Abstract
Protein aggregation is a topic of immense interest to the scientific community due to its role in several neurodegenerative diseases/disorders and industrial importance. Several in silico techniques, tools, and algorithms have been developed to predict aggregation in proteins and understand the aggregation mechanisms. This review attempts to provide an essence of the vast developments in in silico approaches, resources available, and future perspectives. It reviews aggregation-related databases, mechanistic models (aggregation-prone region and aggregation propensity prediction), kinetic models (aggregation rate prediction), and molecular dynamics studies related to aggregation. With a multitude of prediction models related to aggregation already available to the scientific community, the field of protein aggregation is rapidly maturing to tackle new applications.





Similar content being viewed by others
References
Agrawal NJ, Helk B, Kumar S et al (2016) Computational tool for the early screening of monoclonal antibodies for their viscosities. MAbs 8:43–48. https://doi.org/10.1080/19420862.2015.1099773
Ahmed AB, Znassi N, Château M-T, Kajava AV (2015) A structure-based approach to predict predisposition to amyloidosis. Alzheimers Dement 11:681–690. https://doi.org/10.1016/j.jalz.2014.06.007
Angarica VE, Angulo A, Giner A et al (2014) PrionScan: an online database of predicted prion domains in complete proteomes. BMC Genomics 15:102. https://doi.org/10.1186/1471-2164-15-102
Astbury WT, Dickinson S, Bailey K (1935) The X-ray interpretation of denaturation and the structure of the seed globulins. Biochem J 29:2351–2360.1. https://doi.org/10.1042/bj0292351
Azriel R, Gazit E (2001) Analysis of the minimal amyloid-forming fragment of the islet amyloid polypeptide. J Biol Chem 276:34156–34161. https://doi.org/10.1074/jbc.M102883200
Barducci A, Chelli R, Procacci P et al (2006) Metadynamics simulation of prion protein: β-structure stability and the early stages of misfolding. J Am Chem Soc 128:2705–2710. https://doi.org/10.1021/ja057076l
Beerten J, Van Durme J, Gallardo R, Capriotti E, Serpell L, Rousseau F, Schymkowitz J (2015) WALTZ-DB: a benchmark database of amyloidogenic hexapeptides. Bioinformatics 31(10):1698–1700
Bellesia G, Shea J-E (2007) Self-assembly of β-sheet forming peptides into chiral fibrillar aggregates. J Chem Phys 126:245104. https://doi.org/10.1063/1.2739547
Bellesia G, Shea J-E (2009) Effect of β-sheet propensity on peptide aggregation. J Chem Phys 130:145103. https://doi.org/10.1063/1.3108461
Belli M, Ramazzotti M, Chiti F (2011) Prediction of amyloid aggregation in vivo. EMBO Rep 12:657–663. https://doi.org/10.1038/embor.2011.116
Benson MD, Buxbaum JN, Eisenberg DS et al (2018) Amyloid nomenclature 2018: recommendations by the International Society of Amyloidosis (ISA) nomenclature committee. Amyloid 25:215–219. https://doi.org/10.1080/13506129.2018.1549825
Berhanu WM, Masunov AE (2014) Full length amylin oligomer aggregation: insights from molecular dynamics simulations and implications for design of aggregation inhibitors. J Biomol Struct Dyn 32:1651–1669. https://doi.org/10.1080/07391102.2013.832635
Bodi K, Prokaeva T, Spencer B et al (2009) AL-Base: a visual platform analysis tool for the study of amyloidogenic immunoglobulin light chain sequences. Amyloid 16:1–8. https://doi.org/10.1080/13506120802676781
Boeynaems S, Alberti S, Fawzi NL et al (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28:420–435. https://doi.org/10.1016/j.tcb.2018.02.004
Bondarev SA, Bondareva OV, Zhouravleva GA, Kajava AV (2018) BetaSerpentine: a bioinformatics tool for reconstruction of amyloid structures. Bioinformatics. https://doi.org/10.1093/bioinformatics/btx629
Brito R, Damas A, Saraiva M (2003) Amyloid formation by transthyretin: from protein stability to protein aggregation. Curr Med Chem Endocr Metab Agents 3:349–360. https://doi.org/10.2174/1568013033483230
Brown AM, Bevan DR (2016) Molecular dynamics simulations of amyloid β-peptide (1-42): tetramer formation and membrane interactions. Biophys J 111:937–949. https://doi.org/10.1016/j.bpj.2016.08.001
Brudar S, Hribar-Lee B (2019) The role of buffers in wild-type HEWL amyloid fibril formation mechanism. Biomolecules 9:65. https://doi.org/10.3390/biom9020065
Bryan AW Jr, Menke M, Cowen LJ, Lindquist SL, Berger B (2009) BETASCAN: probable beta-amyloids identified by pairwise probabilistic analysis. PLoS Comput Biol 5(3):e1000333. https://doi.org/10.1371/journal.pcbi.1000333
Bryan AW Jr, O’Donnell CW, Menke M, Cowen LJ, Lindquist S, Berger B (2012) STITCHER: dynamic assembly of likely amyloid and prion β-structures from secondary structure predictions. Proteins 80(2):410–420. https://doi.org/10.1002/prot.23203
Buck PM, Kumar S, Singh SK (2013) Insights into the potential aggregation liabilities of the b12 Fab fragment via elevated temperature molecular dynamics. Protein Eng Des Sel 26:195–206. https://doi.org/10.1093/protein/gzs099
Buck PM, Chaudhri A, Kumar S, Singh SK (2015) Highly viscous antibody solutions are a consequence of network formation caused by domain − domain electrostatic complementarities: insights from coarse-grained simulations. https://doi.org/10.1021/mp500485w
Burdukiewicz M, Sobczyk P, Rödiger S, Duda-Madej A, Mackiewicz P, Kotulska M (2017) Amyloidogenic motifs revealed by n-gram analysis. Sci Rep 7(1):12961. https://doi.org/10.1038/s41598-017-13210-9
Calamai M, Taddei N, Stefani M, Ramponi G, Chiti F (2003) Relative influence of hydrophobicity and net charge in the aggregation of two homologous proteins. Biochemistry 42(51):15078–15083
Carballo-Pacheco M, Strodel B (2016) Advances in the simulation of protein aggregation at the atomistic scale. J Phys Chem B 120:2991–2999. https://doi.org/10.1021/acs.jpcb.6b00059
Cecchini M, Curcio R, Pappalardo M, Melki R, Caflisch A (2006) A molecular dynamics approach to the structural characterization of amyloid aggregation. J Mol Biol 357(4):1306–1321. https://doi.org/10.1016/j.jmb.2006.01.009
Chennamsetty N, Voynov V, Kayser V et al (2009) Design of therapeutic proteins with enhanced stability. Proc Natl Acad Sci U S A 106:11937–11942. https://doi.org/10.1073/pnas.0904191106
Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366. https://doi.org/10.1146/annurev.biochem.75.101304.123901
Chiti F, Calamai M, Taddei N et al (2002a) Studies of the aggregation of mutant proteins in vitro provide insights into the genetics of amyloid diseases. Proc Natl Acad Sci U S A 99:16419–16426. https://doi.org/10.1073/pnas.212527999
Chiti F, Taddei N, Baroni F, Capanni C, Stefani M, Ramponi G, Dobson CM (2002b) Kinetic partitioning of protein folding and aggregation. Nat Struct Biol 9(2):137–143
Chiti F, Stefani M, Taddei N, Ramponi G, Dobson CM (2003) Rationalization of the effects of mutations on peptide and protein aggregation rates. Nature 424(6950):805–808
Choi J-M, Dar F, Pappu RV (2019) LASSI: a lattice model for simulating phase transitions of multivalent proteins. PLoS Comput Biol 15:e1007028. https://doi.org/10.1371/journal.pcbi.1007028
Conchillo-Solé O, de Groot NS, Avilés FX et al (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinform 8:65. https://doi.org/10.1186/1471-2105-8-65
Dogan A (2017) Amyloidosis: insights from proteomics. Annu Rev Pathol Mech Dis 12:277–304. https://doi.org/10.1146/annurev-pathol-052016-100200
DuBay KF, Pawar AP, Chiti F, Zurdo J, Dobson CM, Vendruscolo M (2004) Prediction of the absolute aggregation rates of amyloidogenic polypeptide chains. J Mol Biol 341(5):1317–1326
Emily M, Talvas A, Delamarche C (2013) MetAmyl: a METa-predictor for AMYLoid proteins. PLoS One 8(11):e79722. https://doi.org/10.1371/journal.pone.0079722
Esteras-Chopo A, Serrano L, López de la Paz M (2005) The amyloid stretch hypothesis: recruiting proteins toward the dark side. Proc Natl Acad Sci U S A 102:16672–16677. https://doi.org/10.1073/pnas.0505905102
Família C, Dennison SR, Quintas A, Phoenix DA (2015) Prediction of peptide and protein propensity for amyloid formation. PLoS One 10(8):e0134679. https://doi.org/10.1371/journal.pone.0134679
Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22(10):1302–1306
Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3(1):R9–R23
Frederix PWJM, Ulijn RV, Hunt NT, Tuttle T (2011) Virtual screening for dipeptide aggregation: toward predictive tools for peptide self-assembly. J Phys Chem Lett 2:2380–2384. https://doi.org/10.1021/jz2010573
Frederix PWJM, Scott GG, Abul-Haija YM et al (2015) Exploring the sequence space for (tri-)peptide self-assembly to design and discover new hydrogels. Nat Chem 7:30–37. https://doi.org/10.1038/nchem.2122
Gallardo R, Ramakers M, De Smet F et al (2016) De novo design of a biologically active amyloid. Science. 354:6313. https://doi.org/10.1126/science.aah4949
Garbuzynskiy SO, Lobanov MY, Galzitskaya OV (2010) FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics 26:326–332. https://doi.org/10.1093/bioinformatics/btp691
Gasior P, Kotulska M (2014) FISH Amyloid – a new method for finding amyloidogenic segments in proteins based on site specific co-occurence of aminoacids. BMC Bioinform 15:54. https://doi.org/10.1186/1471-2105-15-54
Gazit E (2002) A possible role for π‐stacking in the self-assembly of amyloid fibrils. FASEB J 16(1). https://doi.org/10.1096/fj.01-0442hyp
Gertz M. A. (2018) Annual clinical updates in hematological malignancies : a continuing medical education series immunoglobulin light chain amyloidosis : 2018 update on diagnosis , prognosis , and treatment. 1169–1180. https://doi.org/10.1002/ajh.25149
Goddard TD, Huang CC, Meng EC, Pettersen EF, Couch GS, Morris JH, Ferrin TE (2018) UCSF ChimeraX: meeting modern challenges in visualization and analysis. Protein Sci 27(1):14–25
Goldschmidt L, Teng PK, Riek R, Eisenberg D (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci 107(8):3487–3492
Green AA, Hughes WL (1955) Protein fractionation on the basis of solubility in aqueous solutions of salts and organic solvents. Methods Enzymol 1:67–90. https://doi.org/10.1016/0076-6879(55)01014-8
Gsponer J, Haberthur U, Caflisch A (2003) The role of side-chain interactions in the early steps of aggregation: Molecular dynamics simulations of an amyloid-forming peptide from the yeast prion Sup35. Proceedings of the National Academy of Sciences 100 (9):5154–5159. https://doi.org/10.1073/pnas.0835307100
Guo C, Côté S, Mousseau N, Wei G (2015) Distinct helix propensities and membrane interactions of human and rat IAPP 1–19 monomers in anionic lipid bilayers. J Phys Chem B 119:3366–3376. https://doi.org/10.1021/jp5111357
Gupta S, Singh I, Sharma AK, Kumar P (2020) Ultrashort peptide self-assembly: front-runners to transport drug and gene cargos. Front Bioeng Biotechnol 8. https://doi.org/10.3389/fbioe.2020.00504
Hamodrakas SJ, Liappa C, Iconomidou VA (2007) Consensus prediction of amyloidogenic determinants in amyloid fibril-forming proteins. Int J Biol Macromol 41(3):295–300. https://doi.org/10.1016/j.ijbiomac.2007.03.008
Hauser CA, Maurer-Stroh S, Martins IC (2014) Amyloid-based nanosensors and nanodevices. Chem Soc Rev 43(15):5326–5345. https://doi.org/10.1039/c4cs00082j
Hilbich C, Kisters-Woike B, Reed J, Masters CL, Beyreuther K (1992) Substitutions of hydrophobic amino acids reduce the amyloidogenicity of Alzheimer’s disease βA4 peptides. J Mol Biol 228(2):460–473
Hirota N, Edskes H, Hall D (2019) Unified theoretical description of the kinetics of protein aggregation. Biophys Rev 11(2):191–208
Hortschansky P, Schroeckh V, Christopeit T, Zandomeneghi G, Fändrich M (2005) The aggregation kinetics of Alzheimer’s β‐amyloid peptide is controlled by stochastic nucleation. Protein Sci 14(7):1753–1759
Iadanza MG, Jackson MP, Hewitt EW et al (2018) A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol 19:755–773. https://doi.org/10.1038/s41580-018-0060-8
Itoh SG, Okumura H (2013) Hamiltonian replica-permutation method and its applications to an alanine dipeptide and amyloid-β (29–42) peptides. J Comput Chem 34(29):2493–2497
Itoh SG, Okumura H (2016) Oligomer formation of amyloid-β (29–42) from its monomers using the Hamiltonian replica-permutation molecular dynamics simulation. J Phys Chem B 120(27):6555–6561
Jain T, Sun T, Durand S et al (2017) Biophysical properties of the clinical-stage antibody landscape. Proc Natl Acad Sci 114:944–949. https://doi.org/10.1073/pnas.1616408114
Jia Z, Schmit JD, Chen J (2020) Amyloid assembly is dominated by misregistered kinetic traps on an unbiased energy landscape. Proc Natl Acad Sci 117:10322–10328. https://doi.org/10.1073/pnas.1911153117
Karandur D, Wong KY, Pettitt BM (2014) Solubility and aggregation of Gly5in water. J Phys Chem B 118(32):9565–9572. https://doi.org/10.1021/jp503358n
Ke PC, Zhou R, Serpell LC, Riek R, Knowles TPJ, Lashuel HA, Gazit E, Hamley IW, Davis TP, Fändrich M, Otzen DE, Chapman MR, Dobson CM, Eisenberg DS, Mezzenga R (2020) Half a century of amyloids: past, present and future. Chem Soc Rev 49(15):5473–5509. https://doi.org/10.1039/C9CS00199A
Kelley NW, Vishal V, Krafft GA, Pande VS (2008) Simulating oligomerization at experimental concentrations and long timescales: a Markov state model approach. J Chem Phys 129:214707. https://doi.org/10.1063/1.3010881
Khatua P, Bandyopadhyay S (2017) In silico studies of the early stages of aggregation of A β42 peptides. J Chem Sci 129:899–909. https://doi.org/10.1007/s12039-017-1306-2
Khodaparast L, Khodaparast L, Gallardo R et al (2018) Aggregating sequences that occur in many proteins constitute weak spots of bacterial proteostasis. Nat Commun 9:866. https://doi.org/10.1038/s41467-018-03131-0
Kim C, Choi J, Lee SJ, Welsh WJ, Yoon S (2009) NetCSSP: web application for predicting chameleon sequences and amyloid fibril formation. Nucleic Acids Res 37(Web Server issue):W469–W473. https://doi.org/10.1093/nar/gkp351
Kintzing JR, Filsinger Interrante MV, Cochran JR (2016) Emerging strategies for developing next-generation protein therapeutics for cancer treatment. Trends Pharmacol Sci 37:993–1008. https://doi.org/10.1016/j.tips.2016.10.005
Knowles TPJ, Buehler MJ (2011) Nanomechanics of functional and pathological amyloid materials. Nat Nanotechnol 6:469–479. https://doi.org/10.1038/nnano.2011.102
Knowles TPJ, Mezzenga R (2016) Amyloid fibrils as building blocks for natural and artificial functional materials. Adv Mater 28:6546–6561. https://doi.org/10.1002/adma.201505961
Kumar S, Roffi K, Tomar, Dheeraj S et al (2018) Rational optimization of a monoclonal antibody for simultaneous improvements in its solution properties and biological activity. Protein Eng Des Sel 31:313–325
Kumar V, Wahiduzzaman PA et al (2019) Exploring the aggregation-prone regions from structural domains of human TDP-43. Biochim Biophys Acta, Proteins Proteomics 1867:286–296. https://doi.org/10.1016/j.bbapap.2018.10.008
Kuriata A, Iglesias V, Pujols J, Kurcinski M, Kmiecik S, Ventura S (2019) Aggrescan3D (A3D) 2.0: prediction and engineering of protein solubility. Nucleic Acids Res 47(W1):W300–W307. https://doi.org/10.1093/nar/gkz321
Kyle RA, Bayrd ED (1975) Amyloidosis: review of 236 cases. Medicine (Baltimore) 54:271–299. https://doi.org/10.1097/00005792-197507000-00001
Lagassé HAD, Alexaki A, Simhadri VL et al (2017) Recent advances in (therapeutic protein) drug development. F1000Research 6:113. https://doi.org/10.12688/f1000research.9970.1
Larini L, Shea J-E (2012) Role of β-hairpin formation in aggregation: the self-assembly of the amyloid-β(25−35) peptide. Biophys J 103:576–586
Lauer TM, Agrawal NJ, Chennamsetty N, Egodage K, Helk B, Trout BL (2012) Developability index: a rapid in silico tool for the screening of antibody aggregation propensity. J Pharm Sci 101(1):102–115. https://doi.org/10.1002/jps.22758
Leader B, Baca QJ, Golan DE (2008) Protein therapeutics: a summary and pharmacological classification. Nat Rev Drug Discov 7:21–39. https://doi.org/10.1038/nrd2399
Leem J, Dunbar J, Georges G, Shi J, Deane CM, (2016) ABodyBuilder: Automated antibody structure prediction with data–driven accuracy estimation. mAbs 8(7):1259–1268
Li W, Prabakaran P, Chen W et al (2016) Antibody aggregation: insights from sequence and structure. Antibodies 5:19. https://doi.org/10.3390/antib5030019
Liaw C, Tung CW, Ho SY (2013) Prediction and analysis of antibody amyloidogenesis from sequences. PLoS One 8(1):e53235. https://doi.org/10.1371/journal.pone.0053235
Lombardi L, Shi Y, Falanga A et al (2019) Enhancing the potency of antimicrobial peptides through molecular engineering and self-assembly. Biomacromolecules 20:1362–1374. https://doi.org/10.1021/acs.biomac.8b01740
López de la Paz M, Serrano L (2004) Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci U S A 101(1):87–92. https://doi.org/10.1073/pnas.2634884100
López De La Paz M, De Mori GMS, Serrano L, Colombo G (2005) Sequence dependence of amyloid fibril formation: insights from molecular dynamics simulations. J Mol Biol 349:583–596. https://doi.org/10.1016/j.jmb.2005.03.081
Louros N, Konstantoulea K, De Vleeschouwer M, Ramakers M, Schymkowitz J, Rousseau F (2020) WALTZ-DB 2.0: an updated database containing structural information of experimentally determined amyloid-forming peptides. Nucleic Acids Res 48(D1):D389–D393. https://doi.org/10.1093/nar/gkz758
Lu J, Cao Q, Wang C et al (2019) Structure-based peptide inhibitor design of amyloid-β aggregation. Front Mol Neurosci 12:54. https://doi.org/10.3389/fnmol.2019.00054
Ma B, Nussinov R (2002a) Molecular dynamics simulations of alanine rich β-sheet oligomers: insight into amyloid formation. Protein Sci 11:2335–2350. https://doi.org/10.1110/ps.4270102
Ma B, Nussinov R (2002b) Stabilities and conformations of Alzheimer’s beta-amyloid peptide oligomers (Abeta 16-22, Abeta 16-35, and Abeta 10-35): sequence effects. Proc Natl Acad Sci U S A 99:14126–14131. https://doi.org/10.1073/pnas.212206899
Magno A, Caflisch A, Pellarin R (2010) Crowding effects on amyloid aggregation kinetics. J Phys Chem Lett 1:3027–3032. https://doi.org/10.1021/jz100967z
Marchut AJ, Hall CK (2006) Side-chain interactions determine amyloid formation by model polyglutamine peptides in molecular dynamics simulations. Biophys J 90(12):4574–4584. https://doi.org/10.1529/biophysj.105.079269
Marchut AJ, Hall CK (2007) Effects of chain length on the aggregation of model polyglutamine peptides: molecular dynamics simulations. Proteins Struct Funct Genet. https://doi.org/10.1002/prot.21132
Matthes D, Gapsys V, Daebel V, de Groot BL (2011) Mapping the conformational dynamics and pathways of spontaneous steric zipper peptide oligomerization. PLoS One 6:e19129. https://doi.org/10.1371/journal.pone.0019129
Matthes D, Gapsys V, De Groot BL (2012) Driving forces and structural determinants of steric zipper peptide oligomer formation elucidated by atomistic simulations. J Mol Biol 421:390–416. https://doi.org/10.1016/j.jmb.2012.02.004
Maurer-Stroh S, Debulpaep M, Kuemmerer N et al (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Methods 7:237–242. https://doi.org/10.1038/nmeth.1432
Meric G, Robinson AS, Roberts CJ (2017) Driving forces for nonnative protein aggregation and approaches to predict aggregation-prone regions. Annu Rev Chem Biomol Eng 8:139–159. https://doi.org/10.1146/annurev-chembioeng-060816-101404
Mishra A, Ranganathan S, Jayaram B, Sattar A (2018) Role of solvent accessibility for aggregation-prone patches in protein folding. Sci Rep 8:12896. https://doi.org/10.1038/s41598-018-31289-6
Morel B, Varela L, Azuaga AI, Conejero-Lara F (2010) Environmental conditions affect the kinetics of nucleation of amyloid fibrils and determine their morphology. Biophys J 99(11):3801–3810
Morris AM, Watzky MA, Finke RG (2009) Protein aggregation kinetics, mechanism, and curve-fitting: a review of the literature. Biochim Biophys Acta (BBA)-Proteins Proteom 1794(3):375–397
Morriss-Andrews A, Shea JE (2014) Simulations of protein aggregation: insights from atomistic and coarse-grained models. J Phys Chem Lett 5:1899–1908. https://doi.org/10.1021/jz5006847
Morriss-Andrews A, Shea J-E (2015) Computational studies of protein aggregation: methods and applications. Annu Rev Phys Chem 66:643–666. https://doi.org/10.1146/annurev-physchem-040513-103738
Muñoz V, Serrano L (1994) Elucidating the folding problem of helical peptides using empirical parameters. Nat Struct Biol 1(6):399–409
Nelson R, Sawaya MR, Balbirnie M et al (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435:773–778. https://doi.org/10.1038/nature03680
Nguyen HD, Hall CK (2004a) Phase diagrams describing fibrillization by polyalanine peptides. Biophys J 87:4122–4134. https://doi.org/10.1529/biophysj.104.047159
Nguyen HD, Hall CK (2004b) Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc Natl Acad Sci U S A 101:16180–16185. https://doi.org/10.1073/pnas.0407273101
Nguyen HD, Hall CK (2005) Kinetics of fibril formation by polyalanine peptides. J Biol Chem 280:9074–9082. https://doi.org/10.1074/jbc.M407338200
Nguyen HD, Hall CK (2006) Spontaneous fibril formation by polyalanines; discontinuous molecular dynamics simulations. J Am Chem Soc 128:1890–1901. https://doi.org/10.1021/ja0539140
Nichols P, Li L, Kumar S et al (2015) Rational design of viscosity reducing mutants of a monoclonal antibody: hydrophobic versus electrostatic inter-molecular interactions. MAbs 7:212–230. https://doi.org/10.4161/19420862.2014.985504
O’Donnell CW, Waldispühl J, Lis M, Halfmann R, Devadas S, Lindquist S, Berger B (2011) A method for probing the mutational landscape of amyloid structure. Bioinformatics 27(13):i34–i42. https://doi.org/10.1093/bioinformatics/btr238
Orlando G, Silva A, Macedo-Ribeiro S, Raimondi D, Vranken W (2020) Accurate prediction of protein beta-aggregation with generalized statistical potentials. Bioinformatics 36(7):2076–2081
Ow SY, Dunstan DE (2013) The effect of concentration, temperature and stirring on hen egg white lysozyme amyloid formation. Soft Matter 9(40):9692–9701
Paparcone R, Cranford SW, Buehler MJ (2011) Self-folding and aggregation of amyloid nanofibrils. Nanoscale 3:1748–1755. https://doi.org/10.1039/c0nr00840k
Pawlicki S, Le Béchec A, Delamarche C (2008) AMYPdb: a database dedicated to amyloid precursor proteins. BMC Bioinform 9(1):273
Peng S, Ding F, Urbanc B et al (2004) Discrete molecular dynamics simulations of peptide aggregation. Phys Rev E Stat Nonlinear Soft Matter Phys 69:041908. https://doi.org/10.1103/PhysRevE.69.041908
Polanco C, Samaniego JL, Uversky VN, Castañón-González JA, Buhse T, Leopold-Sordo M, ... Arias-Estrada M (2015) Identification of proteins associated with amyloidosis by polarity index method. Acta Biochim Polonica 62(1)
Prabakaran R, Rawat P, Kumar S, Gromiha MM (2020) ANuPP: a versatile tool to predict aggregation nucleating regions in peptides and proteins. J Mol Biol (in press). https://doi.org/10.1016/j.jmb.2020.11.006
Priya SB, Gromiha MM (2019) Structural insights into the aggregation mechanism of huntingtin exon 1 protein fragment with different polyQ-lengths. J Cell Biochem 120(6):10519–10529. https://doi.org/10.1002/jcb.28338
Ramírez-Alvarado M, Merkel JS, Regan L (2000) A systematic exploration of the influence of the protein stability on amyloid fibril formation in vitro. Proc Natl Acad Sci 97(16):8979–8984
Rawat P, Kumar S, Gromiha MM (2018) An in-silico method for identifying aggregation rate enhancer and mitigator mutations in proteins. Int J Biol Macromol 118:1157–1167
Rawat P, Prabakaran R, Sakthivel R, Mary Thangakani A, Kumar S, Gromiha MM (2020a) CPAD 2.0: a repository of curated experimental data on aggregating proteins and peptides. Amyloid 27(2):128–133
Rawat P, Prabakaran R, Kumar S, Gromiha MM (2020b) AggreRATE-Pred: a mathematical model for the prediction of change in aggregation rate upon point mutation. Bioinformatics 36(5):1439–1444
Ren B, Zhang Y, Zhang M, Liu Y, Zhang D, Gong X, Feng Z, Tang J, Chang Y, Zheng J (2019) Fundamentals of cross-seeding of amyloid proteins: an introduction. J Mater Chem B 7(46):7267–7282
Roberts CJ (2014) Protein aggregation and its impact on product quality. Curr Opin Biotechnol 30:211–217. https://doi.org/10.1016/j.copbio.2014.08.001
Sankar K, Krystek SR, Carl SM et al (2018) AggScore: Prediction of aggregation-prone regions in proteins based on the distribution of surface patches. Proteins Struct Funct Bioinforma 86:1147–1156. https://doi.org/10.1002/prot.25594
Sawaya MR, Sambashivan S, Nelson R et al (2007) Atomic structures of amyloid cross-β spines reveal varied steric zippers. Nature 447:453–457. https://doi.org/10.1038/nature05695
Seidler PM, Boyer DR, Murray KA et al (2019) Structure-based inhibitors halt prion-like seeding by Alzheimer’s disease-and tauopathy-derived brain tissue samples. J Biol Chem 294:16451–16464. https://doi.org/10.1074/jbc.RA119.009688
Shobana R, Pandaranayaka EP (2014) ProADD: a database on protein aggregation diseases. Bioinformation 10(6):390
Siepen JA, Westhead DR (2002) The fibril_one on‐line database: mutations, experimental conditions, and trends associated with amyloid fibril formation. Protein Sci 11(7):1862–1866
Singh G, Brovchenko IV, Oleinikova A, Winter R (2008) Peptide aggregation in finite systems. Biophys J 95:3208–3221. https://doi.org/10.1529/biophysj.108.136226
Sipe JD, Cohen AS (2000) Review: History of the amyloid fibril. J Struct Biol 130:88–98. https://doi.org/10.1006/jsbi.2000.4221
Sunde M, Blake C (1997) The structure of amyloid fibrils by electron microscopy and x-ray diffraction. Adv Protein Chem 50:123–159. https://doi.org/10.1016/s0065-3233(08)60320-4
Swuec P, Lavatelli F, Tasaki M et al (2019) Cryo-EM structure of cardiac amyloid fibrils from an immunoglobulin light chain AL amyloidosis patient. Nat Commun 10:1269
Takács K, Varga B, Grolmusz V (2019) PDB _Amyloid: an extended live amyloid structure list from the PDB. FEBS Open Bio 9(1):185–190
Tartaglia GG, Vendruscolo M (2008) The Zyggregator method for predicting protein aggregation propensities. Chem Soc Rev 37:1395–1401. https://doi.org/10.1039/b706784b
Tartaglia GG, Cavalli A, Pellarin R, Caflisch A (2004) The role of aromaticity, exposed surface, and dipole moment in determining protein aggregation rates. Protein Sci 13(7):1939–1941
Tartaglia GG, Cavalli A, Pellarin R, Caflisch A (2005) Prediction of aggregation rate and aggregation-prone segments in polypeptide sequences. Protein Sci 14(10):2723–2734. https://doi.org/10.1110/ps.051471205
Thangakani AM, Kumar S, Nagarajan R et al (2014) GAP: towards almost 100 percent prediction for β-strand-mediated aggregating peptides with distinct morphologies. Bioinformatics 30:1983–1990. https://doi.org/10.1093/bioinformatics/btu167
Thangakani AM, Nagarajan R, Kumar S, Sakthivel R, Velmurugan D, Gromiha MM (2016) CPAD, curated protein aggregation database: a repository of manually curated experimental data on protein and peptide aggregation. PLoS One 11(4):e0152949
Thompson MJ, Sievers SA, Karanicolas J et al (2006) The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci 103:4074–4078. https://doi.org/10.1073/pnas.0511295103
Tian J, Wu N, Guo J, Fan Y (2009) Prediction of amyloid fibril-forming segments based on a support vector machine. BMC Bioinform 10 Suppl 1(Suppl 1):S45. https://doi.org/10.1186/1471-2105-10-S1-S45
Tiller KE, Li L, Kumar S et al (2017) Arginine mutations in antibody complementarity-determining regions display context-dependent affinity/specificity trade-offs. J Biol Chem 292:16638–16652. https://doi.org/10.1074/jbc.M117.783837
Tjernberg L, Hosia W, Bark N, Thyberg J, Johansson J (2002) Charge attraction and β propensity are necessary for amyloid fibril formation from tetrapeptides. J Biol Chem 277(45):43243–43246
Tran L, Ha-Duong T (2015) Exploring the Alzheimer amyloid-β peptide conformational ensemble: a review of molecular dynamics approaches. Peptides 69:86–91. https://doi.org/10.1016/j.peptides.2015.04.009
Tsolis AC, Papandreou NC, Iconomidou VA, Hamodrakas SJ (2013) A consensus method for the prediction of ‘aggregation-prone’ peptides in globular proteins. PLoS One 8(1):e54175. https://doi.org/10.1371/journal.pone.0054175
Tucker AT, Leonard SP, DuBois CD, Knauf GA, Cunningham AL, Wilke CO, Trent MS, Davies BW (2018) Discovery of Next-Generation Antimicrobials through Bacterial Self-Screening of Surface-Displayed Peptide Libraries. Cell 172(3):618.e13–628.e13. https://doi.org/10.1016/j.cell.2017.12.009
Usmani SS, Bedi G, Samuel JS et al (2017) THPdb: Database of FDA-approved peptide and protein therapeutics. PLoS One 12:1–12. https://doi.org/10.1371/journal.pone.0181748
Varadi M, De Baets G, Vranken WF et al (2018) AmyPro: a database of proteins with validated amyloidogenic regions. Nucleic Acids Res 46:D387–D392. https://doi.org/10.1093/nar/gkx950
Ventura S, Zurdo J, Narayanan S et al (2004) Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case. Proc Natl Acad Sci U S A 101:7258–7263. https://doi.org/10.1073/pnas.0308249101
Walsh I, Seno F, Tosatto SCE, Trovato A (2014) PASTA 2.0: An improved server for protein aggregation prediction. Nucleic Acids Res 42:301–307. https://doi.org/10.1093/nar/gku399
Wang X, Das TK, Singh SK, Kumar S (2009) Potential aggregation prone regions in biotherapeutics: a survey of commercial monoclonal antibodies. MAbs 1:254–267. https://doi.org/10.4161/mabs.1.3.8035
Wang Y, Bunce SJ, Radford SE, Wilson AJ, Auer S, Hall CK (2019) Thermodynamic phase diagram of amyloid-β (16–22) peptide. Proc Natl Acad Sci 116(6):2091–2096. https://doi.org/10.1073/pnas.1819592116
Wojciechowski JW, Kotulska M (2020) PATH - Prediction of Amyloidogenicity by Threading and Machine Learning. Sci Rep 10(1):7721. https://doi.org/10.1038/s41598-020-64270-3
Wozniak PP, Kotulska M (2015) AmyLoad: website dedicated to amyloidogenic protein fragments. Bioinformatics 31(20):3395–3397
Wu C, Lei H, Duan Y (2005) Elongation of ordered peptide aggregate of an amyloidogenic hexapeptide NFGAIL observed in molecular dynamics simulations with explicit solvent. J Am Chem Soc 127:13530–13537. https://doi.org/10.1021/ja050767x
Yagi-Utsumi M, Yanaka S, Song C et al (2020) Characterization of amyloid β fibril formation under microgravity conditions. NPJ Micrograv 6:17. https://doi.org/10.1038/s41526-020-0107-y
Yang W, Tan P, Fu X, Hong L (2019) Prediction of amyloid aggregation rates by machine learning and feature selection. J Chem Phys 151(8):084106
Zambrano R, Jamroz M, Szczasiuk A et al (2015) AGGRESCAN3D (A3D): server for prediction of aggregation properties of protein structures. Nucleic Acids Res 43:W306–W313. https://doi.org/10.1093/nar/gkv359
Zanuy D, Nussinov R (2003) The sequence dependence of fiber organization. A comparative molecular dynamics study of the islet amyloid polypeptide segments 22-27 and 22-29. J Mol Biol 329:565–584. https://doi.org/10.1016/S0022-2836(03)00491-1
Zanuy D, Ma B, Nussinov R (2003) Short peptide amyloid organization: stabilities and conformations of the islet amyloid peptide NFGAIL. Biophys J 84:1884–1894. https://doi.org/10.1016/S0006-3495(03)74996-0
Zemla A, Venclovas Č, Fidelis K, Rost B (1999) A modified definition of Sov, a segment-based measure for protein secondary structure prediction assessment. Proteins Struct Funct Genet 34(2):220–223. https://doi.org/10.1002/(SICI)1097-0134(19990201)34:2<220::AID-PROT7>3.0.CO;2-K
Zhang Z, Chen H, Lai L (2007) Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential. Bioinformatics (Oxford, England) 23(17):2218–2225. https://doi.org/10.1093/bioinformatics/btm325
Zheng W, Tsai MY, Chen M, Wolynes PG (2016) Exploring the aggregation free energy landscape of the amyloid-β protein (1-40). Proc Natl Acad Sci U S A 113(42):11835–11840. https://doi.org/10.1073/pnas.1612362113
Zibaee S, Makin OS, Goedert M, Serpell LC (2007) A simple algorithm locates beta-strands in the amyloid fibril core of alpha-synuclein, Abeta, and tau using the amino acid sequence alone. Protein Sci 16(5):906–918. https://doi.org/10.1110/ps.062624507
Zurdo J (2013) Developability assessment as an early de-risking tool for biopharmaceutical development. Pharm Bioprocess 1:29–50. https://doi.org/10.4155/pbp.13.3
Acknowledgements
We thank the Bioinformatics Infrastructure Facility, Department of Biotechnology, and the Indian Institute of Technology Madras for computational facilities and the Ministry of Human Resource and Development (MHRD) for HTRA scholarship to PR. We thank WALTZ developers for sharing the executable.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Prabakaran, R., Rawat, P., Thangakani, A.M. et al. Protein aggregation: in silico algorithms and applications. Biophys Rev 13, 71–89 (2021). https://doi.org/10.1007/s12551-021-00778-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12551-021-00778-w