Skip to main content
Log in

Insights about collective decision-making at the genetic level

  • Commentary
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

By living in a collective, individuals can share and aggregate information to base their decisions on the many rather than on the one, thereby increasing accuracy. But a collective can also be defined at the molecular level. In the following, we reason that genes, by working collectively, share fundamental features with social organisms, which ends, without invoking cognition, in wiser responses. For that, we compile into a single picture the terms redundancy, stochastic resonance, intrinsic and extrinsic noise, and cross-regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Alon U (2003) Biological networks: the tinkerer as an engineer. Science 301:1866–1867

    CAS  PubMed  Google Scholar 

  • Bahr DB, Passerini E (1998) Statistical mechanics of opinion formation and collective behavior: micro-sociology. J Math Sociol 23:1–27

    Google Scholar 

  • Balázsi G, van Oudenaarden A, Collins JJ (2011) Cellular decision making and biological noise: from microbes to mammals. Cell 144:910–925

    PubMed  PubMed Central  Google Scholar 

  • Becskei A, Kaufmann BB, van Oudenaarden A (2005) Contributions of low molecule number and chromosomal positioning to stochastic gene expression. Nat Genet 37:937–944

    CAS  PubMed  Google Scholar 

  • Bialek W, Cavagna A, Giardina I, Mora T, Silvestri E, Viale M, Walczak AM (2012) Statistical mechanics for natural flocks of birds. Proc Natl Acad Sci U S A 109:4786–4791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bussemaker HJ, Li H, Siggia ED (2001) Regulatory element detection using correlation with expression. Nat Genet 27:167–174

    CAS  PubMed  Google Scholar 

  • Çağatay T, Turcotte M, Elowitz MB, Garcia-Ojalvo J, Süel GM (2009) Architecture-dependent noise discriminates functionally analogous differentiation circuits. Cell 139:512–522

    PubMed  Google Scholar 

  • Cheong R, Rhee A, Wang CJ, Nemenman I, Levchenko A (2011) Information transduction capacity of noisy biochemical signaling networks. Science 334:354–358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Collins JJ, Chow CC, Capela AC, Imhoff TT (1996) Aperiodic stochastic resonance. Phys Rev E 54:5575

    CAS  Google Scholar 

  • Colman-Lerner A, Gordon A, Serra E, Chin T, Resnekov O, Endy D, Pesce CG, Brent R (2005) Regulated cell-to-cell variation in a cell-fate decision system. Nature 437:699–706

    CAS  PubMed  Google Scholar 

  • Conradt L, Roper TJ (2003) Group decision-making in animals. Nature 421:155–158

    CAS  PubMed  Google Scholar 

  • Couzin ID, Krause J, Franks NR, Levin SA (2005) Effective leadership and decision-making in animal groups on the move. Nature 433:513–516

    CAS  PubMed  Google Scholar 

  • D’Urso A, Brickner JH (2014) Mechanisms of epigenetic memory. Trends Genet 30:230–236

    PubMed  PubMed Central  Google Scholar 

  • de Visser JAGM, Hermisson J, Wagner GP, Meyers LA, Bagheri-Chaichian H et al (2003) Evolution and detection of genetic robustness. Evolution 57:1959–1972

    PubMed  Google Scholar 

  • Dussutour A, Beekman M, Nicolis SC, Meyer B (2009) Noise improves collective decision-making by ants in dynamic environments. Proc R Soc B 276:4353–4361

    CAS  PubMed  Google Scholar 

  • Edelman GM, Gally JA (2001) Degeneracy and complexity in biological systems. Proc Natl Acad Sci U S A 98:13763–13768

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elowitz MB, Levine AJ, Siggia ED, Swain PS (2002) Stochastic gene expression in a single cell. Science 297:1183–1186

    CAS  PubMed  Google Scholar 

  • Gould A, Morrison A, Sproat G, White RA, Krumlauf R (1997) Positive cross-regulation and enhancer sharing: two mechanisms for specifying overlapping Hox expression patterns. Genes Dev 11:900–913

    CAS  PubMed  Google Scholar 

  • Habibi I, Cheong R, Lipniacki T, Levchenko A, Emamian ES, Abdi A (2017) Computation and measurement of cell decision making errors using single cell data. PLoS Comput Biol 13:e1005436

    PubMed  PubMed Central  Google Scholar 

  • Hansen AS, O’Shea EK (2015) Limits on information transduction through amplitude and frequency regulation of transcription factor activity. eLife 4:e06559

    PubMed Central  Google Scholar 

  • Hart Y, Alon U (2013) The utility of paradoxical components in biological circuits. Mol Cell 49:213–221

    CAS  PubMed  Google Scholar 

  • Hoffmann-Jorgensen J, Pisier G (1976) The law of large numbers and the central limit theorem in Banach spaces. Ann Probab 4:587–599

    Google Scholar 

  • Hurst GDD, Werren JH (2001) The role of selfish genetic elements in eukaryotic evolution. Nat Rev Genet 2:597–606

    CAS  PubMed  Google Scholar 

  • Jacob F (1977) Evolution and tinkering. Science 196:1161–1166

    CAS  PubMed  Google Scholar 

  • Kafri R, Levy M, Pilpel Y (2006) The regulatory utilization of genetic redundancy through responsive backup circuits. Proc Natl Acad Sci U S A 103:11653–11658

    CAS  PubMed  PubMed Central  Google Scholar 

  • Karlić R, Chung HR, Lasserre J, Vlahoviček K, Vingron M (2010) Histone modification levels are predictive for gene expression. Proc Natl Acad Sci U S A 107:2926–2931

    PubMed  PubMed Central  Google Scholar 

  • Kasowski M, Grubert F, Heffelfinger C, Hariharan M, Asabere A et al (2010) Variation in transcription factor binding among humans. Science 328:232–235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klumpp S, Zhang Z, Hwa T (2009) Growth rate-dependent global effects on gene expression in bacteria. Cell 139:1366–1375

    PubMed  PubMed Central  Google Scholar 

  • Lewontin RC (1970) The units of selection. Annu Rev Ecol Syst 1:1–18

    Google Scholar 

  • Lezon TR, Banavar JR, Cieplak M, Maritan A, Federoff NV (2006) Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns. Proc Natl Acad Sci U S A 103:19033–19038

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lorenz J, Rauhut H, Schweitzer F, Helbing D (2011) How social influence can undermine the wisdom of crowd effect. Proc Natl Acad Sci U S A 108:9020–9025

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lynch M, Marinov GK (2015) The bioenergetic costs of a gene. Proc Natl Acad Sci U S A 112:15690–15695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maamar H, Raj A, Dubnau D (2007) Noise in gene expression determines cell fate in Bacillus subtilis. Science 317:526–529

    CAS  PubMed  Google Scholar 

  • Madirolas G, de Polavieja GG (2015) Improving collective estimations using resistance to social influence. PLoS Comput Biol 11:e1004594

    PubMed  PubMed Central  Google Scholar 

  • Moore EF, Shannon CE (1956a) Reliable circuits using less reliable relays I. J Franklin I 262:191–208

    Google Scholar 

  • Moore EF, Shannon CE (1956b) Reliable circuits using less reliable relays II. J Franklin I 262:281–297

    Google Scholar 

  • Oeckinghaus A, Hayden MS, Ghosh S (2011) Crosstalk in NF-kB signaling pathways. Nat Immunol 12:695–708

    CAS  PubMed  Google Scholar 

  • Padmanabhan K, Urban NN (2010) Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content. Nat Neurosci 13:1276–1282

    CAS  PubMed  PubMed Central  Google Scholar 

  • Post E, Peterson RO, Stenseth NC, McLaren BE (1999) Ecosystem consequences of wolf behavioural response to climate. Nature 401:905–907

    CAS  Google Scholar 

  • Prentice JS, Marre O, Ioffe ML, Loback AR, Tkačik G, Berry MJ II (2016) Error-robust modes of the retinal population code. PLoS Comput Biol 12:e1005148

    PubMed  PubMed Central  Google Scholar 

  • Qian W, Liao BY, Chang AY, Zhang J (2010) Maintenance of duplicate genes and their functional redundancy by reduced expression. Trends Genet 26:425–430

    CAS  PubMed  PubMed Central  Google Scholar 

  • Queller DC, Strassmann JE (2009) Beyond society: the evolution of organismality. Philos Trans R Soc B 364:3143–3155

    Google Scholar 

  • Reid CR, Garnier S, Beekman M, Latty T (2015) Information integration and multiattribute decision making in non-neuronal organisms. Anim Behav 100:44–50

    Google Scholar 

  • Rhee A, Cheong R, Levchenko A (2014) Noise decomposition of intracellular biochemical signaling networks using nonequivalent reporters. Proc Natl Acad Sci U S A 111:17330–17335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rodrigo G, Fares MA (2018) Intrinsic adaptive value and early fate of gene duplication revealed by a bottom-up approach. eLife 7:e29739

    PubMed  PubMed Central  Google Scholar 

  • Rodrigo G, Poyatos JF (2016) Genetic redundancies enhance information transfer in noisy regulatory circuits. PLoS Comput Biol 12:e1005156

    PubMed  PubMed Central  Google Scholar 

  • Samoilov MS, Price G, Arkin AP (2006) From fluctuations to phenotypes: the physiology of noise. Sci STKE 2006:re17

    PubMed  Google Scholar 

  • Scott TW, West SA (2019) Adaptation is maintained by the parliament of genes. Nat Commun 10:5163

    PubMed  PubMed Central  Google Scholar 

  • Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423

    Google Scholar 

  • Shapiro JA (1998) Thinking about bacterial populations as multicellular organisms. Annu Rev Microbiol 52:81–104

    CAS  PubMed  Google Scholar 

  • Stocks NG (2000) Suprathreshold stochastic resonance in multilevel threshold systems. Phys Rev Lett 84:2310

    CAS  PubMed  Google Scholar 

  • Stocks NG, Mannella R (2001) Generic noise-enhanced coding in neuronal arrays. Phys Rev E 64:030902

    CAS  Google Scholar 

  • Strandburg-Peshkin A, Farine DR, Couzin ID, Crofoot MC (2015) Shared decision-making drives collective movement in wild baboons. Science 348:1358–1361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sumpter DJ, Krause J, James R, Couzin ID, Ward AJ (2008) Consensus decision making by fish. Curr Biol 18:1773–1777

    CAS  PubMed  Google Scholar 

  • Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F (2011) Mammalian genes are transcribed with widely different bursting kinetics. Science 332:472–474

    CAS  PubMed  Google Scholar 

  • Swain PS, Elowitz MB, Siggia ED (2002) Intrinsic and extrinsic contributions to stochasticity in gene expression. Proc Natl Acad Sci U S A 99:12795–12800

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tao Y (2004) Intrinsic and external noise in an auto-regulatory genetic network. J Theor Biol 229:147–156

    CAS  PubMed  Google Scholar 

  • Tay S, Hughey JJ, Lee TK, Lipniacki T, Quake SR, Covert MW (2010) Single-cell NF-kB dynamics reveal digital activation and analogue information processing. Nature 466:267–271

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tkačik G, Marre O, Amodei D, Schneidman E, Bialek W, Berry MJ II (2014) Searching for collective behavior in a large network of sensory neurons. PLoS Comput Biol 10:e1003408

    PubMed  PubMed Central  Google Scholar 

  • Tsimring LS (2014) Noise in biology. Rep Prog Phys 77:–026601

    PubMed  Google Scholar 

  • Turner D (1978) An intuitive approach to receiver operating characteristic curve analysis. J Nucl Med 19:213–220

    CAS  PubMed  Google Scholar 

  • Volfson D, Marciniak J, Blake WJ, Ostroff N, Tsimring LS, Hasty J (2006) Origins of extrinsic variability in eukaryotic gene expression. Nature 439:861–864

    CAS  PubMed  Google Scholar 

  • West SA, Fisher RM, Gardner A, Kiers ET (2015) Major evolutionary transitions in individuality. Proc Natl Acad Sci U S A 112:10112–10119

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang S, Kim S, Lim YR, Kim C, An HJ, Kim JH, Sung J, Lee NK (2014) Contribution of RNA polymerase concentration variation to protein expression noise. Nat Commun 5:4761

    CAS  PubMed  Google Scholar 

  • Yu RY, Pesce CG, Colman-Lerner A, Lok L, Pincus D, Serra E, Holl M, Benjamin K, Gordon A, Brent R (2008) Negative feedback that improves information transmission in yeast signalling. Nature 456:755–761

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng W, Zhao H, Mancera E, Steinmetz LM, Snyder M (2010) Genetic analysis of variation in transcription factor binding in yeast. Nature 464:1187–1191

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.R. wishes to express deep gratitude to Drs. M.C. Baquero and L.M. Floria (Hospital La Fe, Valencia) for their kind attention.

Funding

This work was supported by grants BFU2015-66894-P (MINECO/FEDER) and GV/2016/079 (GVA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillermo Rodrigo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigo, G. Insights about collective decision-making at the genetic level. Biophys Rev 12, 19–24 (2020). https://doi.org/10.1007/s12551-019-00608-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-019-00608-0

Keywords

Navigation