Skip to main content
Log in

The influence of geometry and other fundamental challenges for bio-sensing with field effect transistors

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

We present a review of field effect transistors (FET) from the point of view of their applications to label-free sensing in the era of genomics and proteomics. Here, rather than a collection of Bio-FET achievements, we propose an analysis of the different issues hampering the use of these devices into clinical applications. We make a particular emphasis on the influence of the sensor geometry in the phenomena of mass transport of analytes, which is a topic that has been traditionally overlooked in the analysis and design of biosensors, but that plays a central role in the achievement of low limits of detection. Other issues like the screening of charges by the ions in liquids with physiological ionic strength and the non-specific binding are also reviewed. In conclusion, we give an overview of different solutions that have been proposed to address all these challenges, demonstrating the potential of field effect transistors owing to their ease of integration with other semiconductor components for developing cost-effective, highly multiplexed sensors for next-generation medicines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abouzar MH, Poghossian A, Pedraza AM, Gandhi D, Ingebrandt S, Moritz W, Schöning MJ (2011) An array of field-effect nanoplate SOI capacitors for (bio-)chemical sensing. Biosens Bioelectron 26:3023–3028

    CAS  PubMed  Google Scholar 

  • Abouzar MH, Poghossian A, Cherstvy AG, Pedraza AM, Ingebrandt S, Schöning MJ (2012) Label-free electrical detection of DNA by means of field-effect nanoplate capacitors: experiments and modeling. Phys Status Solidi A 209:925–934

    CAS  Google Scholar 

  • Accastelli E, Scarbolo P, Ernst T, Palestri P, Selmi L, Guiducci C (2016) Multi-wire tri-gate silicon nanowires reaching milli-pH unit resolution in one micron square footprint. Biosensors 6:9

    PubMed Central  Google Scholar 

  • Adam T, Hashim U (2015) Highly sensitive silicon nanowire biosensor with novel liquid gate control for detection of specific single-stranded DNA molecules. Biosens Bioelectron 67:656–661

    CAS  PubMed  Google Scholar 

  • Allen BL, Kichambare PD, Star A (2007) Carbon nanotube field-effect-transistor-based biosensors. Adv Mater 19:1439–1451

    CAS  Google Scholar 

  • Balasubramanian K (2010) Challenges in the use of 1D nanostructures for on-chip biosensing and diagnostics: a review. Biosens Bioelectron 26:1195–1204

    CAS  PubMed  Google Scholar 

  • Bedner K et al (2014) Investigation of the dominant 1/f noise source in silicon nanowire sensors. Sensors Actuators B Chem 191:270–275

    CAS  Google Scholar 

  • Bergveld P (1970) Development of an ion-sensitive solid-state device for neurophysiological measurements. IEEE Trans Biomed Eng 17:70–71

    CAS  PubMed  Google Scholar 

  • Bergveld P (2003) Thirty years of ISFETOLOGY: what happened in the past 30 years and what may happen in the next 30 years. Sensors Actuators B Chem 88:1–20

    CAS  Google Scholar 

  • Braeken D, Reekmans G, Zhou C, Van Meerbergen B, Callewaert G, Borghs G, Bartic C (2008) Electronic DNA hybridisation detection in low-ionic strength solutions. J Exp Nanosci 3:157–169

    CAS  Google Scholar 

  • Cai B, Wang S, Huang L, Ning Y, Zhang Z, Zhang G-J (2014) Ultrasensitive label-free detection of PNA–DNA hybridization by reduced graphene oxide field-effect transistor biosensor. ACS Nano 8:2632–2638

    CAS  PubMed  Google Scholar 

  • Caras S, Janata J (1980) Field effect transistor sensitive to penicillin. Anal Chem 52:1935–1937

    CAS  Google Scholar 

  • Chandramouli K, Qian P-Y (2009) Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genomic Proteomic 2009:239204

    Google Scholar 

  • Chang H-K, Ishikawa FN, Zhang R, Datar R, Cote RJ, Thompson ME, Zhou C (2011) Rapid, label-free, electrical whole blood bioassay based on nanobiosensor systems. ACS Nano 5:9883–9891

    CAS  PubMed  Google Scholar 

  • Chu C-H et al (2017) Beyond the Debye length in high ionic strength solution: direct protein detection with field-effect transistors (FETs) in human serum. Sci Rep 7:5256

    PubMed  PubMed Central  Google Scholar 

  • Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292

    CAS  PubMed  Google Scholar 

  • Deen MJ, Shinwari MW, Ranuárez JC, Landheer D (2006) Noise considerations in field-effect biosensors. J Appl Phys 100:074703

    Google Scholar 

  • Dorvel BR, Reddy B, Go J, Duarte Guevara C, Salm E, Alam MA, Bashir R (2012) Silicon nanowires with high-k hafnium oxide dielectrics for sensitive detection of small nucleic acid oligomers. ACS Nano 6:6150–6164

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan X, Li Y, Rajan NK, Routenberg DA, Modis Y, Reed MA (2012) Quantification of the affinities and kinetics of protein interactions using silicon nanowire biosensors. Nat Nanotechnol 7:401

    CAS  PubMed  PubMed Central  Google Scholar 

  • Elnathan R et al (2012) Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. Nano Lett 12:5245–5254

    CAS  PubMed  Google Scholar 

  • Freeman R, Elbaz J, Gill R, Zayats M, Willner I (2007) Analysis of dopamine and tyrosinase activity on ion-sensitive field-effect transistor (ISFET) devices. Chem Eur J 13:7288–7293

    CAS  PubMed  Google Scholar 

  • Gao A et al (2011) Silicon-nanowire-based CMOS-compatible field-effect transistor nanosensors for ultrasensitive electrical detection of nucleic acids. Nano Lett 11:3974–3978

    CAS  PubMed  Google Scholar 

  • Gao A et al (2012) Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. Nano Lett 12:5262–5268

    CAS  PubMed  Google Scholar 

  • Gao A, Lu N, Wang Y, Li T (2016) Robust ultrasensitive tunneling-FET biosensor for point-of-care diagnostics. Sci Rep 6:22554

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hahm J-I, Lieber CM (2004) Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors. Nano Lett 4:51–54

    CAS  Google Scholar 

  • Janissen R et al (2017) InP nanowire biosensor with tailored biofunctionalization: ultrasensitive and highly selective disease biomarker detection. Nano Lett 17:5938–5949

    CAS  PubMed  Google Scholar 

  • Kim KS, Lee H-S, Yang J-A, Jo M-H, Hahn SK (2009) The fabrication, characterization and application of aptamer-functionalized Si-nanowire FET biosensors. Nanotechnology 20:235501

    PubMed  Google Scholar 

  • Kulkarni GS, Zhong Z (2012) Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor. Nano Lett 12:719–723

    CAS  PubMed  Google Scholar 

  • Laborde C, Pittino F, Verhoeven HA, Lemay SG, Selmi L, Jongsma MA, Widdershoven FP (2015) Real-time imaging of microparticles and living cells with CMOS nanocapacitor arrays. Nat Nanotechnol 10:791–795

    CAS  PubMed  Google Scholar 

  • Ladd J, Taylor AD, Piliarik M, Homola J, Jiang S (2009) Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging. Anal Bioanal Chem 393:1157–1163

    CAS  PubMed  Google Scholar 

  • Lee M, Lucero AT, Kim J (2012) One-dimensional nanomaterials for field effect transistor (FET) type biosensor applications. Trans Electr Electron Mater 13:165–170

    Google Scholar 

  • Li Z, Chen Y, Li X, Kamins TI, Nauka K, Williams RS (2004) Sequence-specific label-free DNA sensors based on silicon nanowires. Nano Lett 4:245–247

    Google Scholar 

  • Li BR, Hsieh YJ, Chen YX, Chung YT, Pan CY, Chen YT (2013) An ultrasensitive nanowire-transistor biosensor for detecting dopamine release from living pc12 cells under hypoxic stimulation. J Am Chem Soc 135:16034–16037

    CAS  PubMed  Google Scholar 

  • Lin C-H, Hung C-H, Hsiao C-Y, Lin H-C, Ko F-H, Yang Y-S (2009) Poly-silicon nanowire field-effect transistor for ultrasensitive and label-free detection of pathogenic avian influenza DNA. Biosens Bioelectron 24:3019–3024

    CAS  PubMed  Google Scholar 

  • Lockhart DJ, Winzeler EA (2000) Genomics, gene expression and DNA arrays. Nature 405:827–836

    CAS  PubMed  Google Scholar 

  • Lu N, Dai P, Gao A, Valiaho J, Kallio P, Wang Y, Li T (2014) Label-free and rapid electrical detection of hTSH with CMOS-compatible silicon nanowire transistor arrays. ACS Appl Mater Interfaces 6:20378–20384

    CAS  PubMed  Google Scholar 

  • Luo X, Lee I, Huang J, Yun M, Cui XT (2011) Ultrasensitive protein detection using an aptamer-functionalized single polyaniline nanowire. Chem Commun 47:6368–6370

    CAS  Google Scholar 

  • Mahdavi M, Samaeian A, Hajmirzaheydarali M, Shahmohammadi M, Mohajerzadeh S, Malboobi MA (2014) Label-free detection of DNA hybridization using a porous poly-Si ion-sensitive field effect transistor. RSC Adv 4:36854–36863

    CAS  Google Scholar 

  • Matsumoto A, Miyahara Y (2013) Current and emerging challenges of field effect transistor based bio-sensing. Nanoscale 5:10702–10718

    CAS  PubMed  Google Scholar 

  • Mehrotra P (2016) Biosensors and their applications – a review. J Oral Biol Craniofac Res 6:153–159

    PubMed  PubMed Central  Google Scholar 

  • Nair PR, Alam MA (2006) Performance limits of nanobiosensors. Appl Phys Lett 88:233120

    Google Scholar 

  • Nair PR, Alam MA (2007) Dimensionally frustrated diffusion towards fractal adsorbers. Phys Rev Lett 99:256101

    PubMed  Google Scholar 

  • Park K-Y, Choi S-B, Lee M, Sohn B-K, Choi S-Y (2002) ISFET glucose sensor system with fast recovery characteristics by employing electrolysis. Sensors Actuators B Chem 83:90–97

    CAS  Google Scholar 

  • Poghossian A, Schöning MJ, Schroth P, Simonis A, Lüth H (2001) An ISFET-based penicillin sensor with high sensitivity, low detection limit and long lifetime. Sensors Actuators B Chem 76:519–526

    CAS  Google Scholar 

  • Proteomics market outlook (2019) https://www.alliedmarketresearch.com/proteomics-market

  • Rajan NK, Routenberg DA, Chen J, Reed MA (2010) 1/f noise of silicon nanowire BioFETs. IEEE Electron Device Lett 31:615–617

    CAS  Google Scholar 

  • Rajan NK, Brower K, Duan X, Reed MA (2014) Limit of detection of field effect transistor biosensors: effects of surface modification and size dependence. Appl Phys Lett 104:084106

    Google Scholar 

  • Rani D, Pachauri V, Madaboosi N, Jolly P, Vu X-T, Estrela P, Chu V, Conde JP, Ingebrandt S (2018) Top-down fabricated silicon nanowire arrays for field-effect detection of prostate-specific antigen. ACS Omega 3:8471–8482

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rollo S, Rani D, Leturcq R, Olthuis W, Pascual García C (2019) High aspect ratio fin-ion sensitive field effect transistor: compromises toward better electrochemical biosensing. Nano Lett 19:2879–2887

    CAS  PubMed  Google Scholar 

  • Rollo S, Rani D, Olthuis W, Pascual García C (n.d.) High performance fin-FET electrochemical sensors with high-K dielectric materials. Recently submitted to Sensors and Actuators, archiv 1907.11022

  • Rothberg JM et al (2011) An integrated semiconductor device enabling non-optical genome sequencing. Nature 475:348

    CAS  PubMed  Google Scholar 

  • Sakata T, Kamahori M, Miyahara Y (2005) DNA analysis chip based on field-effect transistors. Jpn J Appl Phys 44:2854–2859

    CAS  Google Scholar 

  • Sarkar D, Liu W, Xie X, Anselmo AC, Mitragotri S, Banerjee K (2014) MoS2 field-effect transistor for next-generation label-free biosensors. ACS Nano 8:3992–4003

    CAS  PubMed  Google Scholar 

  • Schenck JF (1980) Inventor field effect transistor for detection of biological reactions. US Pat no 4,238,757

  • Shin J-K, Kim D-S, Park H-J, Lim G (2004) Detection of DNA and protein molecules using an FET-type biosensor with gold as a gate metal. Electroanalysis 16:1912–1918

    CAS  Google Scholar 

  • Soldatkin AP, Montoriol J, Sant W, Martelet C, Jaffrezic-Renault N (2003) A novel urea sensitive biosensor with extended dynamic range based on recombinant urease and ISFETs. Biosens Bioelectron 19:131–135

    CAS  PubMed  Google Scholar 

  • Stern E et al (2010) Label-free biomarker detection from whole blood. Nat Nanotechnol 5:138–142

    CAS  PubMed  Google Scholar 

  • Tabata M, Goda T, Matsumoto A, Miyahara Y (2016) Field-effect transistors for detection of biomolecular recognition. In: Sone JI, Tsuji S (eds) Intelligent Nanosystems for Energy, Information and Biological Technologies. Springer Japan, Tokyo, pp 13–25

    Google Scholar 

  • Tian R, Regonda S, Gao J, Liu Y, Hu W (2011) Ultrasensitive protein detection using lithographically defined Si multi-nanowire field effect transistors. Lab Chip 11:1952–1961

    CAS  PubMed  Google Scholar 

  • Uno T, Tabata H, Kawai T (2007) Peptide−nucleic acid-modified ion-sensitive field-effect transistor-based biosensor for direct detection of DNA hybridization. Anal Chem 79:52–59

    CAS  PubMed  Google Scholar 

  • Van Hal REG, Eijkel JCT, Bergveld P (1996) A general model to describe the electrostatic potential at the electrolyte oxide interface. Adv Colloid Interf Sci 69:31–62

    Google Scholar 

  • Whirl-Carrillo M et al (2012) Pharmacogenomics knowledge for personalized medicine. Clin Pharmacol Ther 92:414–417

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xi B, Yu N, Wang X, Xu X, Abassi Y (2008) The application of cell-based label-free technology in drug discovery. Biotechnol J 3:484–495

    CAS  PubMed  Google Scholar 

  • Xu G, Abbott J, Ham D (2016) Optimization of CMOS-ISFET-based biomolecular sensing: analysis and demonstration in DNA detection. IEEE Trans Electron Devices 63:3249–3256

    CAS  Google Scholar 

  • Zafar S et al (2018) Silicon nanowire field effect transistor sensors with minimal sensor-to-sensor variations and enhanced sensing characteristics. ACS Nano 12:6577–6587

    CAS  PubMed  Google Scholar 

  • Zayats M, Huang Y, Gill R, Ma C-a, Willner I (2006) Label-free and reagentless aptamer-based sensors for small molecules. J Am Chem Soc 128:13666–13667

    CAS  PubMed  Google Scholar 

  • Zhang Y, Chen R, Xu L, Ning Y, Xie S, Zhang G-J (2015) Silicon nanowire biosensor for highly sensitive and multiplexed detection of oral squamous cell carcinoma biomarkers in saliva. Anal Sci 31:73–78

    PubMed  Google Scholar 

  • Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM (2005) Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat Biotechnol 23:1294–1301

    CAS  PubMed  Google Scholar 

  • Zheng G, Gao XPA, Lieber CM (2010) Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett 10:3179–3183

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We would like to thank Sivashankar Krishnamoorthy for the useful discussions and help during the project.

Funding

This project was financed by the FNR under the Attract program, fellowship number 5718158 NANOpH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Pascual García.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rollo, S., Rani, D., Olthuis, W. et al. The influence of geometry and other fundamental challenges for bio-sensing with field effect transistors. Biophys Rev 11, 757–763 (2019). https://doi.org/10.1007/s12551-019-00592-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-019-00592-5

Keywords

Navigation