Skip to main content

Advertisement

Log in

C-LACE2: computational risk assessment tool for 30-day post hospital discharge mortality

  • Original Paper
  • Published:
Health and Technology Aims and scope Submit manuscript

Abstract

This paper describes a computational approach to assessing 30-day post-hospital discharge mortality risk. The idea of the constructed model is partially based on the popular LACE (Length of stay, Acuity, Comorbidities and Emergency visits) model, and combines elements of APACHE II (Acute Physiology and Chronic Health Evaluation) and IPEC (Inpatient Evaluation Center of Veterans Health Administration) mortality models. The resulting C-LACE2 model includes length of stay, acuity, comorbidities, selected lab values and medications. The process of construction of the model and its validation are presented in details. The constructed final model consists of 101 attributes, and its minimum version of 20 attributes. C-LACE2 has been constructed by applying machine learning methods to MIMIC III inpatient EHR data. The model achieved accuracy (AUC) of 0.779. Detailed analysis of the C-LACE2 model has been performed to check its sensitivity to inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. DesHarnais SI, Chesney JD, Wroblewski RT, Fleming ST, McMahon LF Jr. The risk-adjusted mortality index: a new measure of hospital performance. Med Care. 1988;26:1129–48.

    Article  Google Scholar 

  2. Rocker G, Cook D, Sjokvist P, Weaver B, Finfer S, McDonald E, Marshall J, Kirby A, Levy M, Dodek P, Heyland D, Guyatt G. Clinician predictions of intensive care unit mortality. Critical Care Med. 2004;32(5):1149–54.

    Article  Google Scholar 

  3. Inouye SK, Peduzzi PN, Robison JT, Hughes JS, Horwitz RI, Concato J. Importance of functional measures in predicting mortality among older hospitalized patients. JAMA. 1998;279(15):1187–93.

    Article  Google Scholar 

  4. Iezzoni LI. Risk adjustment for measuring health outcomes Ann Arbor. Mich: Health Administration Press; 1994.

    Google Scholar 

  5. Le Gall JR, Loirat P, Alperovitch A, Glaser P, Granthil C, Mathieu D, et al. A simplified acute physiology score for ICU patients. Crit Care Med. 1984;12(11):975–7.

    Article  Google Scholar 

  6. Moreno RP, Metnitz PG, Almeida E, Jordan B, Bauer P, Campos RA, et al. SAPS 3 investigators. SAPS 3—from evaluation of the patient to evaluation of the intensive care unit. Part 2: development of a prognostic model for hospital mortality at ICU admission. Intensive Care Med. 2005;31(10):1345–55.

    Article  Google Scholar 

  7. Reiter A, Mauritz W, Jordan B, Lang T, Pölzl A, Pelinka L, et al. Improving risk adjustment in critically ill trauma patients: the TRISS-SAPS score. J Trauma Acute Care Surg. 2004;57(2):375–80.

    Article  Google Scholar 

  8. Castella X, Artigas A, Bion J, Kari A. A comparison of severity of illness scoring systems for intensive care unit patients: results of a multicenter, multinational study. Crit Care Med. 1995;23(8):1327–35.

    Article  Google Scholar 

  9. Kuzniewicz MW, Vasilevskis EE, Lane R, Dean ML, Trivedi NG, Rennie DJ, et al. Variation in ICU risk-adjusted mortality: impact of methods of assessment and potential confounders. Chest J. 2008;133(6):1319–27.

    Article  Google Scholar 

  10. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13(10):818–29.

    Article  Google Scholar 

  11. Wong DT, Knaus WA. Predicting outcome in critical care: the current status of the APACHE prognostic scoring system. Canadian Journal of Anesthesia/Journal canadien d'anesthésie. 1991;38(3):374–83.

    Article  Google Scholar 

  12. Rosenberg AL, Watts C. Patients readmitted to ICUs*: a systematic review of risk factors and outcomes. Chest J. 2000;118(2):492–502.

    Article  Google Scholar 

  13. van Walraven C, Dhalla IA, Bell C, Etchells E, Stiell IG, Zarnke K, et al. Derivation and validation of an index to predict early death or unplanned readmission after discharge from hospital to the community. Can Med Assoc J. 2010;182(6):551–7.

    Article  Google Scholar 

  14. van Walraven C, Wong J, Forster AJ. LACE+ index: extension of a validated index to predict early death or urgent readmission after hospital discharge using administrative data. Open Medicine Journal. 2012;6(3):e80.

    Google Scholar 

  15. Wojtusiak J, Elashkar E, Nia RM. C-Lace: Computational Model to Predict 30-Day Post-Hospitalization Mortality. In Proceedings of the 10th International Joint Conference on Biomedical Engineering Systems and Technologies (BIOSTEC 2017), pp 169–177.

  16. Porock D, Parker Oliver D, Zweig S, Rantz M, Mehr D, Madsen R, et al. Predicting death in the nursing home: development and validation of the 6-month minimum data set mortality risk index. J Gerontol Ser A Biol Med Sci. 2005;60(4):491–8.

    Article  Google Scholar 

  17. Porock D, Parker-Oliver D, Petroski GF, Rantz M. The MDS mortality risk index: the evolution of a method for predicting 6-month mortality in nursing home residents. BMC Research Notes. 2010;3(1):200.

    Article  Google Scholar 

  18. Fischer SM, Gozansky WS, Sauaia A, Min SJ, Kutner JS, Kramer A. A practical tool to identify patients who may benefit from a palliative approach: the CARING criteria. J Pain Symptom Manag. 2006;31(4):285–92.

    Article  Google Scholar 

  19. Rocker G, Cook D, Sjokvist P, Weaver B, Finfer S, McDonald E, Marshall J, Kirby A, Levy M, Dodek P, Heyland D, Guyatt G. Clinician predictions of intensive care unit mortality. Critical Care Med. 2004;32(5):1149–54.

    Article  Google Scholar 

  20. Levy C, Kheirbek R, Alemi F, Wojtusiak J, Sutton B, Williams AR, et al. Predictors of six-month mortality among nursing home residents: diagnoses may be more predictive than functional disability. J Palliat Med. 2015;18(2):100–6.

    Article  Google Scholar 

  21. Gagne JJ, Glynn RJ, Avorn J, Levin R, Schneeweiss S. A combined comorbidity score predicted mortality in elderly patients better than existing scores. J Clin Epidemiol. 2011;64(7):749–59.

    Article  Google Scholar 

  22. Cooper GF, Aliferis CF, Ambrosino R, Aronis J, Buchanan BG, Caruana R, et al. An evaluation of machine-learning methods for predicting pneumonia mortality. Artif Intell Med. 1997;9(2):107–38.

    Article  Google Scholar 

  23. Ngufor C, Wojtusiak J, Hooker A, Oz T, Hadley J. Extreme Logistic Regression: A Large Scale Learning Algorithm with Application to Prostate Cancer Mortality Prediction. InFLAIRS Conference; 2014.

  24. Taylor RA, Pare JR, Venkatesh AK, Mowafi H, Melnick ER, Fleischman W, et al. Prediction of in-hospital mortality in emergency department patients with Sepsis: a local big data–driven, machine learning approach. Acad Emerg Med. 2016;23(3):269–78.

    Article  Google Scholar 

  25. Rose S. Mortality risk score prediction in an elderly population using machine learning. Am J Epidemiol. 2013;177(5):443–52.

    Article  Google Scholar 

  26. Wojtusiak J, Elashkar E, Mogharab R. Integrating complex health data for analytics. MLI Electronic Circulation. 2016;1051:16.

    Google Scholar 

  27. Goldberger AL, Amaral LA, Glass L, Hausdorff JM, Ivanov PC, Mark RG, et al. Physiobank, physiotoolkit, and physionet. Circulation. 2000;101(23):e215–20.

    Article  Google Scholar 

  28. Johnson AE, Pollard TJ, Shen L, Lehman LW, Feng M, Ghassemi M, et al. MIMIC-III, a freely accessible critical care database. Scientific Data Journal. 2016;3:160035.

    Article  Google Scholar 

  29. Clinical Classifications Software (CCS) for ICD-9-CM. AHRQ. In: HCUP-US Tools & Software. AHRQ. 2016. https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp.

  30. Elixhauser A, Steiner C, Harris DR, Coffey RM. Comorbidity measures for use with administrative data. Med Care. 1998;36(1):8–27.

    Article  Google Scholar 

  31. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying prognostic comorbidity in longitudinal studies: development and validation. J Chronic Dis. 1987;40(5):373–83.

    Article  Google Scholar 

  32. Deyo RA, Cherkin DC, Ciol MA. Adapting a clinical comorbidity index for use with ICD-9-CM administrative databases. J Clin Epidemiol. 1992;45(6):613–9.

    Article  Google Scholar 

  33. Quan H, Sundararajan V, Halfon P, Fong A, Burnand B, Luthi JC, et al. Coding algorithms for defining comorbidities in ICD-9-CM and ICD-10 administrative data. Med Care. 2005;43:1130–9.

    Article  Google Scholar 

  34. Bouch DC, Thompson JP. Severity scoring systems in the critically ill. Contin Educ Anaesth Crit Care Pain. 2008;8(5):181–5. 

    Article  Google Scholar 

  35. Verduijn M, Sacchi L, Peek N, Bellazzi R, de Jonge E, de Mol BA. Temporal abstraction for feature extraction: a comparative case study in prediction from intensive care monitoring data. Artif Intell Med. 2007;41(1):1–2.

    Article  Google Scholar 

  36. Moskovitch R, Shahar Y. Classification-driven temporal discretization of multivariate time series. Data Min Knowl Disc. 2015;29(4):871–913.

    Article  MathSciNet  Google Scholar 

  37. Render ML, Deddens J, Freyberg R, Almenoff P, Connors AF Jr, Wagner D, et al. Veterans affairs intensive care unit risk adjustment model: validation, updating, recalibration. Crit Care Med. 2008;36(4):1031–42.

    Article  Google Scholar 

  38. Min H, Avramovic S, Wojtusiak J, Khosla R, Fletcher RD, Alemi F, et al. A comprehensive multimorbidity index for predicting mortality in intensive care unit patients. J Palliat Med. 2017;20(1):35–41.

    Article  Google Scholar 

  39. Breiman L. Random forests. Mach Learn. 2001;45(1):5–32.

    Article  Google Scholar 

  40. Gu W, Vieira AR, Hoekstra RM, Griffin PM, Cole D. Use of random forest to estimate population attributable fractions from a case-control study of Salmonella enterica serotype Enteritidis infections. Epidemiol Infect. 2015;143(13):2786–94.

    Article  Google Scholar 

  41. Saltelli A, Tarantola S, Campolongo F, Ratto M. Sensitivity analysis in practice: a guide to assessing scientific models. Chichester: Wiley; 2004.

    MATH  Google Scholar 

  42. Saltelli A, Ratto M, Andres T, Campolongo F, Cariboni J, Gatelli D, et al. Global sensitivity analysis: the primer. Chichester: Wiley; 2008.

    MATH  Google Scholar 

  43. Bidot C, Monod H, Taupin ML. A quick guide to multisensi, an R package for multivariate sensitivity analyses. 2018. https://cran.r-project.org/web/packages/multisensi/vignettes/multisensi-vignette.pdf.

  44. Lamboni M, Monod H, Makowski D. Multivariate sensitivity analysis to measure global contribution of input factors in dynamic models. Reliab Eng Syst Saf. 2011;96(4):450–9.

    Article  Google Scholar 

Download references

Funding

The project has been funded in part under LMI academic partnership program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janusz Wojtusiak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wojtusiak, J., Elashkar, E. & Mogharab Nia, R. C-LACE2: computational risk assessment tool for 30-day post hospital discharge mortality. Health Technol. 8, 341–351 (2018). https://doi.org/10.1007/s12553-018-0263-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12553-018-0263-1

Keywords

Navigation