Skip to main content
Log in

Allosteric communication in molecular machines via information exchange: what can be learned from dynamical modeling

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Allosteric regulation is crucial for the operation of protein machines and molecular motors. A major challenge is to characterize and quantify the information exchange underlying allosteric communication between remote functional sites in a protein, and to identify the involved relevant pathways. We review applications of two topical approaches of dynamical protein modeling, a kinetic-based single-molecule stochastic model, which employs information thermodynamics to quantify allosteric interactions, and structure-based coarse-grained modeling to characterize intra-molecular couplings in terms of conformational motions and propagating mechanical strain. Both descriptions resolve the directionality of allosteric responses within a protein, emphasizing the concept of causality as the principal hallmark of protein allostery. We discuss the application of techniques from information thermodynamics to dynamic protein elastic networks and evolutionary designed model structures, and the ramifications for protein allostery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Atilgan AR, Durell S, Jernigan RL, Demirel MC, Keskin O, et al. (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80:505–515

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahar I, Atilgan AR, Erman B (1997) Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold Des 2:173–181

    CAS  PubMed  Google Scholar 

  • Bahar I, Chennubhotla C, Tobi D (2007) Intrinsic dynamics of enzymes in the unbound state and relation to allosteric regulation. Curr Opin Struct Biol 17:633–640

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bahar I, Lezon TR, Yang LW, Eyal E (2010) Global dynamics of proteins: bridging between structure and function. Annu Rev Biophys 39:23–42

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bakan A, Meireles LM, Bahar I (2011) Prody: protein dynamics inferred from theory and experiments. Bioinformatics 27:1575–1577

    CAS  PubMed  PubMed Central  Google Scholar 

  • Barends TR, Dunn MF, Schlichting I (2008) Tryptophan synthase, an allosteric molecular factory. Curr Opin Chem Biol 12:593–600

    CAS  PubMed  Google Scholar 

  • Blumenstein L, Domratcheva T, Niks D, Ngo H, Seidel R et al (2007) βq114n and βt110v mutations reveal a critically important role of the substrate α-carboxylate site in the reaction specificity of tryptophan synthase . Biochemistry 46:14100–14116

    CAS  PubMed  Google Scholar 

  • Bowerman S, Wereszczynski J (2016) Detecting allosteric networks using molecular dynamics simulation. Methods Enzymol 578:429–447. Elsevier

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doruker P, Atilgan AR, Bahar I (2000) Dynamics of proteins predicted by molecular dynamics simulations and analytical approaches: application to α-amylase inhibitor. Proteins 40:512–524

    CAS  PubMed  Google Scholar 

  • Dunn MF (2012) Allosteric regulation of substrate channeling and catalysis in the tryptophan synthase bienzyme complex. Arch Biochem Biophys 519:154–166

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dutta S, Eckmann JP, Libchaber A, Tlusty T (2018) Green function of correlated genes in a minimal mechanical model of protein evolution. Proc Natl Acad Sci USA 115:E4559–E4568

    CAS  PubMed  Google Scholar 

  • Düttmann M, Togashi Y, Yanagida T, Mikhailov AS (2012) Myosin-v as a mechanical sensor: an elastic network study. Biophys J 102:542–551

    PubMed  PubMed Central  Google Scholar 

  • East KW, Skeends E, Cui JY, Belato HB, Mitchell B, et al (2019) Nmr and computational methods for molecular resolution of allosteric pathways in enzyme complexes. Biophys Rev 12

    PubMed  PubMed Central  Google Scholar 

  • Flechsig H (2016) Nucleotide-induced conformational dynamics in abc transporters from structure-based coarse grained modeling. Front Phys 4:3

    Google Scholar 

  • Flechsig H (2017) Design of elastic networks with evolutionary optimized long-range communication as mechanical models of allosteric proteins. Biophys J 113:558–571

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flechsig H, Mikhailov AS (2010) Tracing entire operation cycles of molecular motor hepatitis c virus helicase in structurally resolved dynamical simulations. Proc Natl Acad Sci USA 107:20875–20880

    CAS  PubMed  Google Scholar 

  • Flechsig H, Mikhailov AS (2019) Simple mechanics of protein machines. J Roy Soc Interface 16:20190244

    Google Scholar 

  • Flechsig H, Popp D, Mikhailov AS (2011) In silico investigation of conformational motions in superfamily 2 helicase proteins. PLoS ONE 6:e21809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flechsig H, Togashi Y (2018) Designed elastic networks: models of complex protein machinery. Int J Mol Sci 19:3152

    PubMed Central  Google Scholar 

  • Gillespie DT (1977) Exact stochastic simulation of coupled chemical reactions. J Phys Chem 81:2340–2361

    CAS  Google Scholar 

  • Hacisuleyman A, Erman B (2017a) Causality, transfer entropy, and allosteric communication landscapes in proteins with harmonic interactions. Proteins 85:1056–1064

    CAS  PubMed  Google Scholar 

  • Hacisuleyman A, Erman B (2017b) Entropy transfer between residue pairs and allostery in proteins: quantifying allosteric communication in ubiquitin. PLoS Comput Biol 13:e1005319

    PubMed  PubMed Central  Google Scholar 

  • Horowitz JM, Esposito M (2014) Thermodynamics with continuous information flow. Phys Rev X 4:031015

    Google Scholar 

  • Koshland DE, Nemethy G, Filmer D (1966) Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365–385

    CAS  PubMed  Google Scholar 

  • Landauer R (1961) Irreversibility and heat generation in the computing process. IBM J Res Dev 5:183–191

    Google Scholar 

  • Lange OF, Grubmüller H (2006) Generalized correlation for biomolecular dynamics. Proteins 62:1053–1061

    CAS  PubMed  Google Scholar 

  • LeVine MV, Weinstein H (2014) Nbit-a new information theory-based analysis of allosteric mechanisms reveals residues that underlie function in the leucine transporter leut. PLoS Comput Biol 10

    PubMed  PubMed Central  Google Scholar 

  • Lisi GP, Loria JP (2017) Allostery in enzyme catalysis. Curr Opin Struct Biol 47:123–130

    CAS  PubMed  Google Scholar 

  • Lorimer GH, Horovitz A, McLeish T (2018) Allostery and molecular machines. Phil Trans R Soc B 373:20170173

    PubMed  Google Scholar 

  • Loutchko D, Eisbach M, Mikhailov AS (2017) Stochastic thermodynamics of a chemical nanomachine: the channeling enzyme tryptophan synthase. J Chem Phys 146:025101

    PubMed  Google Scholar 

  • Loutchko D, Gonze D, Mikhailov AS (2016) Single-molecule stochastic analysis of channeling enzyme tryptophan synthase. J Phys Chem B 120:2179–2186

    CAS  PubMed  Google Scholar 

  • Maragakis P, Karplus M (2005) Large amplitude conformational change in proteins explored with a plastic network model: adenylate kinase. J Mol Biol 352:807–822

    CAS  PubMed  Google Scholar 

  • Ming D, Wall ME (2005) Allostery in a coarse-grained model of protein dynamics. Phys Rev Lett 95:198103

    PubMed  Google Scholar 

  • Ming D, Wall ME (2006) Interactions in native binding sites cause a large change in protein dynamics. J Mol Biol 358:213–223

    CAS  PubMed  Google Scholar 

  • Miyashita O, Onuchic JN, Wolynes PG (2003) Nonlinear elasticity, proteinquakes, and the energy landscapes of functional transitions in proteins. Proc Natl Acad Sci USA 100:12570–12575

    CAS  PubMed  Google Scholar 

  • Monod J, Wyman J, Changeux JP (1965) On the nature of allosteric transitions: a plausible model. J Mol Biol 12:88–118

    CAS  PubMed  Google Scholar 

  • Ngo H, Harris R, Kimmich N, Casino P, Niks D, et al. (2007) Synthesis and characterization of allosteric probes of substrate channeling in the tryptophan synthase bienzyme complex. Biochemistry 46:7713–7727

    CAS  PubMed  Google Scholar 

  • Pak AJ, Voth GA (2018) Advances in coarse-grained modeling of macromolecular complexes. Curr Opin Struct Biol 52:119–126

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parrondo JM, Horowitz JM, Sagawa T (2015) Thermodynamics of information. Nat Phys 11:131–139

    CAS  Google Scholar 

  • Raboni S, Bettati S, Mozzarelli A (2005) Identification of the geometric requirements for allosteric communication between the α-and β-subunits of tryptophan synthase. J Biol Chem 280:13450–13456

    CAS  PubMed  Google Scholar 

  • Rocks JW, Pashine N, Bischofberger I, Goodrich CP, Liu AJ, et al. (2017) Designing allostery-inspired response in mechanical networks. Proc Natl Acad Sci USA 114:2520–2525

    CAS  PubMed  Google Scholar 

  • Sarkar A, Flechsig H, Mikhailov AS (2016) Towards synthetic molecular motors: a model elastic-network study. New J Phys 18:043006

    Google Scholar 

  • Seifert U (2012) Stochastic thermodynamics, fluctuation theorems and molecular machines. Rep Prog Phys 75:126001

    PubMed  Google Scholar 

  • Takada S, Kanada R, Tan C, Terakawa T, Li W, et al. (2015) Modeling structural dynamics of biomolecular complexes by coarse-grained molecular simulations. Acc Chem Res 48:3026–3035

    CAS  PubMed  Google Scholar 

  • Tama F, Sanejouand YH (2001) Conformational change of proteins arising from normal mode calculations. Prot Eng 14:1–6

    CAS  Google Scholar 

  • Thirumalai D, Hyeon C, Zhuravlev PI, Lorimer GH (2019) Symmetry, rigidity, and allosteric signaling: from monomeric proteins to molecular machines. Chem Rev 119:6788–6821

    CAS  Google Scholar 

  • Tirion MM (1996) Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys Rev Lett 77:1905

    CAS  PubMed  Google Scholar 

  • Togashi Y, Flechsig H (2018) Coarse-grained protein dynamics studies using elastic network models. Int J Mol Sci 19:3899

    PubMed Central  Google Scholar 

  • Togashi Y, Mikhailov AS (2007) Nonlinear relaxation dynamics in elastic networks and design principles of molecular machines. Proc Natl Acad Sci USA 104:8697–8702

    CAS  PubMed  Google Scholar 

  • Wodak SJ, Paci E, Dokholyan NV, Berezovsky IN, Horovitz A, et al. (2019) Allostery in its many disguises: from theory to applications. Structure 27

  • Yan L, Ravasio R, Brito C, Wyart M (2017) Architecture and coevolution of allosteric materials. Proc Natl Acad Sci USA 114:2526–2531

    CAS  PubMed  Google Scholar 

  • Yan L, Ravasio R, Brito C, Wyart M (2018) Principles for optimal cooperativity in allosteric materials. Biophys J 114:2787–2798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Doruker P, Kaynak B, Zhang S, Krieger J, et al. (2020) Intrinsic dynamics is evolutionarily optimized to enable allosteric behavior. Curr Opin Struct Biol 62:14–21

    CAS  Google Scholar 

  • Zheng W, Brooks BR (2005) Probing the local dynamics of nucleotide-binding pocket coupled to the global dynamics: myosin versus kinesin. Biophys J 89:167–178

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng W, Doniach S (2003) A comparative study of motor-protein motions by using a simple elastic-network model. Proc Natl Acad Sci USA 100:13253–13258

    CAS  PubMed  Google Scholar 

Download references

Funding

H.F. acknowledges support by the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, through the World Premier International Research Center (WPI) Inititate and by JSPS Kakenhi grant no. JP16K05518. D.L. acknowledges financial support from MEXT Kakenhi Grant No. 15H05876.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Flechsig.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author contributions

D.L. and H.F. wrote the manuscript.

Data availability

Not applicable.

Code availability

Not applicable.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loutchko, D., Flechsig, H. Allosteric communication in molecular machines via information exchange: what can be learned from dynamical modeling. Biophys Rev 12, 443–452 (2020). https://doi.org/10.1007/s12551-020-00667-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-020-00667-8

Keywords

Navigation