Metabolism of prostate cancer by magnetic resonance spectroscopy (MRS)

Abstract

Understanding the metabolism of prostate cancer (PCa) is important for developing better diagnostic approaches and also for exploring new therapeutic targets. Magnetic resonance spectroscopy (MRS) techniques have been shown to be useful in the detection and quantification of metabolites. PCa illustrates metabolic phenotype, showing lower levels of citrate (Cit), a key metabolite of oxidative phosphorylation and alteration in several metabolic pathways to sustain tumor growth. Recently, dynamic nuclear polarization (DNP) studies have documented high rates of glycolysis (Warburg phenomenon) in PCa. High-throughput metabolic profiling strategies using MRS on variety of samples including intact tissues, biofluids like prostatic fluid, seminal fluid, blood plasma/sera, and urine have also played a vital role in understanding the abnormal metabolic activity of PCa patients. The enhanced analytical potential of these techniques in the detection and quantification of a large number of metabolites provides an in-depth understanding of metabolic rewiring associated with the tumorigenesis. Metabolomics analysis offers dual advantages of identification of diagnostic and predictive biomarkers as well as in understanding the altered metabolic pathways which can be targeted for inhibiting the cancer progression. This review briefly describes the potential applications of in vivo 1H MRS, high-resolution magic angle spinning spectroscopy (HRMAS) and in vitro MRS methods in understanding the metabolic changes of PCa and its usefulness in the management of PCa patients.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci U S A 100:10158–10163

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Averna TA, Kline EE, Smith AY, Sillerud LO (2005) A decrease in 1H nuclear magnetic resonance spectroscopically determined Cit in human seminal fluid accompanies the development of prostate adenocarcinoma. J Urol 173:433–438

    PubMed  Google Scholar 

  3. Bingol K, Brüschweiler R (2015) Two elephants in the room: new hybrid nuclear magnetic resonance and mass spectrometry approaches for metabolomics. Curr Opin Clin Nutr Metab Care 18:471–477

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Blachier F, Selamnia M, Robert V, M'Rabet-Touil H, Duée PH (1995) Metabolism of L-arginine through polyamine and nitric oxide synthase pathways in proliferative or differentiated human colon carcinoma cells. Biochim Biophys Acta 1268:255–262

    PubMed  Google Scholar 

  5. Braadland PR, Giskeødegård G, Sandsmark E, Bertilsson H, Euceda LR, Hansen AF, Guldvik IJ, Selnæs KM, Grytli HH, Katz B, Svindland A, Bathen TF, Eri LM, Nygård S, Berge V, Taskén KA, Tessem MB (2017) Ex vivo metabolic fingerprinting identifies biomarkers predictive of prostate cancer recurrence following radical prostatectomy. Br J Cancer 117:1656–1664

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Carter HB (2000) A PSA threshold of 4.0 ng/mL for early detection of prostate cancer: the only rational approach for men 50 years old and older. Urology 55:796–799

    CAS  PubMed  Google Scholar 

  7. Catalona WJ, Smith DS, Ratliff TL, Dodds KM, Coplen DE, Yuan JJ, Petros JA, Andriole GL (1991) Measurement of prostate-specific antigen in serum as a screening test for prostate cancer. N Engl J Med 324:1156–1161 Erratum in: N Engl J Med 1991;325:1324

    CAS  PubMed  Google Scholar 

  8. Catalona WJ, Richie JP, Ahmann FR, Hudson MA, Scardino PT, Flanigan RC, DeKernion JB, Ratliff TL, Kavoussi LR, Dalkin BL, Waters WB, MacFarlane MT, Southwick PC (1994) Comparison of digital rectal examination and serum prostate specific antigen in the early detection of prostate cancer: results of a multicenter clinical trial of 6,630 men. J Urol 151:1283–1290

    PubMed  Google Scholar 

  9. Cernei N, Heger Z, Gumulec J, Zitka O, Masarik M, Babula P, Eckschlager T, Stiborova M, Kizek R, Adam V (2013) Sarcosine as a potential prostate cancer biomarker-a review. Int J Mol Sci 14:13893–13908

    PubMed  PubMed Central  Google Scholar 

  10. Costello LC, Franklin RB (2016) A comprehensive review of the role of zinc in normal prostate function and metabolism; and its implications in prostate cancer. Arch Biochem Biophys 611:100–112

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Costello LC, Franklin RB, Feng P (2005) Mitochondrial function, zinc, and intermediary metabolism relationships in normal prostate and prostate cancer. Mitochondrion 5:143–153

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Costello LC, Franklin RB, Zou J, Feng P, Bok R, Swanson MG, Kurhanewicz J (2011) Human prostate cancer ZIP1/zinc/citrate genetic/metabolic relationship in the TRAMP prostate cancer animal model. Cancer Biol Ther 12:1078–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Dakubo GD, Parr RL, Costello LC, Franklin RB, Thayer RE (2006) Altered metabolism and mitochondrial genome in prostate cancer. J Clin Pathol 59:10–16

    CAS  PubMed  PubMed Central  Google Scholar 

  14. DeBerardinis RJ, Mancuso A, Daikhin E, Nissim I, Yudkoff M, Wehrli S, Thompson CB (2007) Beyond aerobic glycolysis: Transformed cells can engage in glutamine metabolism that exceeds the requirement for protein and nucleotide synthesis. Proc Natl Acad Sci USA 104:19345–19350

  15. Decelle EA, Cheng LL (2014) High-resolution magic angle spinning 1H MRS in prostate cancer. NMR Biomed 27:90–99

    CAS  PubMed  Google Scholar 

  16. Deep G, Schlaepfer IR (2016) Aberrant lipid metabolism promotes prostate cancer: role in cell survival under hypoxia and extracellular vesicles biogenesis. Int J Mol Sci 17(7):E1061. https://doi.org/10.3390/ijms17071061

    CAS  Article  PubMed  Google Scholar 

  17. Eidelman E, Twum-Ampofo J, Ansari J, Siddiqui MM (2017) The metabolic phenotype of prostate cancer. Front Oncol 7:131. https://doi.org/10.3389/fonc.2017.00131

    Article  PubMed  PubMed Central  Google Scholar 

  18. Feng P, Li TL, Guan ZX, Franklin RB, Costello LC (2002) Direct effect of zinc on mitochondrial apoptogenesis in prostate cells. Prostate. 52:311–318

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Feun L, You M, Wu CJ, Kuo MT, Wangpaichitr M, Spector S, Savaraj N (2008) Arginine deprivation as a targeted therapy for cancer. Curr Pharm Des 14:1049–1057

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Fiaschi T, Marini A, Giannoni E, Taddei ML, Gandellini P, De Donatis A, Lanciotti M, Serni S, Cirri P, Chiarugi P (2012) Reciprocal metabolic reprogramming through lactate shuttle coordinately influences tumor-stroma interplay. Cancer Res 72:5130–5140

    CAS  PubMed  Google Scholar 

  21. Fowler AH, Pappas AA, Holder JC, Finkbeiner AE, Dalrymple GV, Mullins MS, Sprigg JR, Komoroski RA (1992) Differentiation of human prostate cancer from benign hypertrophy by in vitro 1H NMR. Magn Reson Med 25:140–147

    CAS  PubMed  Google Scholar 

  22. Fuss TL, Cheng LL (2016) Evaluation of cancer metabolomics using ex vivo high resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS). Metabolites 6:11. https://doi.org/10.3390/metabo6010011

    CAS  Article  PubMed Central  Google Scholar 

  23. García-Segura JM, Sánchez-Chapado M, Ibarburen C, Viaño J, Angulo JC, González J, Rodríguez-Vallejo JM (1999) In vivo proton magnetic resonance spectroscopy of diseased prostate: spectroscopic features of malignant versus benign pathology. Magn Reson Imaging 17:755–765

    PubMed  Google Scholar 

  24. Giskeødegård GF, Bertilsson H, Selnæs KM, Wright AJ, Bathen TF, Viset T, Halgunset J, Angelsen A, Gribbestad IS, Tessem MB (2013) Spermine and Cit as metabolic biomarkers for assessing prostate cancer aggressiveness. PLoS One 8:e62375. https://doi.org/10.1371/journal.pone.0062375

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Giskeødegård GF, Hansen AF, Bertilsson H, Gonzalez SV, Kristiansen KA, Bruheim P, Mjøs SA, Angelsen A, Bathen TF, Tessem MB (2015) Metabolic markers in blood can separate prostate cancer from benign prostatic hyperplasia. Br J Cancer 113:1712–1719

    PubMed  PubMed Central  Google Scholar 

  26. Giunchi F, Fiorentino M, Loda M (2019) The metabolic landscape of prostate cancer. Eur Urol Oncol 2:28–36

    PubMed  Google Scholar 

  27. Gómez-Cebrián N, Rojas-Benedicto A, Albors-Vaquer A, López-Guerrero JA, Pineda-Lucena A, Puchades-Carrasco L (2019) Metabolomics contributions to the discovery of prostate cancer biomarkers. Metabolites 9:48. https://doi.org/10.3390/metabo9030048

    CAS  Article  PubMed Central  Google Scholar 

  28. Greenlee RT, Hill-Harmon MB, Murray T, Thun M (2001) Cancer statistics. CA Cancer J Clin 51:15–36 Erratum in: CA Cancer J Clin (2001) 51:144

    CAS  PubMed  Google Scholar 

  29. Grundmark B, Garmo H, Loda M, Busch C, Holmberg L, Zethelius B (2010) The metabolic syndrome and the risk of prostate cancer under competing risks of death from other causes. Cancer Epidemiol Biomark Prev 19:2088–2096

    Google Scholar 

  30. Gutte H, Hansen AE, Johannesen HH, Clemmensen AE, Ardenkjær-Larsen JH, Nielsen CH, Kjær A (2015) The use of dynamic nuclear polarization (13)C-pyruvate MRS in cancer. Am J Nucl Med Mol Imaging 5:548–560

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hahn P, Smith IC, Leboldus L, Littman C, Somorjai RL, Bezabeh T (1997) The classification of benign and malignant human prostate tissue by multivariate analysis of 1H magnetic resonance spectra. Cancer Res 57:3398–3401

    CAS  PubMed  Google Scholar 

  32. Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25:276–308

    CAS  PubMed  Google Scholar 

  33. Jagannathan NR (2014) Prostate MR: current status, challenges and future directions. NMR Biomed 27:1–2 and other articles in this special issue

    PubMed  Google Scholar 

  34. Julià-Sapé M, Candiota AP, Arús C (2019) Cancer metabolism in a snapshot: MRS(I). NMR Biomed 32:e4054. https://doi.org/10.1002/nbm.4054

    CAS  Article  PubMed  Google Scholar 

  35. Jung K, Reszka R, Kamlage B, Bethan B, Stephan C, Lein M, Kristiansen G (2013) Tissue metabolite profiling identifies differentiating and prognostic biomarkers for prostate carcinoma. Int J Cancer 133:2914–2924

    CAS  PubMed  Google Scholar 

  36. Kassen A, Sutkowski DM, Ahn H, Sensibar JA, Kozlowski JM, Lee C (1996) Stromal cells of the human prostate: initial isolation and characterization. Prostate 28:89–97

    CAS  PubMed  Google Scholar 

  37. Keshari KR, Wilson DM, Van Criekinge M, Sriram R, Koelsch BL, Wang ZJ, VanBrocklin HF, Peehl DM, O'Brien T, Sampath D, Carano RA, Kurhanewicz J (2015) Metabolic response of prostate cancer to nicotinamide phophoribosyltransferase inhibition in a hyperpolarized MR/PET compatible bioreactor. Prostate 75:1601–1609

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Kline EE, Treat EG, Averna TA, Davis MS, Smith AY, Sillerud LO (2006) Citrate concentrations in human seminal fluid and expressed prostatic fluid determined via 1H nuclear magnetic resonance spectroscopy outperform prostate specific antigen in prostate cancer detection. J Urol 176:2274–2279

    CAS  PubMed  Google Scholar 

  39. Klomp DW, Scheenen TW, Arteaga CS, van Asten J, Boer VO, Luijten PR (2011) Detection of fully refocused polyamine spins in prostate cancer at 7 T. NMR Biomed 24:299–306

    CAS  PubMed  Google Scholar 

  40. Kumar R, Nayyar R, Kumar V, Gupta NP, Hemal AK, Jagannathan NR, Dattagupta S, Thulkar S (2008) Potential of magnetic resonance spectroscopic imaging in predicting absence of prostate cancer in men with serum prostate-specific antigen between 4 and 10 ng/ml: a follow-up study. Urology 72:859–863

    PubMed  Google Scholar 

  41. Kumar V, Dwivedi DK, Jagannathan NR (2014) High-resolution NMR spectroscopy of human body fluids and tissues in relation to prostate cancer. NMR Biomed 27:80–89

  42. Kumar D, Gupta A, Mandhani A, Sankhwar SN (2015) Metabolomics-derived prostate cancer biomarkers: fact or fiction? J Proteome Res 14:1455–1464

    CAS  PubMed  Google Scholar 

  43. Kumar D, Gupta A, Mandhani A, Sankhwar SN (2016a) NMR spectroscopy of filtered serum of prostate cancer: a new frontier in metabolomics. Prostate 76:1106–1119

    CAS  PubMed  Google Scholar 

  44. Kumar D, Gupta A, Nath K (2016b) NMR-based metabolomics of prostate cancer: a protagonist in clinical diagnostics. Expert Rev Mol Diagn 16:651–661

    CAS  PubMed  Google Scholar 

  45. Kumar V, Bora GS, Kumar R, Jagannathan NR (2018) Multiparametric (mp) MRI of prostate cancer. Prog Nucl Magn Reson Spectrosc 105:23–40

    CAS  PubMed  Google Scholar 

  46. Kurhanewicz J, Dahiya R, Macdonald JM, Chang LH, James TL, Narayan P (1993) Cit alterations in primary and metastatic human prostatic adenocarcinomas: 1H magnetic resonance spectroscopy and biochemical study. Magn Reson Med 29:149–157

  47. Kurhanewicz J, Vigneron DB, Hricak H, Narayan P, Carroll P, Nelson SJ (1996) Three-dimensional H-1 MR spectroscopic imaging of the in situ human prostate with high (0.24-0.7-cm3) spatial resolution. Radiology 198:795–805

  48. Kurhanewicz J, Swanson MG, Nelson SJ, Vigneron DB (2002) Combined magnetic resonance imaging and spectroscopic imaging approach to molecular imaging of prostate cancer. J Magn Reson Imaging 16:451–463

    PubMed  PubMed Central  Google Scholar 

  49. Lee J, Giovannucci E, Jeon JY (2016) Diabetes and mortality in patients with prostate cancer: a meta-analysis. Springerplus 5:1548. https://doi.org/10.1186/s40064-016-3233-y

    Article  PubMed  PubMed Central  Google Scholar 

  50. Li Z, Zhang H (2016) Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progression. Cell Mol Life Sci 73:377–392

    CAS  PubMed  Google Scholar 

  51. Lima AR, Bastos Mde L, Carvalho M, Guedes de Pinho P (2016) Biomarker discovery in human prostate cancer: an update in metabolomics studies. Transl Oncol 9:357–370

    PubMed  PubMed Central  Google Scholar 

  52. Lucarelli G, Rutigliano M, Galleggiante V, Giglio A, Palazzo S, Ferro M, Simone C, Bettocchi C, Battaglia M, Ditonno P (2015) Metabolomic profiling for the identification of novel diagnostic markers in prostate cancer. Expert Rev Mol Diagn 15:1211–1224

    CAS  PubMed  Google Scholar 

  53. Lynch MJ, Nicholson JK (1997) Proton MRS of human prostatic fluid: correlations between Cit, spermine, and myo-inositol levels and changes with disease. Prostate 30:248–255

    CAS  PubMed  Google Scholar 

  54. Madhu B, Shaw GL, Warren AY, Neal DE, Griffiths JR (2016) Response of Degarelix treatment in human prostate cancer monitored by HR-MAS 1H NMR spectroscopy. Metabolomics 12:120. https://doi.org/10.1007/s11306-016-1055-0

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Moncada S, Higgs EA, Colombo SL (2012) Fulfilling the metabolic requirements for cell proliferation. Biochem J 446:1–7

    CAS  PubMed  Google Scholar 

  56. Mori N, Wildes F, Takagi T, Glunde K, Bhujwalla ZM (2016) The tumor microenvironment modulates Cho and lipid metabolism. Front Oncol 6:262. https://doi.org/10.3389/fonc.2016.00262

    Article  PubMed  PubMed Central  Google Scholar 

  57. Naughton CK, Smith DS, Humphrey PA, Catalona WJ, Keetch DW (1998) Clinical and pathologic tumor characteristics of prostate cancer as a function of the number of biopsy cores: a retrospective study. Urology 52:808–813

    CAS  PubMed  Google Scholar 

  58. Nayyar R, Kumar R, Kumar V, Jagannathan NR, Gupta NP, Hemal AK (2009) Magnetic resonance spectroscopic imaging: current status in the management of prostate cancer. BJU Int 103:1614–1620

    PubMed  Google Scholar 

  59. Nelson SJ, Kurhanewicz J, Vigneron DB, Larson PE, Harzstark AL, Ferrone M, van Criekinge M, Chang JW, Bok R, Park I, Reed G, Carvajal L, Small EJ, Munster P, Weinberg VK, Ardenkjaer-Larsen JH, Chen AP, Hurd RE, Odegardstuen LI, Robb FJ, Tropp J, Murray JA (2013) Metabolic imaging of patients with prostate cancer using hyperpolarized [1-13C]pyruvate. Sci Transl Med 5(198):198ra108. https://doi.org/10.1126/scitranslmed.3006070

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  60. Pan T, Gao L, Wu G, Shen G, Xie S, Wen H, Yang J, Zhou Y, Tu Z, Qian W (2015) Elevated expression of glutaminase confers glucose utilization via glutaminolysis in prostate cancer. Biochem Biophys Res Commun 456:452–458

    CAS  PubMed  Google Scholar 

  61. Pavlides S, Whitaker-Menezes D, Castello-Cros R, Flomenberg N, Witkiewicz AK, Frank PG, Casimiro MC, Wang C, Fortina P, Addya S, Pestell RG, Martinez-Outschoorn UE, Sotgia F, Lisanti MP (2009) The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8:3984–4001

    CAS  PubMed  Google Scholar 

  62. Pérez-Rambla C, Puchades-Carrasco L, García-Flores M, Rubio-Briones J, López-Guerrero JA, Pineda-Lucena A (2017) Non-invasive urinary metabolomic profiling discriminates prostate cancer from benign prostatic hyperplasia. Metabolomics 13:52. https://doi.org/10.1007/s11306-017-1194-y

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Qiu F, Huang J, Sui M (2015) Targeting arginine metabolism pathway to treat arginine-dependent cancers. Cancer Lett 364:1–7

    CAS  PubMed  Google Scholar 

  64. Rabbani F, Stroumbakis N, Kava BR, Cookson MS, Fair WR (1998) Incidence and clinical significance of false-negative sextant prostate biopsies. J Urol 159:1247–1250

    CAS  PubMed  Google Scholar 

  65. Roberts MJ, Schirra HJ, Lavin MF, Gardiner RA (2011) Metabolomics: a novel approach to early and noninvasive prostate cancer detection. Korean J Urol 52:79–89

    PubMed  PubMed Central  Google Scholar 

  66. Roberts MJ, Richards RS, Chow CWK, Buck M, Yaxley J, Lavin MF, Schirra HJ, Gardiner RA (2017) Seminal plasma enables selection and monitoring of active surveillance candidates using nuclear magnetic resonance-based metabolomics: a preliminary investigation. Prostate Int 5:149–157

    PubMed  PubMed Central  Google Scholar 

  67. Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, Van Veldhoven PP, Waltregny D, Daniëls VW, Machiels J, Vanderhoydonc F, Smans K, Waelkens E, Verhoeven G, Swinnen JV (2010) De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res 70:8117–8126

    CAS  PubMed  Google Scholar 

  68. Schiebler ML, Miyamoto KK, White M, Maygarden SJ, Mohler JL (1993) In vitro high resolution 1H-spectroscopy of the human prostate: benign prostatic hyperplasia, normal peripheral zone and adenocarcinoma. Magn Reson Med 29:285–291

    CAS  PubMed  Google Scholar 

  69. Scroggins BT, Matsuo M, White AO, Saito K, Munasinghe JP, Sourbier C, Yamamoto K, Diaz V, Takakusagi Y, Ichikawa K, Mitchell JB, Krishna MC, Citrin DE (2018) Hyperpolarized [1-(13)C]-pyruvate magnetic resonance spectroscopic imaging of prostate cancer in vivo predicts efficacy of targeting the Warburg effect. Clin Cancer Res 24:3137–3148

    CAS  PubMed  Google Scholar 

  70. Selnaes KM, Gribbestad IS, Bertilsson H, Wright A, Angelsen A, Heerschap A, Tessem MB (2013) Spatially matched in vivo and ex vivo MR metabolic profiles of prostate cancer -- investigation of a correlation with Gleason score. NMR Biomed 26:600–606

    CAS  PubMed  Google Scholar 

  71. Serkova NJ, Gamito EJ, Jones RH, O'Donnell C, Brown JL, Green S, Sullivan H, Hedlund T, Crawford ED (2008) The metabolites Cit, myo-inositol, and spermine are potential age-independent markers of prostate cancer in human expressed prostatic secretions. Prostate 68:620–628

    CAS  PubMed  Google Scholar 

  72. Serrao EM, Brindle KM (2016) Potential clinical roles for metabolic imaging with hyperpolarized [1-(13)C]pyruvate. Front Oncol 6:59. https://doi.org/10.3389/fonc.2016.00059

    Article  PubMed  PubMed Central  Google Scholar 

  73. Shukla-Dave A, Hricak H, Moskowitz C, Ishill N, Akin O, Kuroiwa K, Spector J, Kumar M, Reuter VE, Koutcher JA, Zakian KL (2007) Detection of prostate cancer with MR spectroscopic imaging: an expanded paradigm incorporating polyamines. Radiology 245:499–506

    PubMed  Google Scholar 

  74. Stenman K, Hauksson JB, Gröbner G, Stattin P, Bergh A, Riklund K (2009) Detection of polyunsaturated omega-6 fatty acid in human malignant prostate tissue by 1D and 2D high-resolution magic angle spinning NMR spectroscopy. MAGMA 22:327–331

    CAS  PubMed  Google Scholar 

  75. Swanson MG, Zektzer AS, Tabatabai ZL, Simko J, Jarso S, Keshari KR, Schmitt L, Carroll PR, Shinohara K, Vigneron DB, Kurhanewicz J (2006) Quantitative analysis of prostate metabolites using 1H HR-MAS spectroscopy. Magn Reson Med 55:1257–1264

    CAS  PubMed  Google Scholar 

  76. Swanson MG, Keshari KR, Tabatabai ZL, Simko JP, Shinohara K, Carroll PR, Zektzer AS, Kurhanewicz J (2008) Quantification of Cho- and ethanolamine-containing metabolites in human prostate tissues using 1H HR-MAS total correlation spectroscopy. Magn Reson Med 60:33–40. https://doi.org/10.1002/mrm.21647

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Swindle P, McCredie S, Russell P, Himmelreich U, Khadra M, Lean C, Mountford C (2003) Pathologic characterization of human prostate tissue with proton MR spectroscopy. Radiology 228:144–151

    PubMed  Google Scholar 

  78. Swindle P, Ramadan S, Stanwell P, McCredie S, Russell P, Mountford C (2008) Proton magnetic resonance spectroscopy of the central, transition and peripheral zones of the prostate: assignments and correlation with histopathology. MAGMA 21:423–434

    CAS  PubMed  Google Scholar 

  79. Tayari N, Heerschap A, Scheenen TWJ, Kobus T (2017) In vivo MR spectroscopic imaging of the prostate, from application to interpretation. Anal Biochem 529:158–170

    CAS  PubMed  Google Scholar 

  80. Teahan O, Bevan CL, Waxman J, Keun HC (2011) Metabolic signatures of malignant progression in prostate epithelial cells. Int J Biochem Cell Biol 43:1002–1009

    CAS  PubMed  Google Scholar 

  81. Tsouko E, Khan AS, White MA, Han JJ, Shi Y, Merchant FA, Sharpe MA, Xin L, Frigo DE (2014) Regulation of the pentose phosphate pathway by an androgen receptor-mTOR-mediated mechanism and its role in prostate cancer cell growth. Oncogenesis 3:e103. https://doi.org/10.1038/oncsis.2014.18

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. van Asten JJ, Cuijpers V, Hulsbergen-van de Kaa C, Soede-Huijbregts C, Witjes JA, Verhofstad A, Heerschap A (2008) High resolution magic angle spinning NMR spectroscopy for metabolic assessment of cancer presence and Gleason score in human prostate needle biopsies. MAGMA 21:435–442

    PubMed  Google Scholar 

  83. van der Graaf M, Schipper RG, Oosterhof GO, Schalken JA, Verhofstad AA, Heerschap A (2000) Proton MR spectroscopy of prostatic tissue focused on the detection of spermine, a possible biomarker of malignant behavior in prostate cancer. MAGMA 10:153–159

    PubMed  Google Scholar 

  84. Vandergrift LA, Decelle EA, Kurth J, Wu S, Fuss TL, DeFeo EM, Halpern EF, Taupitz M, McDougal WS, Olumi AF, Wu CL, Cheng LL (2018) Metabolomic prediction of human prostate cancer aggressiveness: magnetic resonance spectroscopy of histologically benign tissue. Sci Rep 8:4997. https://doi.org/10.1038/s41598-018-23177-w

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  85. Wallimann T, Wyss M, Brdiczka D, Nicolay K, Eppenberger HM (1992) Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: the 'phosphocreatine circuit' for cellular energy homeostasis. Biochem J 281(Pt 1):21–40

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Willker W, Flögel U, Leibfritz D (1998) A 1H/13C inverse 2D method for the analysis of the polyamines putrescine, spermidine and spermine in cell extracts and biofluids. NMR Biomed 11:47–54

  87. Wu X, Daniels G, Lee P, Monaco ME (2014) Lipid metabolism in prostate cancer. Am J Clin Exp Urol 2:111–120

    PubMed  PubMed Central  Google Scholar 

  88. Zadra G, Photopoulos C, Loda M (2013) The fat side of prostate cancer. Biochim Biophys Acta 1831:1518–1532

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to thank their students and collaborators for many fruitful discussions, help and support. NRJ thanks the SERB, Department of Science and Technology, Government of India for the award of J. C. Bose Fellowship.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Uma Sharma or Naranamangalam R. Jagannathan.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sharma, U., Jagannathan, N.R. Metabolism of prostate cancer by magnetic resonance spectroscopy (MRS). Biophys Rev 12, 1163–1173 (2020). https://doi.org/10.1007/s12551-020-00758-6

Download citation

Keywords

  • Magnetic resonance spectroscopy (MRS)
  • In vivo
  • In vitro MRS
  • HRMAS
  • Prostate cancer
  • Biomarker