger.2017.08.014.

    Article  Google Scholar 

  153. 153.

    Vespa PM, Miller C, Hu X, Nenov V, Buxey F, Martin NA. Intensive care unit robotic telepresence facilitates rapid physician response to unstable patients and decreased cost in neurointensive care. Surg Neurol 2007;67.4:331–337. https://doi.org/10.1016/j.surneu.2006.12.042.

    Article  Google Scholar 

  154. 154.

    VGo. VGo Robotic Telepresence. http://www.vgocom.com (visited on 12/20/2017).

  155. 155.

    Wada K, Shibata T. Living With Seal Robots – Its Sociopsychological and Physiological Influences on the Elderly at a Care House. IEEE Trans Robot 2007;23.5:972–980. https://doi.org/10.1109/TRO.2007.906261.

    Article  Google Scholar 

  156. 156.

    Wadmann S, Strandberg-Larsen M, Vrangbæk K. Coordination between primary and secondary healthcare in Denmark and Sweden. Int Journal of Integrated Care. 2009;9.1. https://doi.org/10.5334/ijic.302.

  157. 157.

    Westlund JK, et al. 2015. Learning A Second Language with a Socially Assistive Robot. In: New Friends: The 1st International Conference on Social Robots in Therapy and Education.

  158. 158.

    Windrich M, Grimmer M, Christ O, Rinderknecht S, Beckerle P. 2016. Active lower limb prosthetics: a systematic review of design issues and solutions. In: BioMedical Engineering On- Line. https://doi.org/10.1186/s12938-016-0284-9.

  159. 159.

    Wise M, Ferguson M, King D, Diehr E, Dymesich D. Fetch & Freight: Standard Platforms for Service Robot Applications. In: Workshop on Autonomous Mobile Service Robots. 2016.

  160. 160.

    van Wynsberghe A. 2015. Healthcare Robots: Ethics, Design and Implementation. Emerging Technologies, Ethics and International Affairs. https://books.google.dk/books?id=xeuuCQAAQBAJ.

  161. 161.

    Xpress, Lite, Vita. InTouch Technologies, Inc. https://www.intouchhealth.com.

  162. 162.

    Zeilig G, Weingarden H, Zwecker M, Dudkiewicz I, Bloch A, Esquenazi A. Safety and tolerance of the ReWalkTM exoskeleton suit for ambulation by people with complete spinal cord injury: A pilot study. J Spinal Cord Med 2012;35.2:96–101.

    Article  Google Scholar 

  163. 163.

    Zenbo. ASUSTek Computer Inc. https://zenbo.asus.com (visited on 03/30/2018).

Download references

Funding

The authors have received financial support by the European Fund for Regional Development through the Interreg5 programme and Growth Forum South (Syddansk Vækstforum).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Leon Bodenhagen.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

N/A

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bodenhagen, L., Suvei, SD., Juel, W.K. et al. Robot technology for future welfare: meeting upcoming societal challenges – an outlook with offset in the development in Scandinavia. Health Technol. 9, 197–218 (2019). https://doi.org/10.1007/s12553-019-00302-x

Download citation

Keywords

  • Healthcare technology
  • Robotics
  • Welfare robotics
  • Demographic change