Skip to main content
Log in

Microfluidic technologies to engineer mesenchymal stem cell aggregates—applications and benefits

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Three-dimensional cell culture and the forming multicellular aggregates are superior over traditional monolayer approaches due to better mimicking of in vivo conditions and hence functions of a tissue. A considerable amount of attention has been devoted to devising efficient methods for the rapid formation of uniform-sized multicellular aggregates. Microfluidic technology describes a platform of techniques comprising microchannels to manipulate the small number of reagents with unique properties and capabilities suitable for biological studies. The focus of this review is to highlight recent studies of using microfluidics, especially droplet-based types for the formation, culture, and harvesting of mesenchymal stem cell aggregates and their subsequent application in stem cell biology, tissue engineering, and drug screening. Droplet-based microfluidics can be used to form microgels as carriers for delivering cells and to provide biological cues to the target tissue so as to be minimally invasive. Stem cell-laden microgels with a shape-forming property can be used as smart building blocks by injecting them into the injured tissue thereby constituting the cornerstone of tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdulghani S, Morouço PG (2019) Biofabrication for osteochondral tissue regeneration: bioink printability requirements. J Mater Sci Mater Med 30(2):20

    PubMed  Google Scholar 

  • Aijian AP, Garrell RL (2015) Digital microfluidics for automated hanging drop cell spheroid culture. J Lab Autom 20:283–295

    CAS  PubMed  Google Scholar 

  • Albritton JL, Roybal JD, Paulsen SJ, Calafat NJ, Flores-Zaher JA, Farach-Carson MC et al (2016) Ultrahigh-throughput generation and characterization of cellular aggregates in laser-ablated microwells of poly (dimethylsiloxane). RSC Adv 6:8980–8991

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alessandri K, Sarangi BR, Gurchenkov VV, Sinha B, Kießling TR, Fetler L et al (2013) Cellular capsules as a tool for multicellular spheroid production and for investigating the mechanics of tumor progression in vitro. Proc Natl Acad Sci 110:14843–14848

    CAS  PubMed  Google Scholar 

  • Alhasan L, Qi A, Al-Abboodi A, Rezk AR, Chan PPY, Iliescu C, et al. 2016. Rapid enhancement of cellular spheroid assembly by acoustically-driven microcentrifugation, ACS Biomater Sci Eng

  • Al-Hetlani E, Amin MO (2019) Continuous magnetic droplets and microfluidics: generation, manipulation, synthesis, and detection. Microchim Acta 186(2):55

    Google Scholar 

  • Allazetta S, Lutolf MP (2015) Stem cell niche engineering through droplet microfluidics. Curr Opin Biotechnol 35:86–93

    CAS  PubMed  Google Scholar 

  • Altmann B, Löchner A, Swain M, Kohal RJ, Giselbrecht S, Gottwald E et al (2014) Differences in morphogenesis of 3D cultured primary human osteoblasts under static and microfluidic growth conditions. Biomaterials 35:3208–3219

    CAS  PubMed  Google Scholar 

  • Amaral AJ, Pasparakis G (2016) Rapid formation of cell aggregates and spheroids induced by a “smart” boronic acid copolymer. ACS Appl Mater Interfaces 8(35):22930–22941

    CAS  PubMed  Google Scholar 

  • Anada T, Masuda T, Honda Y, Fukuda J, Arai F, Fukuda T et al (2010) Three-dimensional cell culture device utilizing thin membrane deformation by decompression. Sensors Actuators B Chem 147:376–379

    CAS  Google Scholar 

  • Ananthanarayanan A, Nugraha B, Triyatni M, Hart S, Sankuratri S, Yu H (2014) Scalable spheroid model of human hepatocytes for hepatitis C infection and replication. Mol Pharm 11:2106–2114

    CAS  PubMed  Google Scholar 

  • Ashammakhi N, Elkhammas E, Hasan A (2018) Translating advances in organ-on-a-chip technology for supporting organs. J Biomed Mater Res B Appl Biomater 107(6):2006–2018

    PubMed  Google Scholar 

  • Ashida T, Sakai S, Taya M (2013) Competing two enzymatic reactions realizing one-step preparation of cell-enclosing duplex microcapsules. Biotechnol Prog 29(6):1528–1534

    CAS  PubMed  Google Scholar 

  • El Assal R, Gurkan UA, Chen P, Juillard F, Tocchio A, Chinnasamy T et al (2016) 3-D microwell array system for culturing virus infected tumor cells. Scie Rep 6:39144

    Google Scholar 

  • Bartosh TJ, Ylöstalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K et al (2010) Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their anti-inflammatory properties. Proc Natl Acad Sci 107:13724–13729

    CAS  PubMed  Google Scholar 

  • Basova EY, Foret F (2015) Droplet microfluidics in (bio) chemical analysis. Analyst 140:22–38

    CAS  PubMed  Google Scholar 

  • Carvalho MP, Costa EC, Miguel SP, Correia IJ (2016) Tumor spheroid assembly on hyaluronic acid-based structures: a review. Carbohydr Polym 150:139–148

    CAS  PubMed  Google Scholar 

  • Carvalho MR, Lima D, Reis RL, Correlo VM, Oliveira JM (2015) Evaluating biomaterial-and microfluidic-based 3D tumor models. Trends Biotechnol 33:667–678

    CAS  PubMed  Google Scholar 

  • Cesarz Z, Tamama K (2015) Spheroid culture of mesenchymal stem cells. Stem Cells Int 2016:9176357

    PubMed  PubMed Central  Google Scholar 

  • Chan HF, Zhang Y, Ho YP, Chiu YL, Jung Y, Leong KW (2013) Rapid formation of multicellular spheroids in double-emulsion droplets with controllable microenvironment. Sci Rep 3

  • Charwat V, Egger D (2018) The third dimension in cell culture: from 2D to 3D culture formats, in cell culture technology. Springer, pp 75–90

  • Chen J, Elsayed MY, Wei Y, Mousa N (2017) Advances in micro-and nanotechnologies for stem cell-based translational applications. In: Advances in Stem Cell Therapy. Springer, pp 277–302

  • Chen M et al (2019a) Naked liquid marbles: a robust three-dimensional low-volume cell culturing system. ACS Appl Mater Interfaces

  • Chen MC, Gupta M, Cheung KC (2010) Alginate-based microfluidic system for tumor spheroid formation and anticancer agent screening. Biomed Microdevices 12:647–654

    CAS  PubMed  Google Scholar 

  • Chen R, Sun Z, Chen D (2019b) Droplet-based microfluidics for cell encapsulation and delivery, in microfluidics for pharmaceutical applications. Elsevier, pp 307–335

  • Ching SH, Bansal N, Bhandari B (2017) Alginate gel particles—a review of production techniques and physical properties. Crit rRev Food Sci Nutr 57(6):1133–1152

    CAS  Google Scholar 

  • Choi A, Seo K, Kim DW, Kim BC, Kim DS (2017) Recent advances in engineering microparticles and their nascent utilization in biomedical delivery and diagnostic applications. Lab Chip 17(4):591–613

    CAS  PubMed  Google Scholar 

  • Chua KN, Lim WS, Zhang P, Lu H, Wen J, Ramakrishna S et al (2005) Stable immobilization of rat hepatocyte spheroids on galactosylated nanofiber scaffold. Biomaterials 26:2537–2547

    CAS  PubMed  Google Scholar 

  • Clausell-Tormos J, Lieber D, Baret JC, El-Harrak A, Miller OJ, Frenz L et al (2008) Droplet-based microfluidic platforms for the encapsulation and screening of mammalian cells and multicellular organisms. Chem Biol 15:427–437

    CAS  PubMed  Google Scholar 

  • Cottet J et al (2019) Dielectrophoresis-assisted creation of cell aggregates under flow conditions using planar electrodes. Electrophoresis

  • Du X et al (2018) Droplet array-based 3D coculture system for high-throughput tumor angiogenesis assay. Anal Chem 90(5):3253–3261

    CAS  PubMed  Google Scholar 

  • Dudani JS, Go DE, Gossett DR, Tan AP, Di Carlo D (2014) Mediating millisecond reaction time around particles and cells. Anal Chem 86:1502–1510

    CAS  PubMed  Google Scholar 

  • Egger D et al (2018) Dynamic cultivation of mesenchymal stem cell aggregates. Bioengineering 5(2):48

    PubMed Central  Google Scholar 

  • Elkayam T, Amitay-Shaprut S, Dvir-Ginzberg M, Harel T, Cohen S (2006) Enhancing the drug metabolism activities of C3A-a human hepatocyte cell line-by tissue engineering within alginate scaffolds. Tissue Eng 12:1357–1368

    CAS  PubMed  Google Scholar 

  • Fabisiewicz A, Grzybowska E (2017) CTC clusters in cancer progression and metastasis. Med Oncol 34:12

    PubMed  Google Scholar 

  • Fu CY, Tseng SY, Yang SM, Hsu L, Liu CH, Chang HY (2014) A microfluidic chip with a U-shaped microstructure array for multicellular spheroid formation, culturing and analysis. Biofabrication 6:015009

    PubMed  Google Scholar 

  • Guiro K, Arinzeh TL (2015) Bioengineering models for breast cancer research. Breast Cancer: Basic Clin Res 9:57

    CAS  Google Scholar 

  • Hamilton GA, Westmoreland C, George E (2001) Effects of medium composition on the morphology and function of rat hepatocytes cultured as spheroids and monolayers. In Vitro Cell Dev Biol Anim 37:656–667

    CAS  PubMed  Google Scholar 

  • Heinemann S, Wiesmann HP (2013) 3-D osteoblast culture for biomaterials testing. J Dev Biol Tissue Eng 5:7–12

    Google Scholar 

  • Hendriks J, Visser CW, Henke S, Leijten J, Saris DB, Sun C et al (2015) Optimizing cell viability in droplet-based cell deposition. Sci Rep 5:11304

    CAS  PubMed  PubMed Central  Google Scholar 

  • Henke S, Leijten J, Kemna E, Neubauer M, Fery A et al (2016) Enzymatic crosslinking of polymer conjugates is superior over ionic or UV crosslinking for the on-chip production of cell-laden microgels. Macromol Biosci 16(10):1524–1532

    CAS  PubMed  Google Scholar 

  • Higuchi A, Ling QD, Chang Y, Hsu ST, Umezawa A (2013) Physical cues of biomaterials guide stem cell differentiation fate. Chem Rev 113:3297–3328

    CAS  PubMed  Google Scholar 

  • Huang G, Li M, Yang Q, Li Y, Liu H, Yang H et al (2016) Magnetically actuated droplet manipulation and its potential biomedical applications. ACS Appl Mater Interfaces

  • Hsiao AY, Ys T, Tung YC, Sud S, Taichman RS, Pienta KJ et al (2009) Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials 30:3020–3027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang H, He X (2014) Interfacial tension based on-chip extraction of microparticles confined in microfluidic stokes flows. Appl Phys Lett 105:143704

    PubMed  PubMed Central  Google Scholar 

  • Imaninezhad M et al (2018) Templated macroporous polyethylene glycol hydrogels for spheroid and aggregate cell culture. Bioconjug Chem 30(1):34–46

    Google Scholar 

  • Ito K, Sakuma S, Kimura M, Takebe T, Kaneko M, Arai F (2016) Temporal transition of mechanical characteristics of HUVEC/MSC spheroids using a microfluidic chip with force sensor probes. Micromachines 7:221

    PubMed Central  Google Scholar 

  • Jackson E, Lu H (2016) Three-dimensional models for studying development and disease: moving on from organisms to organs-on-a-chip and organoids. Integr Biol 8(6):672–683

    CAS  Google Scholar 

  • Jang M, Yang S, Kim S (2016) Microdroplet-based cell culture models and their application. BioChip J 10:310–317

    CAS  Google Scholar 

  • Jeong SY, Lee JH, Shin Y, Chung S, Kuh HJ (2016) Co-culture of tumor spheroids and fibroblasts in a collagen matrix-incorporated microfluidic chip mimics reciprocal activation in solid tumor microenvironment. PLoS One 11:e0159013

    PubMed  PubMed Central  Google Scholar 

  • Jin HJ, Cho YH, Gu JM, Kim J, Oh YS (2010) A multicellular spheroid formation and extraction chip using removable cell trapping barriers. Lab Chip 11:115–119

    PubMed  Google Scholar 

  • Kamperman T, Henke S, Van den Berg A, Shin S, Tamayol A et al (2017a) Single cell microgel based modular bioinks for uncoupled cellular micro-and macroenvironments. Adv Healthc Mater 6(3)

  • Kamperman T, Henke S, Visser C, Karperien M, Leijten J (2017b) Centering single cells in microgels via delayed crosslinking supports long-term 3D culture by preventing cell escape. Small 13(22)

  • Kamperman T, Henke S, Zoetebier B, Ruiterkamo N, Wang R et al (2017c) Nanoemulsion-induced enzymatic crosslinking of tyramine-functionalized polymer droplets. J Mater Chem B

  • Kang E, Choi YY, Jun Y, Chung BG, Lee SH (2010) Development of a multi-layer microfluidic array chip to culture and replate uniform-sized embryoid bodies without manual cell retrieval. Lab Chip 10:2651–2654

    CAS  PubMed  Google Scholar 

  • Kashaninejad N, Nikmaneshi MR, Moghadas H, Kiyoumarsi Oskouei A, Rismanian M, Barisam M et al (2016) Organ-tumor-on-a-chip for chemosensitivity assay: a critical review. Micromachines 7:130

    PubMed Central  Google Scholar 

  • Kelm JM, Djonov V, Ittner LM, Fluri D, Born W, Hoerstrup SP et al (2006) Design of custom-shaped vascularized tissues using microtissue spheroids as minimal building units. Tissue Eng 12:2151–2160

    PubMed  Google Scholar 

  • Kelm JM, Fussenegger M (2010) Scaffold-free cell delivery for use in regenerative medicine. Adv Drug Deliv Rev 62:753–764

    CAS  PubMed  Google Scholar 

  • Khanmohammadi M, Sakai S, Ashida T, Taya M (2016) Production of hyaluronic-acid-based cell-enclosing microparticles and microcapsules via enzymatic reaction using a microfluidic system. J Appl Polym Sci 133(16)

    Google Scholar 

  • Khoury M, Bransky A, Korin N, Konak LC, Enikolopov G, Tzchori I et al (2010) A microfluidic traps system supporting prolonged culture of human embryonic stem cells aggregates. Biomed Microdevices 12:1001–1008

    CAS  PubMed  Google Scholar 

  • Kim C, Lee KS, Bang JH, Kim YE, Kim MC, Oh KW et al (2011) 3-dimensional cell culture for on-chip differentiation of stem cells in embryoid body. Lab Chip 11:874–882

    CAS  PubMed  Google Scholar 

  • Kim JB, Stein R, O'Hare MJ (2004) Three-dimensional in vitro tissue culture models of breast cancer—a review. Breast Cancer Res Treat 85:281–291

    PubMed  Google Scholar 

  • Kim JB (2005) Three-dimensional tissue culture models in cancer biology. Semin Cancer Biol 5(5):365–377

    Google Scholar 

  • Kim JH, Jeon TY, Choi TM, Shim TS, Kim SH, Yang SM (2013) Droplet microfluidics for producing functional microparticles. Langmuir 30:1473–1488

    PubMed  Google Scholar 

  • Kim S, Oh J, Cha C (2016) Enhancing the biocompatibility of microfluidics-assisted fabrication of cell-laden microgels with channel geometry. Colloids Surf B: Biointerfaces 147:1–8

    CAS  PubMed  Google Scholar 

  • Kim T, Doh I, Cho YH (2012) On-chip three-dimensional tumor spheroid formation and pump-less perfusion culture using gravity-driven cell aggregation and balanced droplet dispensing. Biomicrofluidics 6:034107

    PubMed Central  Google Scholar 

  • Knight E, Przyborski S (2015) Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat 227:746–756

    PubMed  Google Scholar 

  • Knowlton S, Cho Y, Li XJ, Khademhosseini A, Tasoglu S (2016) Utilizing stem cells for three-dimensional neural tissue engineering. Biomater Sci 4:768–784

    CAS  PubMed  Google Scholar 

  • Kojima R, Yoshimoto K, Takahashi E, Ichino M, Miyoshi H, Nagasaki Y (2009) Spheroid array of fetal mouse liver cells constructed on a PEG-gel micropatterned surface: upregulation of hepatic functions by co-culture with nonparenchymal liver cells. Lab Chip 9:1991–1993

    CAS  PubMed  Google Scholar 

  • Kwak B et al (2018) Mass fabrication of uniform sized 3D tumor spheroid using high-throughput microfluidic system. J Control Release 275:201–207

    CAS  PubMed  Google Scholar 

  • Labusca L 2015. Scaffold free 3D culture of mesenchymal stem cells; implications for regenerative medicine. J. Transpl. Stem Cell Biol. 2(1):1-5

  • Landry J, Bernier D, Ouellet C, Goyette RA, Marceau N (1985) Spheroidal aggregate culture of rat liver cells: histotypic reorganization, biomatrix deposition, and maintenance of functional activities. J Cell Biol 101:914–923

    CAS  PubMed  Google Scholar 

  • Langenbach F, Naujoks C, Smeets R, Berr K, Depprich R, Kübler N et al (2013) Scaffold-free microtissues: differences from monolayer cultures and their potential in bone tissue engineering. Clin Oral Investig 17:9–17

    PubMed  Google Scholar 

  • Laschke M, Schank T, Scheuer C, Kleer S, Schuler S, Metzger W et al (2013) Three-dimensional spheroids of adipose-derived mesenchymal stem cells are potent initiators of blood vessel formation in porous polyurethane scaffolds. Acta Biomater 9:6876–6884

    CAS  PubMed  Google Scholar 

  • Lazar A, Mann HJ, Remmel RP, Shatford RA, Cerra FB, Hu WS (1995) Extended liver-specific functions of porcine hepatocyte spheroids entrapped in collagen gel. In Vitro Cell Dev Biol Anim 31:340–346

    CAS  PubMed  Google Scholar 

  • Lee D, Cha C (2018) The combined effects of co-culture and substrate mechanics on 3D tumor spheroid formation within microgels prepared via flow-focusing microfluidic fabrication. Pharmaceutics 10(4):229

    CAS  PubMed Central  Google Scholar 

  • Lee K, Kim C, Yang JY, Lee H, Ahn B, Xu L et al (2012) Gravity-oriented microfluidic device for uniform and massive cell spheroid formation. Biomicrofluidics 6:014114

    PubMed Central  Google Scholar 

  • Lee KH, Kim S-H, Ryoo JH, Wong SF, Lee S-H (2011) Diffusion-mediated in situ alginate encapsulation of cell spheroids using microscale concave well and nanoporous membrane. Lab Chip 11:1168–1173

    CAS  PubMed  Google Scholar 

  • Lienemann PS, Rossow T, Mao AS, Vallmajo-Martin Q, Ehrbar M, Mooney D (2017) Single cell-laden protease-sensitive microniches for long-term culture in 3D. Lab Chip 17(4):727–737

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin RZ, Chou LF, Chien CCM, Chang HY (2006) Dynamic analysis of hepatoma spheroid formation: roles of E-cadherin and β1-integrin. Cell Tissue Res 324:411–422

    CAS  PubMed  Google Scholar 

  • Lin RZ, Chang HY (2008) Recent advances in three-dimensional multicellular spheroid culture for biomedical research. Biotechnol J 3:1172–1184

    CAS  PubMed  Google Scholar 

  • Liu K, Deng Y, Zhang N, Li S, Ding H, Guo F et al (2012) Generation of disk-like hydrogel beads for cell encapsulation and manipulation using a droplet-based microfluidic device. Microfluid Nanofluid 13:761–767

    CAS  Google Scholar 

  • Liu W et al (2019) A microfluidic platform for multi-size 3D tumor culture, monitoring and drug resistance testing. Sens Actuators B Chem

  • Mao AS, Shin JW, Utech S, Wang H, Uzun O, Li W et al (2017) Deterministic encapsulation of single cells in thin tunable microgels for niche modelling and therapeutic delivery. Nat Mater 16(2):236

    CAS  PubMed  Google Scholar 

  • Marsano A, Conficconi C, Lemme M, Occhetta P, Gaudiello E, Votta E et al (2016) Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 16:599–610

    CAS  PubMed  Google Scholar 

  • Mazzitelli S, Capretto L, Quinci F, Piva R, Nastruzzi C (2013) Preparation of cell-encapsulation devices in confined microenvironment. Adv Drug Deliv Rev 65:1533–1555

    CAS  PubMed  Google Scholar 

  • Mei C et al (2019) Three-dimensional spherical gelatin bubble-based scaffold improves the myotube formation of H9c2 myoblasts. Biotechnol Bioeng

  • Naruse K (2018) Mechanomedicine. Biophys Rev 10(5):1257–1262

    PubMed  PubMed Central  Google Scholar 

  • Nyberg SL, Hardin J, Amiot B, Argikar UA, Remmel RP, Rinaldo P (2005) Rapid, large-scale formation of porcine hepatocyte spheroids in a novel spheroid reservoir bioartificial liver. Liver Transpl 11:901–910

    PubMed  Google Scholar 

  • Okuyama T, Yamazoe H, Mochizuki N, Khademhosseini A, Suzuki H, Fukuda J (2010) Preparation of arrays of cell spheroids and spheroid-monolayer cocultures within a microfluidic device. J Biosci Bioeng 110:572–576

    CAS  PubMed  Google Scholar 

  • Ota H, Yamamoto R, Deguchi K, Tanaka Y, Kazoe Y, Sato Y et al (2010) Three-dimensional spheroid-forming lab-on-a-chip using micro-rotational flow. Sens Actuators B Chem 147:359–365

    CAS  Google Scholar 

  • Ota H, Kodama T, Miki N (2011a) Rapid formation of size-controlled three-dimensional hetero-cell aggregates using micro-rotation flow for spheroid study. Biomicrofluidics 5:034105

    PubMed Central  Google Scholar 

  • Ota H, Kodama T, Yamato M, Okano T, and Miki N. 2011b. Micro-rotation flow chamber rapidly forming collagen gel-mediated hetero-spheroids, in Micro-NanoMechatronics and Human Science (MHS), 2011 International Symposium on, pp. 94-98

  • Ota H, Miki N (2011) Microfluidic experimental platform for producing size-controlled three-dimensional spheroids. Sensors Actuators A Phys 169:266–273

    CAS  Google Scholar 

  • Pajoumshariati SR et al (2018) Microfluidic-based cell-embedded microgels using nonfluorinated oil as a model for the gastrointestinal niche. ACS Appl Mater Interfaces 10(11):9235–9246

    CAS  PubMed  Google Scholar 

  • Patra B, Chen YH, Peng CC, Lin SC, Lee CH, Tung YC (2013) A microfluidic device for uniform-sized cell spheroids formation, culture, harvesting and flow cytometry analysis. Biomicrofluidics 7:054114

    PubMed Central  Google Scholar 

  • Patra B, Peng CC, Liao WH, Lee CH, Tung YC (2016) Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device. Sci Rep 6

  • Porto DA, Rouse TM, San-Miguel A, Lu H (2016) Microfluidic platforms for quantitative biology studies in model organisms. In: Microfluidic Methods for Molecular Biology. Springer, pp 1–18

  • Qiu X et al (2018) Microfluidic channel optimization to improve hydrodynamic dissociation of cell aggregates and tissue. Sci Rep 8(1):2774

    PubMed  PubMed Central  Google Scholar 

  • Rimann M, Laternser S, Gvozdenovic A, Muff R, Fuchs B, Kelm JM et al (2014) An in vitro osteosarcoma 3D microtissue model for drug development. J Biotechnol 189:129–135

    CAS  PubMed  Google Scholar 

  • Rossow T, Lienemann PS, Mooney D (2017) Cell microencapsulation by droplet microfluidic templating. Macromol Chem Phys 218(2)

    Google Scholar 

  • Sabhachandani P, Motwani V, Cohen N, Sarkar S, Torchilin V, Konry T (2016) Generation and functional assessment of 3D multicellular spheroids in droplet-based microfluidics platform. Lab Chip 16:497–505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sakai S, Ashida T, Ogino S, Taya M (2014) Horseradish peroxidase-mediated encapsulation of mammalian cells in hydrogel particles by dropping. J Microencapsul 31(1):100–104

    CAS  PubMed  Google Scholar 

  • Salim A, Fourar M, Pironon J, Sausse J (2008) Oil–water two-phase flow in microchannels: flow patterns and pressure drop measurements. Can J Chem Eng 86:978–988

    CAS  Google Scholar 

  • Samal P et al (2019) Grow with the flow: when morphogenesis meets microfluidics. Adv Mater:1805764

    Google Scholar 

  • Sarem M et al (2019) Cell number in mesenchymal stem cell aggregates dictates cell stiffness and chondrogenesis. Stem Cell Res Ther 10(1):10

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sart S, Agathos SN, Li Y, Ma T (2016) Regulation of mesenchymal stem cell 3D microenvironment: from macro to microfluidic bioreactors. Biotechnol J 11:43–57

    CAS  PubMed  Google Scholar 

  • Sart S, et al. 2019. Mapping structure and biological functions within mesenchymal bodies using microfluidics bioRxiv p 514158

  • Schultz KM, Furst EM (2011) High-throughput rheology in a microfluidic device. Lab Chip 11:3802–3809

    CAS  PubMed  Google Scholar 

  • Shamloo A (2014) Cell-cell interactions mediate cytoskeleton organization and collective endothelial cell chemotaxis. Cytoskeleton 71:501–512

    CAS  PubMed  Google Scholar 

  • Shao C et al (2019) Droplet microarray on patterned butterfly wing surfaces for cell spheroid culture. Langmuir

  • Shi W, Weng D, Niu W (2016) Nanoparticle drug delivery systems and three-dimensional cell cultures in cancer treatments and research. Cancer Transl Med 2:154

    Google Scholar 

  • Silva TP et al (2019) Design principles for pluripotent stem cell-derived organoid engineering. Stem Cells Int 2019:4508470

    PubMed  PubMed Central  Google Scholar 

  • Skardal A, Shupe T, Atala A (2016) Organoid-on-a-chip and body-on-a-chip systems for drug screening and disease modeling. Drug Discov Today 21(9):1399–1411

    CAS  PubMed  Google Scholar 

  • Sudeepthi A, Sen AK, Yeo L (2019) Aggregation of a dense suspension of particles in a microwell using surface acoustic wave microcentrifugation. Microfluid Nanofluid 23(5):76

    Google Scholar 

  • Sun D, Lu J, Chen Z, Yu Y, Li Y (2014) A novel three-dimensional microfluidic platform for on-chip multicellular tumor spheroid formation and culture. Microfluid Nanofluid 17:831–842

    CAS  Google Scholar 

  • Torisawa Y, Chueh B, Huh D, Ramamurthy P, Roth TM, Barald KF et al (2007) Efficient formation of uniform-sized embryoid bodies using a compartmentalized microchannel device. Lab Chip 7:770–776

    CAS  PubMed  Google Scholar 

  • Torres A et al (2018) Guiding morphogenesis in cell-instructive microgels for therapeutic angiogenesis. Biomaterials 154:34–47

    CAS  PubMed  Google Scholar 

  • Tung Y-C et al (2011) High-throughput 3D spheroid culture and drug testing using a 384 hanging drop array. Analyst 136(3):473–478

    CAS  PubMed  Google Scholar 

  • Verboet PE, Borovinskaya O, Meyer N, Günther D, Dittrich PS (2014) A new microfluidics-based droplet dispenser for ICPMS. Anal Chem 86:6012–6018

    Google Scholar 

  • Visone R, Gilardi M, Marsano A, Rasponi M, Bersini S, Moretti M (2016) Cardiac meets skeletal: what’s new in microfluidic models for muscle tissue engineering. Molecules 21:1128

    PubMed Central  Google Scholar 

  • Wagner O, Thiele J, Weinhart M, Mazutis L, Weitz DA, Huck WT et al (2016) Biocompatible fluorinated polyglycerols for droplet microfluidics as an alternative to PEG-based copolymer surfactants. Lab Chip 16:65–69

    CAS  PubMed  Google Scholar 

  • Walser R, Metzger W, Görg A, Pohlemann T, Menger M, Laschke M (2013) Generation of co-culture spheroids as vascularisation units for bone tissue engineering. Eur Cell Mater 26:222–233

    CAS  PubMed  Google Scholar 

  • Wang J, Cheng Y, Yu Y, Fu F, Chen Z, Zhao Y et al (2015a) Microfluidic generation of porous microcarriers for three-dimensional cell culture. ACS Appl Mater Interfaces 7:27035–27039

    CAS  PubMed  Google Scholar 

  • Wang J, Li Y, Wang X, Wang J, Tian H, Zhao P et al (2017) Droplet microfluidics for the production of microparticles and nanoparticles. Micromachines 8(1):22

    PubMed Central  Google Scholar 

  • Wang W, Itaka K, Ohba S, Nishiyama N, Chung UI, Yamasaki Y et al (2009) 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials 30:2705–2715

    CAS  PubMed  Google Scholar 

  • Wang Y, Wang J (2014) Mixed hydrogel bead-based tumor spheroid formation and anticancer drug testing. Analyst 139:2449–2458

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhao L, Tian C, Ma C, Wang J (2015b) Geometrically controlled preparation of various cell aggregates by droplet-based microfluidics. Anal Methods 7:10040–10051

    CAS  Google Scholar 

  • Wilson JL, Najia MA, Saeed R, McDevitt TC (2014) Alginate encapsulation parameters influence the differentiation of microencapsulated embryonic stem cell aggregates. Biotechnol Bioeng 111:618–631

    CAS  PubMed  Google Scholar 

  • Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H et al (2003) Cartilage-like gene expression in differentiated human stem cell spheroids: a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum 48:418–429

    CAS  PubMed  Google Scholar 

  • Wu J, Chen Q, Liu W, He Z, Lin JM (2016) Recent advances in microfluidic 3D cellular scaffolds for drug assays. TrAC Trends Anal Chem

  • Wu LY, Di Carlo D, Lee LP (2008) Microfluidic self-assembly of tumor spheroids for anticancer drug discovery. Biomed Microdevices 10:197–202

    CAS  PubMed  Google Scholar 

  • Yamaguchi Y, Ohno J, Sato A, Kido H, Fukushima T (2014) Mesenchymal stem cell spheroids exhibit enhanced in-vitro and in-vivo osteoregenerative potential. BMC Biotechnol 14:1

    Google Scholar 

  • Yang S, Fu C, Tseng S, Srinivasu V, Shilpa S, Chang H, et al. 2012. NUSAS: negative pressure driving HEPG2/3T3 cells mixing/gradient co-culture inside U trapper array on rapid multicellular spheroid assembling system, in Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on, pp. 1077-1080

  • Yap KK, Dingle AM, Palmer JA, Dhillon RS, Lokmic Z, Penington AJ et al (2013) Enhanced liver progenitor cell survival and differentiation in vivo by spheroid implantation in a vascularized tissue engineering chamber. Biomaterials 34:3992–4001

    CAS  PubMed  Google Scholar 

  • Yoon S, Kim JA, Lee SH, Kim M, Park TH (2013) Droplet-based microfluidic system to form and separate multicellular spheroids using magnetic nanoparticles. Lab Chip 13:1522–1528

    CAS  PubMed  Google Scholar 

  • Yu L, Chen MC, Cheung KC (2010) Droplet-based microfluidic system for multicellular tumor spheroid formation and anticancer drug testing. Lab Chip 10:2424–2432

    CAS  PubMed  Google Scholar 

  • Zhu K et al (2019) All-aqueous phase microfluidics for cell encapsulation. ACS Appl Mater Interfaces 11(5):4826–4832

    CAS  PubMed  Google Scholar 

  • Ziółkowska K, Stelmachowska A, Kwapiszewski R, Chudy M, Dybko A, Brzózka Z (2013) Long-term three-dimensional cell culture and anticancer drug activity evaluation in a microfluidic chip. Biosens Bioelectron 40:68–74

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Shamloo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salehi, S.S., Shamloo, A. & Hannani, S.K. Microfluidic technologies to engineer mesenchymal stem cell aggregates—applications and benefits. Biophys Rev 12, 123–133 (2020). https://doi.org/10.1007/s12551-020-00613-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-020-00613-8

Keywords

Navigation