Some thoughts on the future of cell mechanics

This is a preview of subscription content, access via your institution.

References

  1. Adamo A, Sharei A, Adamo L, Lee B, Mao S, Jensen KF (2012) Microfluidics-based assessment of cell deformability. Anal Chem 84(15). American Chemical Society):6438–6443. https://doi.org/10.1021/ac300264v

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Ahmmed SM, Bithi SS, Pore AA, Mubtasim N, Schuster C, Gollahon LS, Vanapalli SA (2018) Multi-sample deformability cytometry of cancer cells. APL Bioeng 2(3):032002–032015. https://doi.org/10.1063/1.5020992

    Article  PubMed  PubMed Central  Google Scholar 

  3. Armistead FJ, Gala De Pablo J, Gadêlha H, Peyman SA, Evans SD (2019) Cells under stress: an inertial-shear microfluidic determination of cell behavior. Biophys J 116(6). Biophysical Society:):1127–1135. https://doi.org/10.1016/j.bpj.2019.01.034

    CAS  Article  PubMed  Google Scholar 

  4. Beech JP, Holm SH, Adolfsson K, Tegenfeldt JO (2012) Sorting cells by size, shape and deformability. Lab Chip 12(6):1048–1051. https://doi.org/10.1039/c2lc21083e

    CAS  Article  PubMed  Google Scholar 

  5. Byun S, Son S, Amodei D, Cermak N, Shaw J, Kang JH, Hecht VC et al (2013) Characterizing deformability and surface friction of cancer cells. Pnas 110(19):7580–7585. https://doi.org/10.1073/pnas.1218806110

    Article  PubMed  Google Scholar 

  6. Ciucci S, Ge Y, Durán C, Palladini A, Jiménez-Jiménez V, Martínez-Sánchez LM, Wang Y, et al. 2017. “Enlightening discriminative network functional modules behind principal component analysis separation in differential-omic science studies.” Scientific Reports 7 (March). Nature Publishing Group: 43946. doi:https://doi.org/10.1038/srep43946.

  7. Darling EM, Di Carlo D (2015) High-throughput assessment of cellular mechanical properties. Annu Rev Biomed Eng 17(1). Annual Reviews):35–62. https://doi.org/10.1146/annurev-bioeng-071114-040545

    CAS  Article  PubMed  Google Scholar 

  8. Di Carlo D (2012) A mechanical biomarker of cell state in medicine. Jala 17(1). SAGE Publications):32–42. https://doi.org/10.1177/2211068211431630.

    Article  PubMed  Google Scholar 

  9. Girardo S, Nicole Träber K, Wagner G, Cojoc C, Herold R, Goswami RS et al (2018) Standardized microgel beads as elastic cell mechanical probes. J Mater Chem B 456. The Royal Society of Chemistry:3. https://doi.org/10.1039/C8TB01421C

    Article  Google Scholar 

  10. Gossett DR, Tse HTK, Lee SA, Ying Y, Lindgren AG, Yang OO, Rao J, Clark AT, Di Carlo D (2012) Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc Natl Acad Sci U S A 109(20):7630–7635. https://doi.org/10.1073/pnas.1200107109

    Article  PubMed  PubMed Central  Google Scholar 

  11. Guck J, Chilvers ER (2013) Mechanics meets medicine. Sci Transl Med 5(212):212fs41. https://doi.org/10.1126/scitranslmed.3007731

    CAS  Article  PubMed  Google Scholar 

  12. Guillou L, Dahl JB, Lin JG, Barakat AI, Husson J, Muller SJ, Kumar S (2016) Measuring cell viscoelastic properties using a microfluidic extensional flow device. Biophys J 111(9). Cell Press):2039–2050. https://doi.org/10.1016/j.bpj.2016.09.034

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Lange JR, Steinwachs J, Kolb T, Lautscham LA, Harder I, Whyte G, Fabry B (2015) Microconstriction arrays for high-throughput quantitative measurements of cell mechanical properties. Biophys J 109(1). Elsevier):26–34. https://doi.org/10.1016/j.bpj.2015.05.029

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Myers DR, Qiu Y, Fay ME, Tennenbaum M, Chester D, Cuadrado J, Sakurai Y et al (2016) Single-platelet nanomechanics measured by high-throughput cytometry. Nat Mater 16(2). Nature Research):230–235. https://doi.org/10.1038/nmat4772

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. Nyberg KD, Hu KH, Kleinman SH, Khismatullin DB, Butte MJ, Rowat AC (2017) Quantitative deformability cytometry: rapid, calibrated measurements of cell mechanical properties. Biophys J 113(7):1574–1584. https://doi.org/10.1016/j.bpj.2017.06.073

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  16. Otto O, Rosendahl P, Mietke A, Golfier S, Herold C, Klaue D, Girardo S et al (2015) Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat Methods 12(3):199–202. https://doi.org/10.1038/nmeth.3281

    CAS  Article  PubMed  Google Scholar 

  17. Pelling AE, Horton MA (2008) An historical perspective on cell mechanics. Arch Eur J Physiol 456(1):3–12. https://doi.org/10.1007/s00424-007-0405-1

    CAS  Article  Google Scholar 

  18. Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R, Oertle P, Hyotyla JT et al (2012) The nanomechanical signature of breast cancer.” Nature Nanotechnology. Nat Publ Group 7(11):757–765. https://doi.org/10.1038/nnano.2012.167

    CAS  Article  Google Scholar 

  19. Rosendahl P, Plak K, Jacobi A, Kraeter M, Toepfner N, Otto O, Herold C et al (2018) Real-time fluorescence and deformability cytometry.” Nature Methods. Nat Publ Group 15(5):355–358. https://doi.org/10.1038/nmeth.4639

    CAS  Article  Google Scholar 

  20. Scarcelli G, Polacheck WJ, Nia HT, Patel K, Grodzinsky AJ, Kamm RD, Yun SH (2015) Noncontact three-dimensional mapping of intracellular hydromechanical properties by Brillouin microscopy. Nat Methods 12(12):1132–1134. https://doi.org/10.1038/nmeth.3616

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Straight AF, Cheung A, Limouze J, Chen I, Westwood NJ, Sellers JR, Mitchison TJ (2003) Dissecting temporal and spatial control of cytokinesis with a myosin II inhibitor. Science (New York, NY) 299(5613). American Association for the Advancement of Science):1743–1747. https://doi.org/10.1126/science.1081412

    CAS  Article  Google Scholar 

  22. Surcel A, Schiffhauer ES, Thomas DG, Zhu Q, DiNapoli KT, Herbig M, Otto O et al (2019) Targeting mechanoresponsive proteins in pancreatic cancer: 4-hydroxyacetophenone blocks dissemination and invasion by activating MYH14. Cancer Research, January American Association for Cancer Research, canres.3131.2018. https://doi.org/10.1158/0008-5472.CAN-18-3131

    Article  PubMed  Google Scholar 

  23. Toepfner N, Herold C, Otto O, Rosendahl P, Jacobi A, Kräter M, Stachele J et al (2018) Detection of human disease conditions by single-cell morpho-rheological phenotyping of blood. eLife 7(January). eLife sciences publications limited):e29213. https://doi.org/10.7554/eLife.29213

    Article  PubMed  PubMed Central  Google Scholar 

  24. Toyoda Y, Cattin CJ, Stewart MP, Poser I, Theis M, Kurzchalia TV, Buchholz F, Hyman AA, and Muller DJ. 2017. “Genome-scale single-cell mechanical phenotyping reveals disease-related genes involved in mitotic rounding.” Nature Communications, October Springer US, 1–10. doi:https://doi.org/10.1038/s41467-017-01147-6.

  25. Tse HTK, Gossett DR, Moon YS, Masaeli M, Sohsman M, Ying Y, Mislick K, Adams RP, Rao J, Di Carlo D (2013) Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping. Sci Transl Med 5(212):212ra163. https://doi.org/10.1126/scitranslmed.3006559

    CAS  Article  PubMed  Google Scholar 

  26. Wu P-H, Aroush DR-B, Asnacios A, Chen W-C, Dokukin ME, Doss BL, Durand-Smet P et al (2018) A comparison of methods to assess cell mechanical properties. Nat Methods 15(7):491–498. https://doi.org/10.1038/s41592-018-0015-1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I want to thank M. Kräter, D. Soteriou, and M. Kubankova for the critical reading of the manuscript and B. Baum, C. Cannistraci, D. Di Carlo, E. Chilvers, E. Darling, D. Discher, B. Fabry, J. Goetz, P. Janmey, W. Lam, S. Manalis, D. Robinson, A. Rowat, U. Schwarz, A. Surcel, T. Sulcheck, K. Tanner, and V. Zaburdaev and all members of my group for important recent discussions. I also want to acknowledge the important work by many others in the cell mechanics community whose work I have failed to mention explicitly in this text.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jochen Guck.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guck, J. Some thoughts on the future of cell mechanics. Biophys Rev 11, 667–670 (2019). https://doi.org/10.1007/s12551-019-00597-0

Download citation