Skip to main content
Log in

RNA phase separation–mediated direction of molecular trafficking under conditions of molecular crowding

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Living cells are highly crowded with large and small biomolecules. The total concentration of biomolecules can reach 400 mg/ml, and 40% of the cell volume is occupied by biomolecules. Droplet formation in cells via liquid-liquid phase separation may play a role in controlling biochemical reactions in this complex molecular environment. Liquid-liquid phase separation generally involves nucleic acids and proteins as anionic and cationic components, respectively. Significant characteristics of droplets, which make them different from protein aggregation or fibril formation, are reversibility of formation and responsiveness to the molecular environment. In this review, we quantitatively describe the molecular environment inside cells and droplets that participate in controlling central dogma reactions. Finally, we discuss the importance of droplets under conditions of molecular crowding within living cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson P, Kedersha N, Ivanov P (2015) Stress granules, P-bodies and cancer. Biochim Biophys Acta 1849:861–870

    Article  CAS  PubMed  Google Scholar 

  • Alberti S (2017) The wisdom of crowds: regulating cell function through condensed states of living matter. J Cell Sci 130:2789–2796

    Article  CAS  PubMed  Google Scholar 

  • Banani SF, Lee HO, Hyman AA, Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18:285–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banani SF, Rice AM, Peeples WB, Lin Y, Jain S, Parker R, Rosen KM (2016) Compositional control of phase-separated cellular bodies. Cell 166:651–663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batty EC, Jensen K, Freemont PS (2012) PML nuclear bodies and other trim-defined subcellular compartments. Adv Exp Med Biol 770:39–58

    Article  CAS  PubMed  Google Scholar 

  • Bennett BD, Kimball EH, Gao M, Osterhout R, Van Dien SJ, Rabinowitz JD (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5:593–599

  • Bergeron-Sandoval LP, Heris HK, Hendricks AG, Ehrlicher AJ, François P, Pappu RV, Michnick SW (2017) Endocytosis caused by liquid-liquid phase separation of proteins. BioRxiv 10:145664–145688

    Google Scholar 

  • Blattner FR, Plunkett G III, Bloch CA, Perna NT, Burland V, Riley M, Collado-Vides J, Glasner JD, Rode CK, Mayhew GF, Gregor J, Davis NW, Kirkpatrick HA, Goeden MA, Rose DJ, Mau B, Shao Y (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1462

    Article  CAS  PubMed  Google Scholar 

  • Boisvert FM, Hendzel MJ, Bazett-Jones DP (2000) Promyelocytic leukemia (PML) nuclear bodies are protein structures that do not accumulate RNA. J Cell Biol 24:283–292

    Article  Google Scholar 

  • Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Jülicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–1732

    Article  CAS  PubMed  Google Scholar 

  • Brangwynne CP, Mitchison TJ, Hyman AA (2011) Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl Acad Sci U S A 108:4334–4339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buchan JR (2014) mRNP granules. Assembly, function, and connections with disease. RNA Biol 11:1019–1030

    Article  PubMed  PubMed Central  Google Scholar 

  • Burke KA, Janke AM, Rhine CL, Fawzi NL (2015) Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol Cell 60:231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cid-Samper F, Gelabert-Baldrich M, Lang B, Lorenzo-Gotor N, Ponti RD, Severijnen AWFM, Bolognesi B, Gelpi E, Hukema RK, Botta-Orfila T, Tartaglia GG (2018) An integrative study of protein-RNA condensates identifies scaffolding RNAs and reveals players in fragile X-associated tremor/ataxia syndrome. Cell Rep 25:3422–3434.e7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cioce M, Lamond AI (2005) Cajal bodies: a long history of discovery. Annu Rev Cell Dev Biol 21:105–131

    Article  CAS  PubMed  Google Scholar 

  • Condemine W, Takahashi Y, Bras ML, de Thé H (2007) A nucleolar targeting signal in PML-I addresses PML to nucleolar caps in stressed or senescent cells. J Cell Sci 120:3219–3227

    Article  CAS  PubMed  Google Scholar 

  • Dao TP, Kolaitis R-M, Kim HJ, O'Donovan K, Martyniak B, Colicino E, Hehnly H, Taylor JP, Castañeda CA (2018) Ubiquitin modulates liquid-liquid phase separation of UBQLN2 via disruption of multivalent interactions. Mol Cell 69:965–978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delarue M, Brittingham GP, Pfeffer S, Surovtsev IV, Pinglay S, Kennedy KJ, Schaffer M, Gutierrez JI, Sang D, Poterewicz G, Chung JK, Plitzko JM, Groves JT, Jacobs-Wagner C, Engel BD, Holt LJ (2018) mTORC1 Controls Phase Separation and the Biophysical Properties of the Cytoplasm by Tuning Crowding. Cell 174 (2):338–349.e20

  • Ellis RJ (2001) Macromolecular crowding: obvious but underappreciated. Trends Biochem Sci 26:597–604

    Article  CAS  PubMed  Google Scholar 

  • Eskiw CH, Dellaire G, Mymryk JS, Bazett-Jones DP (2003) Size, position and dynamic behavior of PML nuclear bodies following cell stress as a paradigm for supramolecular trafficking and assembly. J Cell Sci 116:4455–4466

    Article  CAS  PubMed  Google Scholar 

  • Elbaum-Garfinkle S, Kim Y, Szczepaniak K, Chih-Hsiung Chen C, Eckmann CR, Myong S, Brangwynne PB (2015) The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proc Natl Acad Sci U S A 112:7189–7194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feric M, Brangwynne CP (2013) A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells. Nat Cell Biol 15:1253–1259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fox AH, Lamond AI (2010) Paraspeckles. Cold Spring Harb Perspect Biol, New York

    Book  Google Scholar 

  • Fox AH, Lam YW, Leung AKL, Lyon CE, Andersen J, Mann M, Lamond AI (2002) Paraspeckles: a novel nuclear domain. Curr Biol 12:13–25

    Article  CAS  PubMed  Google Scholar 

  • Frey S, Richter RP, Gorlich D (2006) FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 314:815–817

    Article  CAS  PubMed  Google Scholar 

  • Goodsell DS (2011) Eukaryotic cell panorama. BAMBED 39:91–101

    CAS  PubMed  Google Scholar 

  • Green KM, Glineburg MR, Kearse MG, Flores BN, Linsalata AE, Fedak SJ, Goldstrohm AC, Barmada SJ, Todd PK (2017) RAN translation at C9orf72-associated repeat expansions is selectively enhanced by the integrated stress response. Nat Commun 8:2005

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Handwerger KE, Cordero JA, Gall JG (2005) Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low-density, sponge-like structure. Mol Biol Cell 16:202–211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hernandez-Verdun D (2011) Assembly and disassembly of the nucleolus during the cell cycle. Nucleus 2:189–194

    Article  PubMed  PubMed Central  Google Scholar 

  • Hofweber M, Hutten S, Bourgeois B, Spreitzer E, Niedner-Boblenz A, Schifferer M, Ruepp MD, Simons M, Niessing D, Madl T, Dormann D (2018) Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173:706–719

    Article  CAS  PubMed  Google Scholar 

  • Jain A, Vale RD (2017) RNA phase transitions in repeat expansion disorders. Nature 546:243–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain S, Parker R (2013) The discovery and analysis of P bodies. Adv Exp Med Biol 768:23–43

    Article  CAS  PubMed  Google Scholar 

  • Kato M, Han TW, Xie S, Shi K, Du X, Wu LC, Mirzaei H, Goldsmith EJ, Longgood J, Pei J, Grishin NV, Frantz DE, Schneider JW, Chen S, Li L, Sawaya MR, Eisenberg D, Tycko R, McKnight SL (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kedersha N, Cho MR, Li W, Yacono PW, Chen S, Gilks N, Golan DE, Anderson P (2000) Dynamic shuttling of Tia-1 accompanies the recruitment of mRNA to mammalian stress granules. J Cell Biol 151:1257–1268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN, Topp S, Gkazi AS, Miller J, Shaw CE, Kottlors M, Kirschner J, Pestronk A, Li Y, Ford AF, Gitler AD, Benatar M, King OD, Kimonis VE, Ross ED, Weihl CC, Shorter J, Taylor JP (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495:467–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim JH, Lee KH (1998) Effect of PEG additive on membrane formation by phase inversion. J memb sci 138:153–163

    Article  CAS  Google Scholar 

  • Koga S, Williams DS, Perriman AW, Mann S (2011) Peptide-nucleotide microdroplets as a step towards a membrane-free protocell model. Nat Chem 3:720–724

    Article  CAS  PubMed  Google Scholar 

  • Lallemand-Breitenbach V (2010) The PML nuclear bodies. Cold Spring Harb Perspect Biol, New York

    Book  Google Scholar 

  • Lamond AI, Sleeman JE (2003) Nuclear substructure and dynamics. Curr Biol 13:R825–R828

    Article  CAS  PubMed  Google Scholar 

  • Lamond AI, Spector DL (2003) Nuclear speckles: a model for nuclear organelles. Nat Rev Mol Cell Biol 4:605–612

    Article  CAS  PubMed  Google Scholar 

  • Larson A, Elnatan D, Keenen M, Trnka M, Johnston J, Burlingame A, Agard D, Redding S, Narlikar G (2017) Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547:236–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee YB, Chen HJ, Peres JN, Gomez-Deza J, Attig J, Štalekar M, Troakes C, Nishimura AL, Scotter EL, Vance C, Adachi Y, Sardone V, Miller JW, Smith BN, Gallo JM, Ule J, Hirth F, Rogelj B, Shaw CE (2013) Hexanucleotide repeats in ALS / FTD form length-dependent RNA foci, sequester RNA binding proteins, and are neurotoxic. Cell Rep 5:1178–1186

  • Li P, Banjade S, Cheng HC, Kim S, Chen B, Guo L, Llaguno M, Hollingsworth JV, King DS, Banani SF, Russo PS, Jiang QX, Nixon BT, Rosen MK (2012) Phase transitions in the assembly of multivalent signalling proteins. Nature 483:336–340

  • Lin Y, Protter DS, Rosen MK, Parker R (2015) Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Mol Cell 60:208–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Fang Y (2019) New insights of poly(ADP-ribosylation) in neurodegenerative diseases: a focus on protein phase separation and pathologic aggregation. Biochem Pharmacol 167:58–63

    Article  CAS  PubMed  Google Scholar 

  • López CG, Hernández R, López-Villaseñor I, Reyes-Vivas H, de L Segura-Valdez M, Jiménez-García LF (2005) Electron microscopy analysis of the nucleolus of Trypanosoma. Microsc Microanal 11:293–299

    Article  CAS  Google Scholar 

  • Louvet E, Junera HR, Berthuy I, Hernandez-Verdun D (2006) Compartmentation of the nucleolar processing proteins in the granular component is a CK2-driven process. Mol Biol Cell 17:2537–2546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Louvet E, Yoshida A, Kumeta M, Takeyasu K (2014) Probing the stiffness of isolated nucleoli by atomic force microscopy. Histochem Cell Biol 141:365–381

    Article  CAS  PubMed  Google Scholar 

  • Lu H, Yu D, Hansen AS, Ganguly S, Liu R, Heckert A, Darzacq X, Zhou Q (2018) Phase-separation mechanism for C-terminal hyperphosphorylation of RNA polymerase II. Nature 558:318–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milo R, Phillips R (2015) Cell biology by the numbers. Garland Science, New York

    Book  Google Scholar 

  • Minton AP (2001) The influence of macromolecular crowding and macromolecular confinement on biochemical reactions in physiological media. J Biol Chem 276:10577–10580

    Article  CAS  PubMed  Google Scholar 

  • Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moore MH, Bai B, Boisvert FM, Latonen L, Rantanen V, Simpson JC, Pepperkok R, Lamond AI, Laiho M (2011) Quantitative proteomics and dynamic imaging of the nucleolus reveal distinct responses to UV and ionizing radiation. Mol Cell Proteomics 10:10–24

    Article  CAS  Google Scholar 

  • Neidhardt FC, Ingraham JL, Schaechter M (1990) Physiology of the bacterial cell: a molecular approach, Sinauer associates

  • Nott TJ, Petsalaki E, Farber P, Jervis D, Fussner E, Plochowietz A, Craggs TD, Bazett-Jones DP, Pawson T, Forman-Kay JD, Baldwin AJ (2015) Phase transition of a disordered Nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57:936–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passon DM, Lee M, Rackham O, Stanley WA, Sadowska A, Filipovska A, Fox AH, Bond CS (2012) Structure of the heterodimer of human NONO and paraspeckle protein component 1 and analysis of its role in subnuclear body formation. Proc Natl Acad Sci U S A 109:4846–4850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, Stoynov S, Mahamid J, Saha S, Franzmann TM, Pozniakovski A, Poser I, Maghelli N, Royer LA, Weigert M, Myers EW, Grill S, Drechsel D, Alberti S (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:1066–1077

    Article  CAS  PubMed  Google Scholar 

  • Pederson T (2011) The nucleus introduced. Cold Spring Harb Perspect Biol, New York

    Book  Google Scholar 

  • Ramaswami M, Taylor JP, Parker R (2013) Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154:727–736

  • Rauscher S, Pomès R (2017) The liquid structure of elastin. Elife 6:26526–26547

    Article  Google Scholar 

  • Shav-Tal Y, Blechman J, Darzacq X, Montagna C, Dye BT, Patton JG, Singer RH, Zipori D (2005) Dynamic sorting of nuclear components into distinct nucleolar caps during transcriptional inhibition. Mol Biol Cell 16:2395–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas G, Ferrone F, Herzfeld J (2004) Life in a crowded world. EMBO Rep 5:23–27

    Article  CAS  PubMed  Google Scholar 

  • Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH (2017) Phase separation drives heterochromatin domain formation. Nature 547:241–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabatini DM (2017) Twenty-five years of mTOR: uncovering the link from nutrients to growth. Proc Natl Acad Sci U S A 114:11818–11825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuster BS, Reed EH, Parthasarathy R, Jahnke CN, Caldwell RM, Bermudez JG, Ramage H, Good MC, Hammer DA (2018) Controllable protein phase separation and modular recruitment to form responsive membraneless organelles. Nat Commun 9:2985

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin Y, Berry J, Pannucci N, Haataja MP, Toettcher JE, Brangwynne CP (2017) Spatiotemporal control of intracellular phase transitions using light-activated optoDroplets. Cell 168:159–171

    Article  CAS  PubMed  Google Scholar 

  • Su X, Ditlev JA, Hui E, Xing W, Banjade S, Okrut J, King DS, Taunton J, Rosen MK, Vale RD (2016) Phase separation of signaling molecules promotes T cell receptor signal transduction. Science 352:595–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Teixeira D, Sheth U, Sanchez MAV, Brengues M, Parker R (2005) Processing bodies require RNA for assembly and contain nontranslating mRNAs. RNA 11:371–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thirumalai D, Klimov DK, Lorimer GH (2003) Caging helps proteins fold. Proc Natl Acad Sci U S A 100:11195–11197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsang B, Arsenault J, Vernon RM, Lin H, Wang LY, Bah A, Forman-Kay D (2019) Phosphoregulated FMRP phase separation models activity-dependent translation through bidirectional control of mRNA granule formation. Proc Natl Acad Sci U S A 116:4218–4227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visa N, Puvion-Dutilleul F, Harper F, Bachellerie JP, Puvion E (1993) Intranuclear distribution of poly (A) RNA determined by electron microscope in situ hybridization. Cell Res 208:19–34

    Article  CAS  Google Scholar 

  • Vovk A, Gu C, Opferman MG, Kapinos LE, Lim RYH, Coalson RD, Jasnow D, Zilman A (2016) Simple biophysics underpins collective conformations of the intrinsically disordered proteins of the nuclear pore complex. Elife 5:10785–10814

    Article  Google Scholar 

  • Wang Y, Latypov RF, Lomakin A, Meyer JA, Kerwin BA, Vunnum S, Benedek GB (2014a) Quantitative evaluation of colloidal stability of antibody solutions using PEG-induced liquid-liquid phase separation. Mol Pharm 11:1391–1402

    Article  CAS  PubMed  Google Scholar 

  • Wang JT, Smith J, Chen BC, Schmidt H, Rasoloson D, Paix A, Lambrus BG, Calidas D, Betzig E, Seydoux G (2014b) Regulation of RNA granule dynamics by phosphorylation of serine-rich, intrinsically disordered proteins in C. elegans. Elife 3:4591–4614

    Google Scholar 

  • Voronina E, Seydoux G, Sassone-Corsi P, Nagamori I (2011) RNA granules in germ cells. Cold Spring Harb Perspect Biol, New York

    Book  Google Scholar 

  • Wippich F, Bodenmiller B, Trajkovska MG, Wanka S, Aebersold R, Pelkmans L (2013) Dual specificity kinase DYRK3 couples stress granule condensation / dissolution to mTORC1 signaling. Cell 152:791–805

    Article  CAS  PubMed  Google Scholar 

  • Woodruff JB, Gomes BF, Widlund PO, Mahamid J, Honigmann A, Hyman AA (2017) The centrosome is a selective condensate that nucleates microtubules by concentrating tubulin. Cell 169:1066–1077

    Article  CAS  PubMed  Google Scholar 

  • Yoshimura Y, Lin Y, Yagi H, Lee YH, Kitayama H, Sakurai K, So M, Ogi H, Naiki H, Goto Y (2012) Distinguishing crystal-like amyloid fibrils and glass-like amorphous aggregates from their kinetics of formation. Proc Natl Acad Sci U S A 109:14446–14451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young PJ, Day PM, Zhou J, Androphy EJ, Morris GE, Lorson CL (2002) A direct interaction between the survival motor neuron protein and p53 and its relationship to spinal muscular atrophy. J Biol Chem 277:2852–2859

    Article  CAS  PubMed  Google Scholar 

  • Zhou HX, Rivas G, Minton AP (2008) Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences. Annu Rev Biophys 37:375–397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmerman SB, Trach SO (1991) Estimation of macromolecule concentrations and excluded volume effects for the cytoplasm of Escherichia coli. J Mol Biol 222:599–620

    Article  CAS  PubMed  Google Scholar 

  • Zong X, Tripathi V, Prasanth KV (2011) RNA splicing control yet another gene regulatory role for long nuclear noncoding RNAs. RNA Biol 8:968–977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by JSPS KAKENHI (grant numbers 18K19153 and 17H06351 [Grant-in-Aid for Scientific Research on Innovative Areas “Chemistry for Multimolecular Crowding Biosystems])” and a research grant from the Asahi Glass Foundation, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Miyoshi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohata, K., Miyoshi, D. RNA phase separation–mediated direction of molecular trafficking under conditions of molecular crowding. Biophys Rev 12, 669–676 (2020). https://doi.org/10.1007/s12551-020-00696-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-020-00696-3

Keywords

Navigation