Skip to main content

Advertisement

Log in

Growth factor therapy for cardiac repair: an overview of recent advances and future directions

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Heart disease represents a significant public health burden and is associated with considerable morbidity and mortality at the level of the individual. Current therapies for pathologies such as myocardial infarction, cardiomyopathy and heart failure are unable to repair damaged tissue to an extent that provides restoration of function approaching that of the pre-diseased state. Novel approaches to repair and regenerate the injured heart include cell therapy and the use of exogenous factors. Improved understanding of the role of growth factors in endogenous cardiac repair processes has motivated the investigation of their potential as therapeutic agents for cardiac pathology. Despite the disappointing performance of other growth factors in historical clinical trials, insulin-like growth factor 1 (IGF-1), neuregulin and platelet-derived growth factor (PDGF) have recently emerged as new candidate therapies. These growth factors elicit tissue repair through anti-apoptotic, pro-angiogenic and fibrosis-modulating mechanisms and have produced clinically significant functional improvement in preclinical studies. Early human trials suggest that IGF-1 and neuregulin are well tolerated and yield dose-dependent benefit, warranting progression to later phase studies. However, outstanding challenges such as short growth factor serum half-life and insufficient target-organ specificity currently necessitate the development of novel delivery strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Asli NS, Xaymardan M, Patrick R, Farbehi N, Cornwell J, Forte E et al (2019) PDGFRα signaling in cardiac fibroblasts modulates quiescence, metabolism and self-renewal, and promotes anatomical and functional repair. bioRxiv

  • Baliga RR, Pimental DR, Zhao YY, Simmons WW, Marchionni MA, Sawyer DB et al (1999) NRG-1-induced cardiomyocyte hypertrophy. Role of PI-3-kinase, p70(S6K), and MEK-MAPK-RSK. Am J Phys 277:H2026–H2037

    CAS  Google Scholar 

  • Bergmann O, Zdunek S, Felker A, Salehpour M, Alkass K, Bernard S et al (2015) Dynamics of cell generation and turnover in the human heart. Cell 161(7):1566–1575

    CAS  PubMed  Google Scholar 

  • Bersell K, Arab S, Haring B, Kuhn B (2009) Neuregulin1/ErbB4 signaling induces cardiomyocyte proliferation and repair of heart injury. Cell 138:257–270

    CAS  PubMed  Google Scholar 

  • Britsch S (2007) The neuregulin-I/ErbB signaling system in development and disease. Adv Anat Embryol Cell Biol 190:1–65

    PubMed  Google Scholar 

  • Buerke M, Murohara T, Skurk C, Nuss C, Tomaselli K, Lefer AM (1995) Cardioprotective effect of insulin-ike growth factor in myocardial ischemia followed by reperfusion. Proc Natl Acad Sci U S A 92:8031–8035

    CAS  PubMed  PubMed Central  Google Scholar 

  • Caplice NM, DeVoe MC, Choi J, Dahly D, Murphy T, Spitzer E et al (2018) Randomized placebo controlled trial evaluating the safety and efficacy of single low-dose intracoronary insulin-like growth factor following percutaneous coronary intervention in acute myocardial infarction (RESUS-AMI). Am Heart J 200:110–117

    CAS  PubMed  Google Scholar 

  • Chen S-L, Fang W-W, Ye F, Liu Y-H, Qian J, Shan S-J et al (2004) Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am J Cardiol 94:92–95

    PubMed  Google Scholar 

  • Chen PH, Chen XY, He XL (2013) Platelet-derived growth factors and their receptors: structural and functional perspectives. Biochimica Et Biophysica Acta-Proteins and Proteomics 1834:2176–2186

    CAS  Google Scholar 

  • Chisalita SI, Arnqvist HJ (2004) Insulin-like growth factor I receptors are more abundant than insulin receptors in human micro- and macrovascular endothelial cells. Am J Physiol Endocrinol Metab 286:E896–E901

    CAS  PubMed  Google Scholar 

  • Chisalita SI, Johansson GS, Liefvendahl E, Back K, Arnqvist HJ (2009) Human aortic smooth muscle cells are insulin resistant at the receptor level but sensitive to IGF1 and IGF2. J Mol Endocrinol 43:231–239

    CAS  PubMed  Google Scholar 

  • Chong JJH, Reinecke H, Iwata M, Torok-Storb B, Stempien-Otero A, Murry CE (2013) Progenitor cells identified by PDGFR-alpha expression in the developing and disease human heart. Stem Cells Dev 22(13):1932–1943

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark RA (1988) Overview and general considerations of wound repair. In: Clark RA, Henson PM (eds) The molecular and cellular biology of wound repair. Plenum Press, New York, pp 3–33

    Google Scholar 

  • Cohen JE, Purcell BP, MacArthur JW, Mu A, Shudo Y, Patel JB et al (2014) A bioengineered hydrogel system enables targeted and sustained intramyocardial delivery of neuregulin, activating the cardiomyocyte cell cycle and enhancing ventricular function in a murine model of ischemic cardiomyopathy. Circ Heart Fail 7:619–626

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dobaczewski M, Bujak M, Zymek P, Ren G, Entman ML, Frangogiannis NG (2006) Extracellular matrix remodeling in canine and mouse myocardial infarcts. Cell Tissue Res 324(3):475–488

    CAS  PubMed  Google Scholar 

  • Duckers HJ, Houtgraaf J, Hehrlein C, Schofer J, Waltenberger J, Gershlick A et al (2011) Final results of a phase IIa, randomised, open-label trial to evaluate the percutaneous intramyocardial transplantation of autologous skeletal myoblasts in congestive heart failure patients: the SEISMIC trial. EuroIntervention 6:805–812

    PubMed  Google Scholar 

  • D'Uva G, Aharonov A, Lauriola M, Kain D, Yahalom-Ronen Y, Carvalho S et al (2015) ERBB2 triggers mammalian heart regeneration by promoting cardiomyocyte dedifferentiation and proliferation. Nat Cell Biol 17:627–638

    CAS  PubMed  Google Scholar 

  • Edelberg JM, Lee SH, Kaur M, Tang L, Feirt NM, McCabe S et al (2002) Platelet-derived growth factor-AB limits the extent of myocardial infarction in a rat model: feasibility of restoring impaired angiogenic capacity in the aging heart. Circulation 105:608–613

    CAS  PubMed  Google Scholar 

  • Fadini GP, Albiero M, Boscaro E, Agostini C, Avogaro A (2009) Endothelial progenitor cells as resident accessory cells for post-ischemic angiogenesis. Atherosclerosis 204:20–22

    CAS  PubMed  Google Scholar 

  • Fang SJ, Wu XS, Han ZH, Zhang XX, Wang CM, Li XY et al (2010) Neuregulin-1 preconditioning protects the heart against ischemia/reperfusion injury through a PI3K/Akt-dependent mechanism. Chin Med J 123:3597–3604

    CAS  PubMed  Google Scholar 

  • Ferrini A, Stevens MM, Sattler S, Rosenthal N (2019) Toward regeneration of the heart: bioengineering strategies for immunomodulation. Front Cardiovasc Med 6:26. https://doi.org/10.3389/fcvm.2019.00026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frangogiannis NG (2012) Matricellular proteins in cardiac adaptation and disease. Physiol Rev 92:635–688

    CAS  PubMed  Google Scholar 

  • Fu X, Khalil H, Kanisicak O, Boyer JG, Vagnozzi RJ, Maliken BD et al (2018) Specialized fibroblast differentiated states underlie scar formation in the infarcted mouse heart. J Clin Invest 128:2127–2143

    PubMed  PubMed Central  Google Scholar 

  • Gao R, Zhang J, Cheng L, Wu X, Dong W, Yang X et al (2010) A phase II, randomized, double-blind, multicenter, based on standard therapy, placebo-controlled study of the efficacy and safety of recombinant human neuregulin-1 in patients with chronic heart failure. J Am Coll Cardiol 55:1907–1914

    CAS  PubMed  Google Scholar 

  • Garbayo E, Gavira JJ, de Yebenes MG, Pelacho B, Abizanda G, Lana H et al (2016) Catheter-based Intramyocardial injection of FGF1 or NRG1-loaded MPs improves cardiac function in a preclinical model of ischemia-reperfusion. Sci Rep 6:25932

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gassmann M, Casagranda F, Orioli D, Simon H, Lai C, Klein R et al (1995) Aberrant neural and cardiac development in mice lacking the ErbB4 neuregulin receptor. Nature 378(6555):390–394

    CAS  PubMed  Google Scholar 

  • Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez L, Paillard M, Thibault H, Derumeaux G, Ovize M (2008) Inhibition of GSK3beta by postconditioning is required to prevent opening of the mitochondrial permeability transition pore during reperfusion. Circulation 117:2761–2768

    CAS  PubMed  Google Scholar 

  • Heeschen C, Lehmann R, Honold J, Assmus B, Aicher A, Walter DH et al (2004) Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109:1615–1622

    PubMed  Google Scholar 

  • Henry TD, Annex BH, McKendall GR, Azrin MA, Lopez JJ, Giordano FJ et al (2003) The VIVA trial: vascular endothelial growth factor in ischemia for vascular angiogenesis. Circulation 107:1359–1365

    CAS  PubMed  Google Scholar 

  • Hsieh PC, Davis ME, Gannon J, MacGillivray C, Lee RT (2006) Controlled delivery of PDGF-BB for myocardial protection using injectable self-assembling peptide nanofibers. J Clin Invest 116:237–248

    CAS  PubMed  Google Scholar 

  • Huang Y, Harrison MR, Osorio A, Kim J, Baugh A, Duan C (2013) Igf signaling is required for cardiomyocyte proliferation during zebrafish heart development and regeneration. PLoS One 8(6):e67266

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang CL, Leblond AL, Turner EC, Kumar AH, Martin K, Whelan D et al (2015) Synthetic chemically modified mrna-based delivery of cytoprotective factor promotes early cardiomyocyte survival post-acute myocardial infarction. Mol Pharm 12:991–996

    CAS  PubMed  Google Scholar 

  • Hynes B, Kumar AH, O'Sullivan J, Klein Buneker C, Leblond AL, Weiss S et al (2013) Potent endothelial progenitor cell-conditioned media-related anti-apoptotic, cardiotrophic, and pro-angiogenic effects post-myocardial infarction are mediated by insulin-like growth factor-1. Eur Heart J 34:782–789

    CAS  PubMed  Google Scholar 

  • Ieda M, Tsuchihashi T, Ivey KN, Ross RS, Hong T-T, Shaw RM et al (2009) Cardiac fibroblasts regulate myocardial proliferation through β1 integrin signaling. Dev Cell 16(2):233–244

    CAS  PubMed  PubMed Central  Google Scholar 

  • Isgaard J, Bergh CH, Caidahl K, Lomsky M, Hjalmarson A, Bengtsson BÅ (1998) A placebo-controlled study of growth hormone in patients with congestive heart failure. Eur Heart J 19:1704–1711

    CAS  PubMed  Google Scholar 

  • Ishikawa K, Weber T, Hajjar RJ (2018) Human cardiac gene therapy. Circ Res 123(5):601–613

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jabbour A, Hayward CS, Keogh AM, Kotlyar E, McCrohon JA, England JF et al (2011) Parenteral administration of recombinant human neuregulin-1 to patients with stable chronic heart failure produces favourable acute and chronic haemodynamic responses. Eur J Heart Fail 13:83–92

    CAS  PubMed  Google Scholar 

  • Kang J, Gu Y, Li P, Johnson BL, Sucov HM, Thomas PS (2008) PDGF-A as an epicardial mitogen during heart development. Dev Dyn 237(3):692–701

    CAS  PubMed  Google Scholar 

  • Kastrup J, Jorgensen E, Ruck A, Tagil K, Glogar D, Ruzyllo W et al (2005) Direct intramyocardial plasmic vascular endothelial growth factor-A165 gene therapy in patients with stable severe angina pectoris. A randomized double-blind placebo-controlled study: the Euroinject One Trial. J Am Coll Cardiol 45:982–988

    CAS  PubMed  Google Scholar 

  • Kieserman JM, Myers VD, Dubey P, Cheung JY, Feldman AM (2019) Current landscape of heart failure gene therapy. J Am Heart Assoc 8:e012239

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koch A, Palchyk E, Gassler N, Dengler TJ, Remppis A, Pritsch M et al (2006) Expression of platelet-derived growth factor and fibroblast growth factor in cryopreserved endomyocardial biopsies early and late after heart transplant. Ann Thorac Surg 81:1372–1378

    PubMed  Google Scholar 

  • Kourembanas S, Hannan RL, Faller DV (1990) Oxygen tension regulates the expression of the platelet-derived growth factor-B chain gene in human endothelial cells. J Clin Invest 86(2):670–674

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuramochi Y, Cote GM, Guo X, Lebrasseur NK, Cui L, Liao R et al (2004) Cardiac endothelial cells regulate reactive oxygen species-induced cardiomyocyte apoptosis through neuregulin-1beta/erbB4 signaling. J Biol Chem 279:51141–51147

    CAS  PubMed  Google Scholar 

  • Laham RJ, Chronos NA, Pike M, Leimbach ME, Udelson JE, Pearlman JD (2000) Intracoronary basic fibroblast growth factor (FGF-2) in patients with severe ischemic heart disease: results of a phase I open-label dose escalation study. J Am Coll Cardiol 36(7):2132–2139

    CAS  PubMed  Google Scholar 

  • Lai NC, Tang T, Gao MH, Saito M, Miyanohara A, Hammond HK (2012) Improved function of the failing rat heart by regulated expression of insulin-like growth factor I via intramuscular gene transfer. Hum Gene Ther 23:255–261

    CAS  PubMed  Google Scholar 

  • Lenihan DJ, Anderson SA, Lenneman CG, Brittain E, Muldowney JAS 3rd, Mendes L et al (2016) A phase I, single ascending dose study of cimaglermin alfa (Neuregulin 1beta3) in patients with systolic dysfunction and heart failure. JACC Basic Transl Sci 1:576–586

    PubMed  PubMed Central  Google Scholar 

  • Li Y, He L, Huang X, Bhaloo SI, Zhao H, Zhang S et al (2018) Genetic lineage tracing of nonmyocyte population by dual recombinases. Circulation 138(8):793–805

    CAS  PubMed  Google Scholar 

  • Liao CH, Akazawa H, Tamagawa M, Ito K, Yasuda N, Kudo Y et al (2010) Cardiac mast cells cause atrial fibrillation through PDGF-A-mediated fibrosis in pressure-overloaded mouse hearts. J Clin Invest 120:242–253

    CAS  PubMed  Google Scholar 

  • Liu X, Gu X, Li Z, Li X, Li H, Chang J et al (2006) Neuregulin-1/erbB-activation improves cardiac function and survival in models of ischemic, dilated, and viral cardiomyopathy. J Am Coll Cardiol 48:1438–1447

    CAS  PubMed  Google Scholar 

  • Liu C, Zhao W, Meng W, Zhao T, Chen Y, Ahokas RA et al (2014) Platelet-derived growth factor blockade on cardiac remodeling following infarction. Mol Cell Biochem 397:295–304

    CAS  PubMed  Google Scholar 

  • Liu Q, Yang R, Huang X, Zhang H, He L, Zhang L et al (2016) Genetic lineage tracing identifies in situ kit-expressing cardiomyocytes. Cell Res 26(1):119–130

    CAS  PubMed  Google Scholar 

  • Losordo DW, Vale PR, Symes JF, Dunnington CH, Esakof DD, Maysky M et al (1998) Gene therapy for myocardial angiogenesis: initial clinical results with direct myocardial injection of phVEGF165 as sole therapy for myocardial ischemia. Circulation 98:2800–2804

    CAS  PubMed  Google Scholar 

  • Mairet-Coello G, Tury A, DiCicco-Bloom E (2009) Insulin-like growth factor-1 promotes G1/S cell cycle progression through bidirectional regulation of cyclins and cyclin-dependent kinase inhibitors via the phosphatidylinositol 3-kinase/Akt pathway in developing rat cerebral cortex. J Neurosci 29(3):775–788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mamer SB, Chen S, Weddell JC, Palasz A, Wittenkeller A, Kumar M et al (2017) Discovery of high-affinity PDGF-VEGFR interactions: redefining RTK dynamics. Sci Rep 7:16439

    PubMed  PubMed Central  Google Scholar 

  • Mathers CD, Loncar D (2006) Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med 3:e442

    PubMed  PubMed Central  Google Scholar 

  • McDevitt TC, Laflamme MA, Murry CE (2005) Proliferation of cardiomyocytes derived from human embryonic stem cells is mediated via the IGF/PI3-kinase/Akt signaling pathway. J Mol Cell Cardiol 39(6):865–873

    CAS  PubMed  PubMed Central  Google Scholar 

  • Menasché P, Alfieri O, Janssens S, McKenna W, Reichenspurner H, Trinquart L et al (2008) The myoblast autologous grafting in ischemic cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117:1189–1200

    PubMed  Google Scholar 

  • Mirotsou M, Jayawardena TM, Schmeckpeper J, Gnecchi M, Dzau VJ (2011) Paracrine mechanisms of stem cell reparative and regenerative actions in the heart. J Mol Cell Cardiol 50:280–289

    CAS  PubMed  Google Scholar 

  • Moore-Morris T, Guimaraes-Camboa N, Banerjee I, Zambon AC, Kisseleva T, Velayoudon A et al (2014) Resident fibroblast lineages mediate pressure overload-induced cardiac fibrosis. J Clin Invest 124(7):2921–2934

    CAS  PubMed  PubMed Central  Google Scholar 

  • Osterziel KJ, Strohm O, Schuler J, Friedrich M, Hanlein D, Willenbrock R (1998) Randomised, double-blind, placebo-controlled trial of human recombinant growth hormone in patients with chronic heart failure due to dilated cardiomyopathy. Lancet 351:1233–1237

    CAS  PubMed  Google Scholar 

  • O'Sullivan JF, Leblond AL, Kelly G, Kumar AH, Metharom P, Buneker CK et al (2011) Potent long-term cardioprotective effects of single low-dose insulin-like growth factor-1 treatment postmyocardial infarction. Circ Cardiovasc Interv 4:327–335

    CAS  PubMed  Google Scholar 

  • Penaud-Budloo M, Le Guiner C, Nowrouzi A, Toromanoff A, Chérel Y, Chenuaud P et al (2008) Adeno-associated virus vector genomes persist as episomal chromatin in primate muscle. J Virol 82:7875–7885

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ponten A, Folestad EB, Pietras K, Eriksson U (2005) Platelet-derived growth factor D induces cardiac fibrosis and proliferation of vascular smooth muscle cells in heart-specific transgenic mice. Circ Res 97:1036–1045

    CAS  PubMed  Google Scholar 

  • Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080

    CAS  PubMed  PubMed Central  Google Scholar 

  • Radcliff K, Tang T-B, Lim J, Zhang Z, Abedin M, Demer LL (2005) Insulin-like growth factor-I regulates proliferation and osteoblastic differentiation of calcifying vascular cells via extracellular signal-regulated protein kinase and phosphatidylinositol 3-kinase pathways. Circ Res 96(4):398–400

    CAS  PubMed  Google Scholar 

  • Rinderknecht E, Humbel RE (1978) The amino acid sequence of human insulin-like growth factor I and its structural homology with proinsulin. J Biol Chem 253(8):2769–2776

    CAS  PubMed  Google Scholar 

  • Rohrbach S, Yan X, Weinberg EO, Hasan F, Bartunek J, Marchionni MA et al (1999) Neuregulin in cardiac hypertrophy in rats with aortic stenosis. Differential expression of erbB2 and erbB4 receptors. Circulation 100:407–412

    CAS  PubMed  Google Scholar 

  • Rohrbach S, Niemann B, Silber RE, Holtz J (2005) Neuregulin receptors erbB2 and erbB4 in failing human myocardium -- depressed expression and attenuated activation. Basic Res Cardiol 100:240–249

    CAS  PubMed  Google Scholar 

  • Rossen RD, Swain JL, Michael LH, Weakley S, Giannini E, Entman ML (1985) Selective accumulation of the first component of complement and leukocytes in ischemic canine heart muscle: a possible initiator of an extra myocardial mechanism of ischemic injury. Circ Res 57:119–130

    CAS  PubMed  Google Scholar 

  • Sack FU, Vielfort TJ, Koch A, Haass M, Taylor S, Otto HF et al (2004) The role of platelet derived growth factor in endomyocardial biopsies shortly after heart transplantation in relation to postoperative course. Eur J Cardiothorac Surg 25:91–97

    PubMed  Google Scholar 

  • Serini G, Bochaton-Piallat ML, Ropraz P, Geinoz A, Borsi L, Zardi L et al (1998) The fibronectin domain ED-A is crucial for myofibroblastic phenotype induction by transforming growth factor-beta1. J Cell Biol 142(3):873–881

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Xue T, Yang Y, Jiang C, Huang S, Yang Q et al (2020) Microneedle-mediated gene delivery for the treatment of ischemic myocardial disease. Sci Adv 6(25):eaaz3621

    PubMed  PubMed Central  Google Scholar 

  • Shweiki D, Itin A, Soffer D, Keshet E (1992) Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359:843–845

    CAS  PubMed  Google Scholar 

  • Simons M, Annex BH, Laham RJ, Kleiman N, Henry T, Dauerman H et al (2002) Pharmacological treatment of coronary artery disease with reocmbinant fibroblast growth factor-2: double-blind, randomized, controlled clinical trial. Circulation 105:788–793

    CAS  PubMed  Google Scholar 

  • Smith CL, Baek ST, Sung CY, Tallquist MD (2011) Epicardial-derived cell epithelial-to-mesenchymal transition and fate specification require PDGF receptor signaling. Circ Res 108:e15–e26

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stewart DJ, Kutryk MJ, Fitchett D, Freeman M, Camack N, Su Y et al (2009) VEGF gene therapy fails to improve perfusion of ischemic myocardium in patients with advanced coronary disease: results of the NORTHERN trial. Mol Ther 17:1109–1115

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sultana N, Zhang L, Yan J, Chen J, Cai W, Razzaque S et al (2015) Resident c-kit(+) cells in the heart are not cardiac stem cells. Nat Commun 6:8701

    CAS  PubMed  PubMed Central  Google Scholar 

  • Symes JF, Losordo DW, Vale PR, Lathi KG, Esakof DD, Mayskiy M et al (1999) Gene therapy with vascular endothelial growth factor for inoperable coronary artery disease. Ann Thorac Surg 68:830–836

    CAS  PubMed  Google Scholar 

  • Tachibana A, Santoso MR, Mahmoudi M, Shukla P, Wang L, Bennett M et al (2017) Paracrine effects of the pluripotent stem cell-derived cardiac myocytes salvage the injured myocardium. Circ Res 121:e22–e36 ince

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thavapalachandran S, Grieve SM, Hume RD, Le TYL, Raguram K, Hudson JE et al (2020) Platelet-derived growth factor-AB improves scar mechanics and vascularity after myocardial infarction. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aay2140

  • Ubil E, Duan J, Pillai IC, Rosa-Garrido M, Wu Y, Bargiacchi F et al (2014) Mesenchymal-endothelial transition contributes to cardiac neovascularization. Nature 514:585–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vagnozzi RJ, Sargent MA, Lin S-CJ, Palpant NJ, Murry CE, Molkentin JD (2018) Genetic lineage tracing of Sca-1+ cells reveals endothelial but not myogenic contribution to the murine heart. Circulation 138:2931–2939

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vagnozzi RJ, Maillet M, Sargent MA, Khalil H, Johansen AKZ, Schwanekamp JA et al (2019) An acute immune response underlies the benefit of cardiac stem cell therapy. Nature 577:405–409

    PubMed  PubMed Central  Google Scholar 

  • Vakeva A, Morgan BP, Tikkanen I, Helin K, Laurila P, Meri S (1994) Time course of complement activation and inhibitor expression after ischemic injury of rat myocardium. Am J Pathol 144:1357–1368

    CAS  PubMed  PubMed Central  Google Scholar 

  • van Berlo JH, Kanisicak O, Maillet M, Vagnozzi RJ, Karch J, Lin SC et al (2014) c-kit+ cells minimally contribute cardiomyocytes to the heart. Nature 509(7500):337–341

    PubMed  PubMed Central  Google Scholar 

  • Vantler M, Karikkineth BC, Naito H, Tiburcy M, Didie M, Nose M et al (2010) PDGF-BB protects cardiomyocytes from apoptosis and improves contractile function of engineered heart tissue. J Mol Cell Cardiol 48:1316–1323

    CAS  PubMed  Google Scholar 

  • Vikhert AM, Cherpachenko NM (1974) Changes in metabolism of undamaged sections of myocardium following infarction. Circ Res 35(Suppl 3):182–191

    PubMed  Google Scholar 

  • Wang JA, Xie XJ, He H, Sun Y, Jiang J, Luo R-H et al (2006) A prospective, randomized, controlled trial of autologous mesenchymal stem cells transplantation for dilated cardiomyopathy. Zhonghua Xin Xue Guan Bing Za Zhi 34:107–110

    PubMed  Google Scholar 

  • Wang H, Yin Y, Li W, Zhao X, Yu Y, Zhu J et al (2012) Over-expression of PDGFR-beta promotes PDGF-induced proliferation, migration, and angiogenesis of EPCs through PI3K/Akt signaling pathway. PLoS One 7:e30503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yajima S, Miyagawa S, Fukushima S, Isohashi K, Watabe T, Ikeda H et al (2019) Microvascular dysfunction related to progressive left ventricular remodeling due to chronic occlusion of the left anterior descending artery in an adult porcine heart. Int Heart J 60(3):715–727

    CAS  PubMed  Google Scholar 

  • Yang Z, von Ballmoos MW, Faessler D, Voelzmann J, Ortmann J, Diehm N et al (2010) Paracrine factors secreted by endothelial progenitor cells prevent oxidative stress-induced apoptosis of mature endothelial cells. Atherosclerosis 211(1):103–109

    CAS  PubMed  Google Scholar 

  • Zhao W, Zhao T, Huang V, Chen Y, Ahokas RA, Sun Y (2011) Platelet-derived growth factor involvement in myocardial remodeling following infarction. J Mol Cell Cardiol 51:830–838

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu Z, Zuo L, Cardounel AJ, Zweier JL, He G (2007) Characterization of in vivo tissue redox status, oxygenation, and formation of reactive oxygen species in postischemic myocardium. Antioxid Redox Signal 9(4):447–455

    CAS  PubMed  Google Scholar 

  • Ziebart T, Yoon C-H, Trepels T, Wietelmann A, Braun T, Kiessling F (2008) Sustained persistence of transplanted proangiogenic cells contributes to neovascularization and cardiac function after ischemia. Circ Res 103(11):1327–1334

    CAS  PubMed  Google Scholar 

  • Zymek P, Bujak M, Chatila K, Cieslak A, Thakker G, Entman ML et al (2006) The role of platelet-derived growth factor signaling in healing myocardial infarcts. J Am Coll Cardiol 48:2315–2323

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by an NSW Health Cardiovascular Disease Clinician Scientist Grant and a National Foundation for Medical Research and Innovation Project Grant. JJHC was supported by a Future Leader Fellowship (ID 100463) from the National Heart Foundation of Australia and a Sydney Medical School Foundation Fellowship.

Author information

Authors and Affiliations

Authors

Contributions

James Chong conceived the research topic. Samuel White and James Chong designed the search strategy. Samuel White applied the search strategy to obtain relevant studies. Data analysis was performed by Samuel White and James Chong. Samuel White prepared an original draft, which was critically revised by James Chong.

Corresponding author

Correspondence to James J. H. Chong.

Ethics declarations

Conflict of interest

James Chong is an inventor on PCT 2019/050617 filed by the University of Sydney that covers ‘cardiac treatment.’

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

White, S.J., Chong, J.J.H. Growth factor therapy for cardiac repair: an overview of recent advances and future directions. Biophys Rev 12, 805–815 (2020). https://doi.org/10.1007/s12551-020-00734-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-020-00734-0

Keywords

Navigation