Advertisement

Biophysical Reviews

, Volume 11, Issue 5, pp 701–720 | Cite as

Mechanotransduction in neuronal cell development and functioning

  • Matteo Chighizola
  • Tania Dini
  • Cristina Lenardi
  • Paolo Milani
  • Alessandro Podestà
  • Carsten SchulteEmail author
Review

Abstract

Although many details remain still elusive, it became increasingly evident in recent years that mechanosensing of microenvironmental biophysical cues and subsequent mechanotransduction are strongly involved in the regulation of neuronal cell development and functioning. This review gives an overview about the current understanding of brain and neuronal cell mechanobiology and how it impacts on neurogenesis, neuronal migration, differentiation, and maturation. We will focus particularly on the events in the cell/microenvironment interface and the decisive extracellular matrix (ECM) parameters (i.e. rigidity and nanometric spatial organisation of adhesion sites) that modulate integrin adhesion complex-based mechanosensing and mechanotransductive signalling. It will also be outlined how biomaterial approaches mimicking essential ECM features help to understand these processes and how they can be used to control and guide neuronal cell behaviour by providing appropriate biophysical cues. In addition, principal biophysical methods will be highlighted that have been crucial for the study of neuronal mechanobiology.

Keywords

Mechanobiology Biophysics Neuronal differentiation Biomaterials Bioengineering 

Notes

Funding information

This project has received funding from the European Union Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement no. 812772 (Phys2BioMed) and under the FET Open grant agreement no. 801126 (EDIT).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abrams GA, Goodman SL, Nealey PF, Franco M, Murphy CJ (2000) Nanoscale topography of the basement membrane underlying the corneal epithelium of the rhesus macaque. Cell Tissue Res 299:39–46CrossRefGoogle Scholar
  2. Alcaraz J, Otero J, Jorba I, Navajas D (2018) Bidirectional mechanobiology between cells and their local extracellular matrix probed by atomic force microscopy. Semin Cell Dev Biol, Application of Atomic Force Microscopy in cell biology 73:71–81.  https://doi.org/10.1016/j.semcdb.2017.07.020 CrossRefPubMedGoogle Scholar
  3. Amin L, Ercolini E, Ban J, Torre V (2013) Comparison of the force exerted by hippocampal and DRG growth cones. PLoS One 8:e73025.  https://doi.org/10.1371/journal.pone.0073025 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Anton ES, Kreidberg JA, Rakic P (1999) Distinct functions of alpha3 and alpha(v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex. Neuron 22:277–289CrossRefGoogle Scholar
  5. Antonovaite N, Beekmans SV, Hol EM, Wadman WJ, Iannuzzi D (2018) Regional variations in stiffness in live mouse brain tissue determined by depth-controlled indentation mapping. Sci Rep 8:12517.  https://doi.org/10.1038/s41598-018-31035-y CrossRefPubMedPubMedCentralGoogle Scholar
  6. Arnold M, Cavalcanti-Adam EA, Glass R, Blümmel J, Eck W, Kantlehner M, Kessler H, Spatz JP (2004) Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 5:383–388.  https://doi.org/10.1002/cphc.200301014 CrossRefPubMedGoogle Scholar
  7. Athamneh AIM, Suter DM (2015) Quantifying mechanical force in axonal growth and guidance. Front Cell Neurosci 9.  https://doi.org/10.3389/fncel.2015.00359
  8. Baek J, Cho S-Y, Kang H, Ahn H, Jung W-B, Cho Y, Lee E, Cho S-W, Jung H-T, Im SG (2018) Distinct mechanosensing of human neural stem cells on extremely limited anisotropic cellular contact. ACS Appl Mater Interfaces.  https://doi.org/10.1021/acsami.8b10171 CrossRefGoogle Scholar
  9. Baek J, Jung W-B, Cho Y, Lee E, Yun G-T, Cho S-Y, Jung H-T, Im SG (2019) Facile fabrication of high-definition hierarchical wrinkle structures for investigating the geometry-sensitive fate commitment of human neural stem cells. ACS Appl Mater Interfaces 11:17247–17255.  https://doi.org/10.1021/acsami.9b03479 CrossRefPubMedGoogle Scholar
  10. Balgude AP, Yu X, Szymanski A, Bellamkonda RV (2001) Agarose gel stiffness determines rate of DRG neurite extension in 3D cultures. Biomaterials 22:1077–1084CrossRefGoogle Scholar
  11. Banerjee A, Arha M, Choudhary S, Ashton RS, Bhatia SR, Schaffer DV, Kane RS (2009) The influence of hydrogel modulus on the proliferation and differentiation of encapsulated neural stem cells. Biomaterials 30:4695–4699.  https://doi.org/10.1016/j.biomaterials.2009.05.050 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Barnes JM, Przybyla L, Weaver VM (2017) Tissue mechanics regulate brain development, homeostasis and disease. J Cell Sci 130:71–82.  https://doi.org/10.1242/jcs.191742 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Barnes JM, Kaushik S, Bainer RO, Sa JK, Woods EC, Kai F, Przybyla L, Lee M, Lee HW, Tung JC, Maller O, Barrett AS, Lu KV, Lakins JN, Hansen KC, Obernier K, Alvarez-Buylla A, Bergers G, Phillips JJ, Nam D-H, Bertozzi CR, Weaver VM (2018) A tension-mediated glycocalyx–integrin feedback loop promotes mesenchymal-like glioblastoma. Nat Cell Biol 20:1203.  https://doi.org/10.1038/s41556-018-0183-3 CrossRefPubMedGoogle Scholar
  14. Barriga EH, Franze K, Charras G, Mayor R (2018) Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 554:523–527.  https://doi.org/10.1038/nature25742 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bass MD, Roach KA, Morgan MR, Mostafavi-Pour Z, Schoen T, Muramatsu T, Mayer U, Ballestrem C, Spatz JP, Humphries MJ (2007) Syndecan-4-dependent Rac1 regulation determines directional migration in response to the extracellular matrix. J Cell Biol 177:527–538.  https://doi.org/10.1083/jcb.200610076 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Béduer A, Vieu C, Arnauduc F, Sol J-C, Loubinoux I, Vaysse L (2012) Engineering of adult human neural stem cells differentiation through surface micropatterning. Biomaterials 33:504–514.  https://doi.org/10.1016/j.biomaterials.2011.09.073 CrossRefPubMedGoogle Scholar
  17. Betz T, Koch D, Lu Y-B, Franze K, Käs JA (2011) Growth cones as soft and weak force generators. Proc Natl Acad Sci 108:13420–13425.  https://doi.org/10.1073/pnas.1106145108 CrossRefPubMedGoogle Scholar
  18. Bikbaev A, Frischknecht R, Heine M (2015) Brain extracellular matrix retains connectivity in neuronal networks. Sci Rep 5:14527.  https://doi.org/10.1038/srep14527 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Bonneh-Barkay D, Wiley CA (2009) Brain extracellular matrix in neurodegeneration. Brain Pathol 19:573–585.  https://doi.org/10.1111/j.1750-3639.2008.00195.x CrossRefPubMedGoogle Scholar
  20. Borghi F, Scaparra B, Paternoster C, Milani P, Podestà A (2018) Electrostatic double-layer interaction at the surface of rough cluster-assembled films: the case of nanostructured zirconia. Langmuir 34:10230–10242.  https://doi.org/10.1021/acs.langmuir.8b01387 CrossRefPubMedGoogle Scholar
  21. Bosch M, Castro J, Saneyoshi T, Matsuno H, Sur M, Hayashi Y (2014) Structural and molecular remodeling of dendritic spine substructures during long-term potentiation. Neuron 82:444–459.  https://doi.org/10.1016/j.neuron.2014.03.021 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Bridgman PC, Dave S, Asnes CF, Tullio AN, Adelstein RS (2001) Myosin IIB is required for growth cone motility. J Neurosci 21:6159–6169.  https://doi.org/10.1523/JNEUROSCI.21-16-06159.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Bugnicourt G, Brocard J, Nicolas A, Villard C (2014) Nanoscale surface topography reshapes neuronal growth in culture. Langmuir 30:4441–4449.  https://doi.org/10.1021/la5001683 CrossRefPubMedGoogle Scholar
  24. Campos LS, Leone DP, Relvas JB, Brakebusch C, Fässler R, Suter U, ffrench-Constant C (2004) Beta1 integrins activate a MAPK signalling pathway in neural stem cells that contributes to their maintenance. Development 131:3433–3444.  https://doi.org/10.1242/dev.01199 CrossRefPubMedGoogle Scholar
  25. Cao X, Pfaff SL, Gage FH (2008) YAP regulates neural progenitor cell number via the TEA domain transcription factor. Genes Dev 22:3320–3334.  https://doi.org/10.1101/gad.1726608 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Capitanio M, Pavone FS (2013) Interrogating biology with force: single molecule high-resolution measurements with optical tweezers. Biophys J 105:1293–1303.  https://doi.org/10.1016/j.bpj.2013.08.007 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Carisey A, Tsang R, Greiner AM, Nijenhuis N, Heath N, Nazgiewicz A, Kemkemer R, Derby B, Spatz J, Ballestrem C (2013) Vinculin regulates the recruitment and release of core focal adhesion proteins in a force-dependent manner. Curr Biol 23:271–281.  https://doi.org/10.1016/j.cub.2013.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Case LB, Waterman CM (2015) Integration of actin dynamics and cell adhesion by a three-dimensional, mechanosensitive molecular clutch. Nat Cell Biol 17:955–963.  https://doi.org/10.1038/ncb3191 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Case LB, Baird MA, Shtengel G, Campbell SL, Hess HF, Davidson MW, Waterman CM (2015) Molecular mechanism of vinculin activation and nanoscale spatial organization in focal adhesions. Nat Cell Biol 17:880–892.  https://doi.org/10.1038/ncb3180 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Cellot G, Toma FM, Varley ZK, Laishram J, Villari A, Quintana M, Cipollone S, Prato M, Ballerini L (2011) Carbon nanotube scaffolds tune synaptic strength in cultured neural circuits: novel frontiers in nanomaterial–tissue interactions. J Neurosci 31:12945–12953.  https://doi.org/10.1523/JNEUROSCI.1332-11.2011 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Chan CE, Odde DJ (2008) Traction dynamics of filopodia on compliant substrates. Science 322:1687–1691.  https://doi.org/10.1126/science.1163595 CrossRefPubMedGoogle Scholar
  32. Changede R, Sheetz M (2017) Integrin and cadherin clusters: a robust way to organize adhesions for cell mechanics. BioEssays 39.  https://doi.org/10.1002/bies.201600123 CrossRefGoogle Scholar
  33. Changede R, Xu X, Margadant F, Sheetz MP (2015) Nascent integrin adhesions form on all matrix rigidities after integrin activation. Dev Cell 35:614–621.  https://doi.org/10.1016/j.devcel.2015.11.001 CrossRefPubMedGoogle Scholar
  34. Changede R, Cai H, Wind SJ, Sheetz MP, (2019) Integrin nanoclusters can bridge thin matrix fibres to form cell-matrix adhesions. Nat Mater 1–10.  https://doi.org/10.1038/s41563-019-0460-y
  35. Chavis P, Westbrook G (2001) Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse. Nature 411:317–321.  https://doi.org/10.1038/35077101 CrossRefPubMedGoogle Scholar
  36. Chen L, Liao G, Waclaw RR, Burns KA, Linquist D, Campbell K, Zheng Y, Kuan C-Y (2007) Rac1 controls the formation of midline commissures and the competency of tangential migration in ventral telencephalic neurons. J Neurosci 27:3884–3893.  https://doi.org/10.1523/JNEUROSCI.3509-06.2007 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Chen L, Melendez J, Campbell K, Kuan C-Y, Zheng Y (2009) Rac1 deficiency in the forebrain results in neural progenitor reduction and microcephaly. Dev Biol 325:162–170.  https://doi.org/10.1016/j.ydbio.2008.10.023 CrossRefPubMedGoogle Scholar
  38. Chen W, Shao Y, Li X, Zhao G, Fu J (2014) Nanotopographical surfaces for stem cell fate control: engineering mechanobiology from the bottom. Nano Today 9:759–784.  https://doi.org/10.1016/j.nantod.2014.12.002 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Chen Y, Lee H, Tong H, Schwartz M, Zhu C (2017) Force regulated conformational change of integrin αVβ3. Matrix Biol 60–61:70–85.  https://doi.org/10.1016/j.matbio.2016.07.002 CrossRefPubMedGoogle Scholar
  40. Chen W, Han S, Qian W, Weng S, Yang H, Sun Y, Villa-Diaz LG, Krebsbach PH, Fu J (2018) Nanotopography regulates motor neuron differentiation of human pluripotent stem cells. Nanoscale 10:3556–3565.  https://doi.org/10.1039/c7nr05430k CrossRefPubMedPubMedCentralGoogle Scholar
  41. Cheng C-M, LeDuc PR, Lin Y-W (2011) Localized bimodal response of neurite extensions and structural proteins in dorsal-root ganglion neurons with controlled polydimethylsiloxane substrate stiffness. J Biomech 44:856–862.  https://doi.org/10.1016/j.jbiomech.2010.12.006 CrossRefPubMedGoogle Scholar
  42. Choi CK, Vicente-Manzanares M, Zareno J, Whitmore LA, Mogilner A, Horwitz AR (2008) Actin and alpha-actinin orchestrate the assembly and maturation of nascent adhesions in a myosin II motor-independent manner. Nat Cell Biol 10:1039–1050.  https://doi.org/10.1038/ncb1763 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Christ AF, Franze K, Gautier H, Moshayedi P, Fawcett J, Franklin RJM, Karadottir RT, Guck J (2010) Mechanical difference between white and gray matter in the rat cerebellum measured by scanning force microscopy. J Biomech 43:2986–2992.  https://doi.org/10.1016/j.jbiomech.2010.07.002 CrossRefPubMedGoogle Scholar
  44. Ciobanasu C, Faivre B, Le Clainche C (2014) Actomyosin-dependent formation of the mechanosensitive talin-vinculin complex reinforces actin anchoring. Nat Commun 5:3095.  https://doi.org/10.1038/ncomms4095 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Cojoc D, Difato F, Ferrari E, Shahapure RB, Laishram J, Righi M, Fabrizio EMD, Torre V (2007) Properties of the force exerted by filopodia and lamellipodia and the involvement of cytoskeletal components. PLoS One 2:e1072.  https://doi.org/10.1371/journal.pone.0001072 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Da Silva JS, Medina M, Zuliani C, Di Nardo A, Witke W, Dotti CG (2003) RhoA/ROCK regulation of neuritogenesis via profilin IIa-mediated control of actin stability. J Cell Biol 162:1267–1279.  https://doi.org/10.1083/jcb.200304021 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Dai J, Sheetz MP (1995) Mechanical properties of neuronal growth cone membranes studied by tether formation with laser optical tweezers. Biophys J 68:988–996.  https://doi.org/10.1016/S0006-3495(95)80274-2 CrossRefPubMedPubMedCentralGoogle Scholar
  48. De Vlaminck I, Dekker C (2012) Recent advances in magnetic tweezers. Annu Rev Biophys 41:453–472.  https://doi.org/10.1146/annurev-biophys-122311-100544 CrossRefPubMedGoogle Scholar
  49. del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP (2009) Stretching single talin rod molecules activates vinculin binding. Science 323:638–641.  https://doi.org/10.1126/science.1162912 CrossRefPubMedGoogle Scholar
  50. Dergham P, Ellezam B, Essagian C, Avedissian H, Lubell WD, McKerracher L (2002) Rho signaling pathway targeted to promote spinal cord repair. J Neurosci 22:6570–6577CrossRefGoogle Scholar
  51. Dityatev A, Schachner M, Sonderegger P (2010a) The dual role of the extracellular matrix in synaptic plasticity and homeostasis. Nat Rev Neurosci 11:735–746.  https://doi.org/10.1038/nrn2898 CrossRefPubMedGoogle Scholar
  52. Dityatev A, Seidenbecher CI, Schachner M (2010b) Compartmentalization from the outside: the extracellular matrix and functional microdomains in the brain. Trends Neurosci 33:503–512.  https://doi.org/10.1016/j.tins.2010.08.003 CrossRefPubMedGoogle Scholar
  53. Dufrêne YF, Evans E, Engel A, Helenius J, Gaub HE, Müller DJ (2011) Five challenges to bringing single-molecule force spectroscopy into living cells. Nat Methods 8:123–127.  https://doi.org/10.1038/nmeth0211-123 CrossRefPubMedGoogle Scholar
  54. Dulabon L, Olson EC, Taglienti MG, Eisenhuth S, McGrath B, Walsh CA, Kreidberg JA, Anton ES (2000) Reelin binds alpha3beta1 integrin and inhibits neuronal migration. Neuron 27:33–44CrossRefGoogle Scholar
  55. Elkin BS, Azeloglu EU, Costa KD, Morrison B (2007) Mechanical heterogeneity of the rat hippocampus measured by atomic force microscope indentation. J Neurotrauma 24:812–822.  https://doi.org/10.1089/neu.2006.0169 CrossRefPubMedGoogle Scholar
  56. Elosegui-Artola A, Oria R, Chen Y, Kosmalska A, Pérez-González C, Castro N, Zhu C, Trepat X, Roca-Cusachs P (2016) Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol 18:540–548.  https://doi.org/10.1038/ncb3336 CrossRefPubMedGoogle Scholar
  57. Fabbro A, Villari A, Laishram J, Scaini D, Toma FM, Turco A, Prato M, Ballerini L (2012) Spinal cord explants use carbon nanotube interfaces to enhance neurite outgrowth and to fortify synaptic inputs. ACS Nano 6:2041–2055.  https://doi.org/10.1021/nn203519r CrossRefPubMedGoogle Scholar
  58. Falleroni F, Torre V, Cojoc D (2018) Cell mechanotransduction with piconewton forces applied by optical tweezers. Front Cell Neurosci 12:130.  https://doi.org/10.3389/fncel.2018.00130 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ferrari A, Cecchini M, Serresi M, Faraci P, Pisignano D, Beltram F (2010) Neuronal polarity selection by topography-induced focal adhesion control. Biomaterials 31:4682–4694.  https://doi.org/10.1016/j.biomaterials.2010.02.032 CrossRefPubMedGoogle Scholar
  60. Ferrari A, Cecchini M, Dhawan A, Micera S, Tonazzini I, Stabile R, Pisignano D, Beltram F (2011) Nanotopographic control of neuronal polarity. Nano Lett 11:505–511.  https://doi.org/10.1021/nl103349s CrossRefPubMedGoogle Scholar
  61. Ferraris GMS, Schulte C, Buttiglione V, De Lorenzi V, Piontini A, Galluzzi M, Podestà A, Madsen CD, Sidenius N (2014) The interaction between uPAR and vitronectin triggers ligand-independent adhesion signalling by integrins. EMBO J 33:2458–2472.  https://doi.org/10.15252/embj.201387611 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Fietz SA, Lachmann R, Brandl H, Kircher M, Samusik N, Schröder R, Lakshmanaperumal N, Henry I, Vogt J, Riehn A, Distler W, Nitsch R, Enard W, Pääbo S, Huttner WB (2012) Transcriptomes of germinal zones of human and mouse fetal neocortex suggest a role of extracellular matrix in progenitor self-renewal. Proc Natl Acad Sci 109:11836–11841.  https://doi.org/10.1073/pnas.1209647109 CrossRefPubMedGoogle Scholar
  63. Flanagan LA, Rebaza LM, Derzic S, Schwartz PH, Monuki ES (2006) Regulation of human neural precursor cells by laminin and integrins. J Neurosci Res 83:845–856.  https://doi.org/10.1002/jnr.20778 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Flynn KC (2013) The cytoskeleton and neurite initiation. Bioarchitecture 3:86–109CrossRefGoogle Scholar
  65. Fournier AE, Takizawa BT, Strittmatter SM (2003) Rho kinase inhibition enhances axonal regeneration in the injured CNS. J Neurosci 23:1416–1423.  https://doi.org/10.1523/JNEUROSCI.23-04-01416.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Franze K, Janmey PA, Guck J (2013) Mechanics in neuronal development and repair. Annu Rev Biomed Eng 15:227–251.  https://doi.org/10.1146/annurev-bioeng-071811-150045 CrossRefPubMedGoogle Scholar
  67. Fuhs T, Reuter L, Vonderhaid I, Claudepierre T, Käs JA (2013) Inherently slow and weak forward forces of neuronal growth cones measured by a drift-stabilized atomic force microscope. Cytoskeleton 70:44–53.  https://doi.org/10.1002/cm.21080 CrossRefPubMedGoogle Scholar
  68. Gasiorowski JZ, Murphy CJ, Nealey PF (2013) Biophysical cues and cell behavior: the big impact of little things. Annu Rev Biomed Eng 15:155–176.  https://doi.org/10.1146/annurev-bioeng-071811-150021 CrossRefPubMedGoogle Scholar
  69. Gauthier NC, Roca-Cusachs P (2018) Mechanosensing at integrin-mediated cell–matrix adhesions: from molecular to integrated mechanisms. Curr Opin Cell Biol 50:20–26.  https://doi.org/10.1016/j.ceb.2017.12.014 CrossRefPubMedGoogle Scholar
  70. Gavara N (2017) A beginner’s guide to atomic force microscopy probing for cell mechanics. Microsc Res Tech 80:75–84.  https://doi.org/10.1002/jemt.22776 CrossRefPubMedGoogle Scholar
  71. Geissler M, Gottschling C, Aguado A, Rauch U, Wetzel CH, Hatt H, Faissner A (2013) Primary hippocampal neurons, which lack four crucial extracellular matrix molecules, display abnormalities of synaptic structure and function and severe deficits in perineuronal net formation. J Neurosci 33:7742–7755.  https://doi.org/10.1523/JNEUROSCI.3275-12.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Georges PC, Miller WJ, Meaney DF, Sawyer ES, Janmey PA (2006) Matrices with compliance comparable to that of brain tissue select neuronal over glial growth in mixed cortical cultures. Biophys J 90:3012–3018.  https://doi.org/10.1529/biophysj.105.073114 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Gertz CC, Leach MK, Birrell LK, Martin DC, Feldman EL, Corey JM (2010) Accelerated neuritogenesis and maturation of primary spinal motor neurons in response to nanofibers. Dev Neurobiol 70:589–603.  https://doi.org/10.1002/dneu.20792 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M, Yang MT, McLean MA, Sligar SG, Chen CS, Ha T, Schwartz MA (2010) Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–266.  https://doi.org/10.1038/nature09198 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Green HJ, Brown NH (2019) Integrin intracellular machinery in action. Exp Cell Res 378:226–231.  https://doi.org/10.1016/j.yexcr.2019.03.011 CrossRefPubMedGoogle Scholar
  76. Grevesse T, Dabiri BE, Parker KK, Gabriele S (2015) Opposite rheological properties of neuronal microcompartments predict axonal vulnerability in brain injury. Sci Rep 5(9475).  https://doi.org/10.1038/srep09475
  77. Grzywa EL, Lee AC, Lee GU, Suter DM (2006) High-resolution analysis of neuronal growth cone morphology by comparative atomic force and optical microscopy. J Neurobiol 66:1529–1543.  https://doi.org/10.1002/neu.20318 CrossRefPubMedGoogle Scholar
  78. Gu H, Yu SP, Gutekunst C-A, Gross RE, Wei L (2013) Inhibition of the Rho signaling pathway improves neurite outgrowth and neuronal differentiation of mouse neural stem cells. Int J Physiol Pathophysiol Pharmacol 5:11–20PubMedPubMedCentralGoogle Scholar
  79. Haase K, Pelling AE (2015) Investigating cell mechanics with atomic force microscopy. J R Soc Interface 12.  https://doi.org/10.1098/rsif.2014.0970 CrossRefGoogle Scholar
  80. Hadden WJ, Young JL, Holle AW, McFetridge ML, Kim DY, Wijesinghe P, Taylor-Weiner H, Wen JH, Lee AR, Bieback K, Vo B-N, Sampson DD, Kennedy BF, Spatz JP, Engler AJ, Choi YS (2017) Stem cell migration and mechanotransduction on linear stiffness gradient hydrogels. Proc Natl Acad Sci 114:5647–5652.  https://doi.org/10.1073/pnas.1618239114 CrossRefPubMedGoogle Scholar
  81. Hällström W, Lexholm M, Suyatin DB, Hammarin G, Hessman D, Samuelson L, Montelius L, Kanje M, Prinz CN (2010) Fifteen-piconewton force detection from neural growth cones using nanowire arrays. Nano Lett 10:782–787.  https://doi.org/10.1021/nl902675h CrossRefPubMedGoogle Scholar
  82. Haubst N, Georges-Labouesse E, Arcangelis AD, Mayer U, Götz M (2006) Basement membrane attachment is dispensable for radial glial cell fate and for proliferation, but affects positioning of neuronal subtypes. Development 133:3245–3254.  https://doi.org/10.1242/dev.02486 CrossRefPubMedGoogle Scholar
  83. Helenius J, Heisenberg C-P, Gaub HE, Muller DJ (2008) Single-cell force spectroscopy. J Cell Sci 121:1785–1791.  https://doi.org/10.1242/jcs.030999 CrossRefPubMedGoogle Scholar
  84. Hertz H (1882) Ueber die Berührung fester elastischer Körper. J Für Reine Angew Math (92):156–171Google Scholar
  85. Hoffman-Kim D, Mitchel JA, Bellamkonda RV (2010) Topography, cell response, and nerve regeneration. Annu Rev Biomed Eng 12:203–231.  https://doi.org/10.1146/annurev-bioeng-070909-105351 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE, Hourihane JO, Martin ND, Walsh CA (2000) Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 26:93–96.  https://doi.org/10.1038/79246 CrossRefPubMedGoogle Scholar
  87. Hopkins AM, Laporte LD, Tortelli F, Spedden E, Staii C, Atherton TJ, Hubbell JA, Kaplan DL (2013) Silk hydrogels as soft substrates for neural tissue engineering. Adv Funct Mater 23:5140–5149.  https://doi.org/10.1002/adfm.201300435 CrossRefGoogle Scholar
  88. Huang J, Grater SV, Corbellini F, Rinck S, Bock E, Kemkemer R, Kessler H, Ding J, Spatz JP (2009) Impact of order and disorder in RGD nanopatterns on cell adhesion. Nano Lett 9:1111–1116.  https://doi.org/10.1021/nl803548b CrossRefPubMedPubMedCentralGoogle Scholar
  89. Huang DL, Bax NA, Buckley CD, Weis WI, Dunn AR (2017) Vinculin forms a directionally asymmetric catch bond with F-actin. Science 357:703–706.  https://doi.org/10.1126/science.aan2556 CrossRefPubMedPubMedCentralGoogle Scholar
  90. Humphries JD, Chastney MR, Askari JA, Humphries MJ (2019) Signal transduction via integrin adhesion complexes. Curr Opin Cell Biol 56:14–21.  https://doi.org/10.1016/j.ceb.2018.08.004 CrossRefPubMedGoogle Scholar
  91. Indrieri M, Podestà A, Bongiorno G, Marchesi D, Milani P (2011) Adhesive-free colloidal probes for nanoscale force measurements: production and characterization. Rev Sci Instrum 82:023708.  https://doi.org/10.1063/1.3553499 CrossRefPubMedGoogle Scholar
  92. Iskratsch T, Wolfenson H, Sheetz MP (2014) Appreciating force and shape—the rise of mechanotransduction in cell biology. Nat Rev Mol Cell Biol 15:825–833.  https://doi.org/10.1038/nrm3903 CrossRefPubMedGoogle Scholar
  93. Jiang G, Giannone G, Critchley DR, Fukumoto E, Sheetz MP (2003) Two-piconewton slip bond between fibronectin and the cytoskeleton depends on talin. Nature 424:334.  https://doi.org/10.1038/nature01805 CrossRefPubMedGoogle Scholar
  94. Jiang FX, Yurke B, Firestein BL, Langrana NA (2008) Neurite outgrowth on a DNA crosslinked hydrogel with tunable stiffnesses. Ann Biomed Eng 36:1565–1579.  https://doi.org/10.1007/s10439-008-9530-z CrossRefPubMedGoogle Scholar
  95. Jiang J, Zhang Z, Yuan X, Poo M (2015) Spatiotemporal dynamics of traction forces show three contraction centers in migratory neurons. J Cell Biol 209:759–774.  https://doi.org/10.1083/jcb.201410068 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Jin Y, Lee JS, Kim J, Min S, Wi S, Yu JH, Chang G-E, Cho A-N, Choi Y, Ahn D-H, Cho S-R, Cheong E, Kim Y-G, Kim H-P, Kim Y, Kim DS, Kim HW, Quan Z, Kang H-C, Cho S-W (2018) Three-dimensional brain-like microenvironments facilitate the direct reprogramming of fibroblasts into therapeutic neurons. Nat Biomed Eng 2:522–539.  https://doi.org/10.1038/s41551-018-0260-8 CrossRefPubMedGoogle Scholar
  97. Johansson F, Carlberg P, Danielsen N, Montelius L, Kanje M (2006) Axonal outgrowth on nano-imprinted patterns. Biomaterials 27:1251–1258.  https://doi.org/10.1016/j.biomaterials.2005.07.047 CrossRefPubMedGoogle Scholar
  98. Jurchenko C, Salaita KS (2015) Lighting up the force: investigating mechanisms of mechanotransduction using fluorescent tension probes. Mol Cell Biol 35:2570–2582.  https://doi.org/10.1128/MCB.00195-15 CrossRefPubMedPubMedCentralGoogle Scholar
  99. Kalappurakkal JM, Anilkumar AA, Patra C, van Zanten TS, Sheetz MP, Mayor S (2019) Integrin mechano-chemical signaling generates plasma membrane nanodomains that promote cell spreading. Cell 177:1738–1756.e23.  https://doi.org/10.1016/j.cell.2019.04.037 CrossRefPubMedGoogle Scholar
  100. Kang K, Choi S-E, Jang HS, Cho WK, Nam Y, Choi IS, Lee JS (2012) In vitro developmental acceleration of hippocampal neurons on nanostructures of self-assembled silica beads in filopodium-size ranges. Angew Chem Int Ed 51:2855–2858.  https://doi.org/10.1002/anie.201106271 CrossRefGoogle Scholar
  101. Kechagia JZ, Ivaska J, Roca-Cusachs P (2019) Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol 1.  https://doi.org/10.1038/s41580-019-0134-2 CrossRefGoogle Scholar
  102. Kerever A, Schnack J, Vellinga D, Ichikawa N, Moon C, Arikawa-Hirasawa E, Efird JT, Mercier F (2007) Novel extracellular matrix structures in the neural stem cell niche capture the neurogenic factor fibroblast growth factor 2 from the extracellular milieu. Stem Cells Dayt. Ohio 25:2146–2157.  https://doi.org/10.1634/stemcells.2007-0082 CrossRefGoogle Scholar
  103. Kerrisk ME, Greer CA, Koleske AJ (2013) Integrin α3 is required for late postnatal stability of dendrite arbors, dendritic spines and synapses, and mouse behavior. J Neurosci 33:6742–6752.  https://doi.org/10.1523/JNEUROSCI.0528-13.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  104. Kerstein PC, Nichol RH, Gomez TM (2015) Mechanochemical regulation of growth cone motility. Front Cell Neurosci 9:244.  https://doi.org/10.3389/fncel.2015.00244 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Keung AJ, de Juan-Pardo EM, Schaffer DV, Kumar S (2011) Rho GTPases mediate the mechanosensitive lineage commitment of neural stem cells. Stem Cells 29:1886–1897.  https://doi.org/10.1002/stem.746 CrossRefPubMedPubMedCentralGoogle Scholar
  106. Keung AJ, Asuri P, Kumar S, Schaffer DV (2012) Soft microenvironments promote the early neurogenic differentiation but not self-renewal of human pluripotent stem cells. Integr Biol (Camb) 4:1049–1058.  https://doi.org/10.1039/c2ib20083j CrossRefGoogle Scholar
  107. Keung AJ, Dong M, Schaffer DV, Kumar S (2013) Pan-neuronal maturation but not neuronal subtype differentiation of adult neural stem cells is mechanosensitive. Sci Rep 3:1817.  https://doi.org/10.1038/srep01817 CrossRefPubMedPubMedCentralGoogle Scholar
  108. Kilinc D (2018) The emerging role of mechanics in synapse formation and plasticity. Front Cell Neurosci 12.  https://doi.org/10.3389/fncel.2018.00483
  109. Kilinc D, Blasiak A, O’Mahony JJ, Lee GU (2014) Low piconewton towing of CNS axons against diffusing and surface-bound repellents requires the inhibition of motor protein-associated pathways. Sci Rep 4:7128.  https://doi.org/10.1038/srep07128 CrossRefPubMedPubMedCentralGoogle Scholar
  110. Kim Y, Kumar S (2014) CD44-mediated adhesion to hyaluronic acid contributes to mechanosensing and invasive motility. Mol Cancer Res 12:1416–1429.  https://doi.org/10.1158/1541-7786.MCR-13-0629 CrossRefPubMedPubMedCentralGoogle Scholar
  111. Kim M-H, Park M, Kang K, Choi IS (2013) Neurons on nanometric topographies: insights into neuronal behaviors in vitro. Biomater Sci. 2:148–155.  https://doi.org/10.1039/C3BM60255A CrossRefGoogle Scholar
  112. Knöll B, Nordheim A (2009) Functional versatility of transcription factors in the nervous system: the SRF paradigm. Trends Neurosci 32:432–442.  https://doi.org/10.1016/j.tins.2009.05.004 CrossRefPubMedGoogle Scholar
  113. Koch D, Rosoff WJ, Jiang J, Geller HM, Urbach JS (2012) Strength in the periphery: growth cone biomechanics and substrate rigidity response in peripheral and central nervous system neurons. Biophys J 102:452–460.  https://doi.org/10.1016/j.bpj.2011.12.025 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Kong F, García AJ, Mould AP, Humphries MJ, Zhu C (2009) Demonstration of catch bonds between an integrin and its ligand. J Cell Biol 185:1275–1284.  https://doi.org/10.1083/jcb.200810002 CrossRefPubMedPubMedCentralGoogle Scholar
  115. Konno D, Yoshimura S, Hori K, Maruoka H, Sobue K (2005) Involvement of the phosphatidylinositol 3-kinase/rac1 and cdc42 pathways in radial migration of cortical neurons. J Biol Chem 280:5082–5088.  https://doi.org/10.1074/jbc.M408251200 CrossRefPubMedGoogle Scholar
  116. Koser DE, Moeendarbary E, Hanne J, Kuerten S, Franze K (2015) CNS cell distribution and axon orientation determine local spinal cord mechanical properties. Biophys J 108:2137–2147.  https://doi.org/10.1016/j.bpj.2015.03.039 CrossRefPubMedPubMedCentralGoogle Scholar
  117. Koser DE, Thompson AJ, Foster SK, Dwivedy A, Pillai EK, Sheridan GK, Svoboda H, Viana M, Costa LD, Guck J, Holt CE, Franze K (2016) Mechanosensing is critical for axon growth in the developing brain. Nat Neurosci 19:1592–1598.  https://doi.org/10.1038/nn.4394 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Kostic A, Sap J, Sheetz MP (2007) RPTPα is required for rigidity-dependent inhibition of extension and differentiation of hippocampal neurons. J Cell Sci 120:3895–3904.  https://doi.org/10.1242/jcs.009852 CrossRefPubMedGoogle Scholar
  119. Krieg M, Fläschner G, Alsteens D, Gaub BM, Roos WH, Wuite GJL, Gaub HE, Gerber C, Dufrêne YF, Müller DJ (2019) Atomic force microscopy-based mechanobiology. Nat Rev Phys 1:41.  https://doi.org/10.1038/s42254-018-0001-7 CrossRefGoogle Scholar
  120. Lam D, Enright HA, Cadena J, Peters SKG, Sales AP, Osburn JJ, Soscia DA, Kulp KS, Wheeler EK, Fischer NO (2019) Tissue-specific extracellular matrix accelerates the formation of neural networks and communities in a neuron-glia co-culture on a multi-electrode array. Sci Rep 9:4159.  https://doi.org/10.1038/s41598-019-40128-1 CrossRefPubMedPubMedCentralGoogle Scholar
  121. Last JA, Russell P, Nealey PF, Murphy CJ (2010) The applications of atomic force microscopy to vision science. Invest Ophthalmol Vis Sci 51:6083–6094.  https://doi.org/10.1167/iovs.10-5470 CrossRefPubMedPubMedCentralGoogle Scholar
  122. Lathia JD, Patton B, Eckley DM, Magnus T, Mughal MR, Sasaki T, Caldwell MA, Rao MS, Mattson MP, ffrench-Constant C (2007) Patterns of laminins and integrins in the embryonic ventricular zone of the CNS. J Comp Neurol 505:630–643.  https://doi.org/10.1002/cne.21520 CrossRefPubMedGoogle Scholar
  123. Lau LW, Cua R, Keough MB, Haylock-Jacobs S, Yong VW (2013) Pathophysiology of the brain extracellular matrix: a new target for remyelination. Nat Rev Neurosci 14:722–729.  https://doi.org/10.1038/nrn3550 CrossRefPubMedGoogle Scholar
  124. Le S, Liu R, Lim CT, Yan J (2016) Uncovering mechanosensing mechanisms at the single protein level using magnetic tweezers. Methods 94:13–18.  https://doi.org/10.1016/j.ymeth.2015.08.020 CrossRefPubMedGoogle Scholar
  125. Leach JB, Brown XQ, Jacot JG, Dimilla PA, Wong JY (2007) Neurite outgrowth and branching of PC12 cells on very soft substrates sharply decreases below a threshold of substrate rigidity. J Neural Eng 4:26–34.  https://doi.org/10.1088/1741-2560/4/2/003 CrossRefPubMedGoogle Scholar
  126. Lee MR, Kwon KW, Jung H, Kim HN, Suh KY, Kim K, Kim K-S (2010) Direct differentiation of human embryonic stem cells into selective neurons on nanoscale ridge/groove pattern arrays. Biomaterials 31:4360–4366.  https://doi.org/10.1016/j.biomaterials.2010.02.012 CrossRefPubMedGoogle Scholar
  127. Leipzig ND, Shoichet MS (2009) The effect of substrate stiffness on adult neural stem cell behavior. Biomaterials 30:6867–6878.  https://doi.org/10.1016/j.biomaterials.2009.09.002 CrossRefGoogle Scholar
  128. Leterrier C, Dubey P, Roy S (2017) The nano-architecture of the axonal cytoskeleton. Nat Rev Neurosci 18:713–726.  https://doi.org/10.1038/nrn.2017.129 CrossRefPubMedGoogle Scholar
  129. Li J, Springer TA (2017) Integrin extension enables ultrasensitive regulation by cytoskeletal force. Proc Natl Acad Sci U S A 114:4685–4690.  https://doi.org/10.1073/pnas.1704171114 CrossRefPubMedPubMedCentralGoogle Scholar
  130. Lilja J, Ivaska J (2018) Integrin activity in neuronal connectivity. J Cell Sci 131.  https://doi.org/10.1242/jcs.212803 CrossRefGoogle Scholar
  131. Lim SH, Liu XY, Song H, Yarema KJ, Mao H-Q (2010) The effect of nanofiber-guided cell alignment on the preferential differentiation of neural stem cells. Biomaterials 31:9031–9039.  https://doi.org/10.1016/j.biomaterials.2010.08.021 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Liu Y, Medda R, Liu Z, Galior K, Yehl K, Spatz JP, Cavalcanti-Adam EA, Salaita K (2014) Nanoparticle tension probes patterned at the nanoscale: impact of integrin clustering on force transmission. Nano Lett 14:5539–5546.  https://doi.org/10.1021/nl501912g CrossRefPubMedPubMedCentralGoogle Scholar
  133. Liu Y, Galior K, Ma VP-Y, Salaita K (2017) Molecular tension probes for imaging forces at the cell surface. Acc Chem Res 50:2915–2924.  https://doi.org/10.1021/acs.accounts.7b00305 CrossRefPubMedPubMedCentralGoogle Scholar
  134. Long KR, Huttner WB (2019) How the extracellular matrix shapes neural development. Open Biol 9:180216.  https://doi.org/10.1098/rsob.180216 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Lowery LA, Van Vactor D (2009) The trip of the tip: understanding the growth cone machinery. Nat Rev Mol Cell Biol 10:332–343.  https://doi.org/10.1038/nrm2679 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Lu Y-B, Franze K, Seifert G, Steinhäuser C, Kirchhoff F, Wolburg H, Guck J, Janmey P, Wei E-Q, Käs J, Reichenbach A (2006) Viscoelastic properties of individual glial cells and neurons in the CNS. Proc Natl Acad Sci U S A 103:17759–17764.  https://doi.org/10.1073/pnas.0606150103 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Ma W, Tavakoli T, Derby E, Serebryakova Y, Rao MS, Mattson MP (2008) Cell-extracellular matrix interactions regulate neural differentiation of human embryonic stem cells. BMC Dev Biol 8:90.  https://doi.org/10.1186/1471-213X-8-90 CrossRefPubMedPubMedCentralGoogle Scholar
  138. Maffioli E, Schulte C, Nonnis S, Grassi Scalvini F, Piazzoni C, Lenardi C, Negri A, Milani P, Tedeschi G (2017) Proteomic dissection of nanotopography-sensitive mechanotransductive signalling hubs that foster neuronal differentiation in PC12 cells. Front Cell Neurosci 11.  https://doi.org/10.3389/fncel.2017.00417
  139. Mammadov B, Sever M, Guler MO, Tekinay AB (2013) Neural differentiation on synthetic scaffold materials. Biomater Sci 1:1119–1137.  https://doi.org/10.1039/C3BM60150A CrossRefGoogle Scholar
  140. Man AJ, Davis HE, Itoh A, Leach JK, Bannerman P (2011) Neurite outgrowth in fibrin gels is regulated by substrate stiffness. Tissue Eng Part A 17:2931–2942.  https://doi.org/10.1089/ten.tea.2011.0030 CrossRefPubMedGoogle Scholar
  141. McGeachie AB, Cingolani LA, Goda Y (2011) A stabilising influence: integrins in regulation of synaptic plasticity. Neurosci Res 70:24–29.  https://doi.org/10.1016/j.neures.2011.02.006 CrossRefPubMedPubMedCentralGoogle Scholar
  142. Medberry CJ, Crapo PM, Siu BF, Carruthers CA, Wolf MT, Nagarkar SP, Agrawal V, Jones KE, Kelly J, Johnson SA, Velankar SS, Watkins SC, Modo M, Badylak SF (2013) Hydrogels derived from central nervous system extracellular matrix. Biomaterials 34:1033–1040.  https://doi.org/10.1016/j.biomaterials.2012.10.062 CrossRefPubMedGoogle Scholar
  143. Medeiros NA, Burnette DT, Forscher P (2006) Myosin II functions in actin-bundle turnover in neuronal growth cones. Nat Cell Biol 8:215–226.  https://doi.org/10.1038/ncb1367 CrossRefPubMedGoogle Scholar
  144. Mercier F (2016) Fractones: extracellular matrix niche controlling stem cell fate and growth factor activity in the brain in health and disease. Cell Mol Life Sci 73:4661–4674.  https://doi.org/10.1007/s00018-016-2314-y CrossRefPubMedPubMedCentralGoogle Scholar
  145. Migliorini E, Grenci G, Ban J, Pozzato A, Tormen M, Lazzarino M, Torre V, Ruaro ME (2011) Acceleration of neuronal precursors differentiation induced by substrate nanotopography. Biotechnol Bioeng 108:2736–2746.  https://doi.org/10.1002/bit.23232 CrossRefPubMedGoogle Scholar
  146. Mitchison T, Kirschner M (1988) Cytoskeletal dynamics and nerve growth. Neuron 1:761–772CrossRefGoogle Scholar
  147. Miyata S, Kitagawa H (2017) Formation and remodeling of the brain extracellular matrix in neural plasticity: roles of chondroitin sulfate and hyaluronan. Biochim Biophys Acta Gen Subj 1861:2420–2434.  https://doi.org/10.1016/j.bbagen.2017.06.010 CrossRefPubMedGoogle Scholar
  148. Moffitt JR, Chemla YR, Smith SB, Bustamante C (2008) Recent advances in optical tweezers. Annu Rev Biochem 77:205–228.  https://doi.org/10.1146/annurev.biochem.77.043007.090225 CrossRefPubMedGoogle Scholar
  149. Mokalled MH, Johnson A, Kim Y, Oh J, Olson EN (2010) Myocardin-related transcription factors regulate the Cdk5/Pctaire1 kinase cascade to control neurite outgrowth, neuronal migration and brain development. Development 137:2365–2374.  https://doi.org/10.1242/dev.047605 CrossRefPubMedPubMedCentralGoogle Scholar
  150. Moore SW, Biais N, Sheetz MP (2009) Traction on immobilized netrin-1 is sufficient to reorient axons. Science 325:166.  https://doi.org/10.1126/science.1173851 CrossRefPubMedPubMedCentralGoogle Scholar
  151. Morgan MR, Hamidi H, Bass MD, Warwood S, Ballestrem C, Humphries MJ (2013) Syndecan-4 phosphorylation is a control point for integrin recycling. Dev Cell 24:472–485.  https://doi.org/10.1016/j.devcel.2013.01.027 CrossRefPubMedPubMedCentralGoogle Scholar
  152. Mosley MC, Lim HJ, Chen J, Yang Y-H, Li S, Liu Y, Smith Callahan LA (2017) Neurite extension and neuronal differentiation of human induced pluripotent stem cell derived neural stem cells on polyethylene glycol hydrogels containing a continuous Young’s Modulus gradient. J Biomed Mater Res A 105:824–833.  https://doi.org/10.1002/jbm.a.35955 CrossRefPubMedGoogle Scholar
  153. Müller DJ, Helenius J, Alsteens D, Dufrêne YF (2009) Force probing surfaces of living cells to molecular resolution. Nat Chem Biol 5:383–390.  https://doi.org/10.1038/nchembio.181 CrossRefPubMedGoogle Scholar
  154. Musah S, Wrighton PJ, Zaltsman Y, Zhong X, Zorn S, Parlato MB, Hsiao C, Palecek SP, Chang Q, Murphy WL, Kiessling LL (2014) Substratum-induced differentiation of human pluripotent stem cells reveals the coactivator YAP is a potent regulator of neuronal specification. Proc Natl Acad Sci U S A 111:13805–13810.  https://doi.org/10.1073/pnas.1415330111 CrossRefPubMedPubMedCentralGoogle Scholar
  155. Myers JP, Santiago-Medina M, Gomez TM (2011) Regulation of axonal outgrowth and pathfinding by integrin-ECM interactions. Dev Neurobiol 71:901–923.  https://doi.org/10.1002/dneu.20931 CrossRefPubMedPubMedCentralGoogle Scholar
  156. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505.  https://doi.org/10.1038/nmeth.1218 CrossRefPubMedPubMedCentralGoogle Scholar
  157. Nichol RH, Hagen KM, Lumbard DC, Dent EW, Gómez TM (2016) Guidance of axons by local coupling of retrograde flow to point contact adhesions. J Neurosci 36:2267–2282.  https://doi.org/10.1523/JNEUROSCI.2645-15.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  158. Norman LL, Aranda-Espinoza H (2010) Cortical neuron outgrowth is insensitive to substrate stiffness. Cell Mol Bioeng 3:398–414.  https://doi.org/10.1007/s12195-010-0137-8 CrossRefGoogle Scholar
  159. O’Toole M, Lamoureux P, Miller KE (2015) Measurement of subcellular force generation in neurons. Biophys J 108:1027–1037.  https://doi.org/10.1016/j.bpj.2015.01.021 CrossRefPubMedPubMedCentralGoogle Scholar
  160. Oria R, Wiegand T, Escribano J, Elosegui-Artola A, Uriarte JJ, Moreno-Pulido C, Platzman I, Delcanale P, Albertazzi L, Navajas D, Trepat X, García-Aznar JM, Cavalcanti-Adam EA, Roca-Cusachs P (2017) Force loading explains spatial sensing of ligands by cells. Nature 552:219.  https://doi.org/10.1038/nature24662 CrossRefPubMedGoogle Scholar
  161. Orlando C, Ster J, Gerber U, Fawcett JW, Raineteau O (2012) Perisynaptic chondroitin sulfate proteoglycans restrict structural plasticity in an integrin-dependent manner. J Neurosci 32:18009–18017, 18017a.  https://doi.org/10.1523/JNEUROSCI.2406-12.2012 CrossRefPubMedPubMedCentralGoogle Scholar
  162. Park YK, Goda Y (2016) Integrins in synapse regulation. Nat Rev Neurosci 17:745–756.  https://doi.org/10.1038/nrn.2016.138 CrossRefPubMedGoogle Scholar
  163. Park J, Kim D-H, Kim H-N, Wang CJ, Kwak MK, Hur E, Suh K-Y, An SS, Levchenko A (2016a) Directed migration of cancer cells guided by the graded texture of the underlying matrix. Nat Mater 15:792–801.  https://doi.org/10.1038/nmat4586 CrossRefPubMedPubMedCentralGoogle Scholar
  164. Park M, Oh E, Seo J, Kim M-H, Cho H, Choi JY, Lee H, Choi IS (2016b) Control over neurite directionality and neurite elongation on anisotropic micropillar arrays. Small 12:1148–1152.  https://doi.org/10.1002/smll.201501896 CrossRefPubMedGoogle Scholar
  165. Parpura V, Haydon PG, Henderson E (1993) Three-dimensional imaging of living neurons and glia with the atomic force microscope. J Cell Sci 104(Pt 2):427–432PubMedGoogle Scholar
  166. Paszek MJ, DuFort CC, Rossier O, Bainer R, Mouw JK, Godula K, Hudak JE, Lakins JN, Wijekoon AC, Cassereau L, Rubashkin MG, Magbanua MJ, Thorn KS, Davidson MW, Rugo HS, Park JW, Hammer DA, Giannone G, Bertozzi CR, Weaver VM (2014) The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511:319–325.  https://doi.org/10.1038/nature13535 CrossRefPubMedPubMedCentralGoogle Scholar
  167. Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L (2002) Reactivation of ocular dominance plasticity in the adult visual cortex. Science 298:1248–1251.  https://doi.org/10.1126/science.1072699 CrossRefPubMedGoogle Scholar
  168. Puech P-H, Poole K, Knebel D, Muller DJ (2006) A new technical approach to quantify cell-cell adhesion forces by AFM. Ultramicroscopy 106:637–644.  https://doi.org/10.1016/j.ultramic.2005.08.003 CrossRefPubMedGoogle Scholar
  169. Puricelli L, Galluzzi M, Schulte C, Podestà A, Milani P (2015) Nanomechanical and topographical imaging of living cells by atomic force microscopy with colloidal probes. Rev Sci Instrum 86:033705.  https://doi.org/10.1063/1.4915896 CrossRefPubMedGoogle Scholar
  170. Rajnicek A, Britland S, McCaig C (1997) Contact guidance of CNS neurites on grooved quartz: influence of groove dimensions, neuronal age and cell type. J Cell Sci 110:2905–2913PubMedGoogle Scholar
  171. Rico F, Roca-Cusachs P, Sunyer R, Farré R, Navajas D (2007) Cell dynamic adhesion and elastic properties probed with cylindrical atomic force microscopy cantilever tips. J Mol Recognit 20:459–466.  https://doi.org/10.1002/jmr.829 CrossRefPubMedGoogle Scholar
  172. Robles E, Woo S, Gomez TM (2005) Src-dependent tyrosine phosphorylation at the tips of growth cone filopodia promotes extension. J Neurosci 25:7669–7681.  https://doi.org/10.1523/JNEUROSCI.2680-05.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  173. Ruoslahti E (1996) Brain extracellular matrix. Glycobiology 6:489–492.  https://doi.org/10.1093/glycob/6.5.489 CrossRefPubMedGoogle Scholar
  174. Sack I, Streitberger K-J, Krefting D, Paul F, Braun J (2011) The influence of physiological aging and atrophy on brain viscoelastic properties in humans. PLoS One 6:e23451.  https://doi.org/10.1371/journal.pone.0023451 CrossRefPubMedPubMedCentralGoogle Scholar
  175. Saha K, Keung AJ, Irwin EF, Li Y, Little L, Schaffer DV, Healy KE (2008) Substrate modulus directs neural stem cell behavior. Biophys J 95:4426–4438.  https://doi.org/10.1529/biophysj.108.132217 CrossRefPubMedPubMedCentralGoogle Scholar
  176. Santiago-Medina M, Gregus KA, Gomez TM (2013) PAK-PIX interactions regulate adhesion dynamics and membrane protrusion to control neurite outgrowth. J Cell Sci 126:1122–1133.  https://doi.org/10.1242/jcs.112607 CrossRefPubMedPubMedCentralGoogle Scholar
  177. Sarker M, Naghieh S, McInnes AD, Schreyer DJ, Chen X (2018) Strategic design and fabrication of nerve guidance conduits for peripheral nerve regeneration. Biotechnol J 13:1700635.  https://doi.org/10.1002/biot.201700635 CrossRefGoogle Scholar
  178. Schierbaum N, Rheinlaender J, Schäffer TE (2019) Combined atomic force microscopy (AFM) and traction force microscopy (TFM) reveals a correlation between viscoelastic material properties and contractile prestress of living cells. Soft Matter 15:1721–1729.  https://doi.org/10.1039/C8SM01585F CrossRefPubMedGoogle Scholar
  179. Schillers H, Rianna C, Schäpe J, Luque T, Doschke H, Wälte M, Uriarte JJ, Campillo N, Michanetzis GPA, Bobrowska J, Dumitru A, Herruzo ET, Bovio S, Parot P, Galluzzi M, Podestà A, Puricelli L, Scheuring S, Missirlis Y, Garcia R, Odorico M, Teulon J-M, Lafont F, Lekka M, Rico F, Rigato A, Pellequer J-L, Oberleithner H, Navajas D, Radmacher M (2017) Standardized nanomechanical atomic force microscopy procedure (SNAP) for measuring soft and biological samples. Sci Rep 7:5117.  https://doi.org/10.1038/s41598-017-05383-0 CrossRefPubMedPubMedCentralGoogle Scholar
  180. Schmid RS, Shelton S, Stanco A, Yokota Y, Kreidberg JA, Anton ES (2004) alpha3beta1 integrin modulates neuronal migration and placement during early stages of cerebral cortical development. Development 131:6023–6031.  https://doi.org/10.1242/dev.01532 CrossRefPubMedGoogle Scholar
  181. Schulte C, Racchetti G, D’Alessandro R, Meldolesi J (2010) A new form of neurite outgrowth sustained by the exocytosis of enlargeosomes expressed under the control of REST. Traffic Cph Den 11:1304–1314.  https://doi.org/10.1111/j.1600-0854.2010.01095.x CrossRefGoogle Scholar
  182. Schulte C, Ferraris GMS, Oldani A, Galluzzi M, Podestà A, Puricelli L, de Lorenzi V, Lenardi C, Milani P, Sidenius N (2016a) Lamellipodial tension, not integrin/ligand binding, is the crucial factor to realise integrin activation and cell migration. Eur J Cell Biol 95:1–14.  https://doi.org/10.1016/j.ejcb.2015.10.002 CrossRefPubMedGoogle Scholar
  183. Schulte C, Ripamonti M, Maffioli E, Cappelluti MA, Nonnis S, Puricelli L, Lamanna J, Piazzoni C, Podestà A, Lenardi C, Tedeschi G, Malgaroli A, Milani P (2016b) Scale invariant disordered nanotopography promotes hippocampal neuron development and maturation with involvement of mechanotransductive pathways. Front Cell Neurosci 10:267.  https://doi.org/10.3389/fncel.2016.00267 CrossRefPubMedPubMedCentralGoogle Scholar
  184. Schulte C, Rodighiero S, Cappelluti MA, Puricelli L, Maffioli E, Borghi F, Negri A, Sogne E, Galluzzi M, Piazzoni C, Tamplenizza M, Podestà A, Tedeschi G, Lenardi C, Milani P (2016c) Conversion of nanoscale topographical information of cluster-assembled zirconia surfaces into mechanotransductive events promotes neuronal differentiation. J Nanobiotechnology 14:18.  https://doi.org/10.1186/s12951-016-0171-3 CrossRefPubMedPubMedCentralGoogle Scholar
  185. Schulte C, Podestà A, Lenardi C, Tedeschi G, Milani P (2017) Quantitative control of protein and cell interaction with nanostructured surfaces by cluster assembling. Acc Chem Res 50:231–239.  https://doi.org/10.1021/acs.accounts.6b00433 CrossRefPubMedGoogle Scholar
  186. Schulte C, Lamanna J, Moro AS, Piazzoni C, Borghi F, Chighizola M, Ortoleva S, Racchetti G, Lenardi C, Podestà A, Malgaroli A, Milani P (2018) Neuronal cells confinement by micropatterned cluster-assembled dots with mechanotransductive nanotopography. ACS Biomater Sci Eng.  https://doi.org/10.1021/acsbiomaterials.8b00916 CrossRefGoogle Scholar
  187. Schvartzman M, Palma M, Sable J, Abramson J, Hu X, Sheetz MP, Wind SJ (2011) Nanolithographic control of the spatial organization of cellular adhesion receptors at the single-molecule level. Nano Lett 11:1306–1312.  https://doi.org/10.1021/nl104378f CrossRefPubMedPubMedCentralGoogle Scholar
  188. Schwarz US, Soiné JRD (2015) Traction force microscopy on soft elastic substrates: a guide to recent computational advances. Biochim Biophys Acta 1853:3095–3104.  https://doi.org/10.1016/j.bbamcr.2015.05.028 CrossRefPubMedGoogle Scholar
  189. Seidlits SK, Khaing ZZ, Petersen RR, Nickels JD, Vanscoy JE, Shear JB, Schmidt CE (2010) The effects of hyaluronic acid hydrogels with tunable mechanical properties on neural progenitor cell differentiation. Biomaterials 31:3930–3940.  https://doi.org/10.1016/j.biomaterials.2010.01.125 CrossRefPubMedGoogle Scholar
  190. Sekine K, Kawauchi T, Kubo K-I, Honda T, Herz J, Hattori M, Kinashi T, Nakajima K (2012) Reelin controls neuronal positioning by promoting cell-matrix adhesion via inside-out activation of integrin α5β1. Neuron 76:353–369.  https://doi.org/10.1016/j.neuron.2012.07.020 CrossRefPubMedPubMedCentralGoogle Scholar
  191. Shattil SJ, Kim C, Ginsberg MH (2010) The final steps of integrin activation: the end game. Nat Rev Mol Cell Biol 11:288–300.  https://doi.org/10.1038/nrm2871 CrossRefPubMedPubMedCentralGoogle Scholar
  192. Shen Q, Wang Y, Kokovay E, Lin G, Chuang S-M, Goderie SK, Roysam B, Temple S (2008) Adult SVZ stem cells lie in a vascular niche: a quantitative analysis of niche cell-cell interactions. Cell Stem Cell 3:289–300.  https://doi.org/10.1016/j.stem.2008.07.026 CrossRefPubMedPubMedCentralGoogle Scholar
  193. Sheng M, Kim E (2011) The postsynaptic organization of synapses. Cold Spring Harb Perspect Biol 3.  https://doi.org/10.1101/cshperspect.a005678 CrossRefGoogle Scholar
  194. Siedlik MJ, Varner VD, Nelson CM (2016) Pushing, pulling, and squeezing our way to understanding mechanotransduction. Methods 94:4–12.  https://doi.org/10.1016/j.ymeth.2015.08.019 CrossRefPubMedGoogle Scholar
  195. Sigal YM, Bae H, Bogart LJ, Hensch TK, Zhuang X (2019) Structural maturation of cortical peineuronal nets and their perforating synapses revealed by superresolution imaging. Proc Natl Acad Sci 116:7071–7076.  https://doi.org/10.1073/pnas.1817222116 CrossRefGoogle Scholar
  196. Simitzi C, Efstathopoulos P, Kourgiantaki A, Ranella A, Charalampopoulos I, Fotakis C, Athanassakis I, Stratakis E, Gravanis A (2015) Laser fabricated discontinuous anisotropic microconical substrates as a new model scaffold to control the directionality of neuronal network outgrowth. Biomaterials 67:115–128.  https://doi.org/10.1016/j.biomaterials.2015.07.008 CrossRefPubMedGoogle Scholar
  197. Simitzi C, Ranella A, Stratakis E (2017) Controlling the morphology and outgrowth of nerve and neuroglial cells: the effect of surface topography. Acta Biomater 51:21–52.  https://doi.org/10.1016/j.actbio.2017.01.023 CrossRefPubMedGoogle Scholar
  198. Smith Callahan LA, Xie S, Barker IA, Zheng J, Reneker DH, Dove AP, Becker ML (2013) Directed differentiation and neurite extension of mouse embryonic stem cell on aligned poly(lactide) nanofibers functionalized with YIGSR peptide. Biomaterials 34:9089–9095.  https://doi.org/10.1016/j.biomaterials.2013.08.028 CrossRefGoogle Scholar
  199. Sneddon IN (1965) The relation between load and penetration in the axisymmetric boussinesq problem for a punch of arbitrary profile. Int J Eng Sci 3:47–57.  https://doi.org/10.1016/0020-7225(65)90019-4 CrossRefGoogle Scholar
  200. Solecki DJ, Trivedi N, Govek E-E, Kerekes RA, Gleason SS, Hatten ME (2009) Myosin II motors and F-actin dynamics drive the coordinated movement of the centrosome and soma during CNS glial-guided neuronal migration. Neuron 63:63–80.  https://doi.org/10.1016/j.neuron.2009.05.028 CrossRefPubMedPubMedCentralGoogle Scholar
  201. Sorg BA, Berretta S, Blacktop JM, Fawcett JW, Kitagawa H, Kwok JCF, Miquel M (2016) Casting a wide net: role of perineuronal nets in neural plasticity. J Neurosci 36:11459–11468.  https://doi.org/10.1523/JNEUROSCI.2351-16.2016 CrossRefPubMedPubMedCentralGoogle Scholar
  202. Spedden E, White JD, Naumova EN, Kaplan DL, Staii C (2012) Elasticity maps of living neurons measured by combined fluorescence and atomic force microscopy. Biophys J 103:868–877.  https://doi.org/10.1016/j.bpj.2012.08.005 CrossRefPubMedPubMedCentralGoogle Scholar
  203. Stabenfeldt SE, LaPlaca MC (2011) Variations in rigidity and ligand density influence neuronal response in methylcellulose-laminin hydrogels. Acta Biomater 7:4102–4108.  https://doi.org/10.1016/j.actbio.2011.07.026 CrossRefPubMedPubMedCentralGoogle Scholar
  204. Strick T, Allemand J-F, Croquette V, Bensimon D (2000) Twisting and stretching single DNA molecules. Prog Biophys Mol Biol 74:115–140.  https://doi.org/10.1016/S0079-6107(00)00018-3 CrossRefPubMedGoogle Scholar
  205. Strohmeyer N, Bharadwaj M, Costell M, Fässler R, Müller DJ (2017) Fibronectin-bound α5β1 integrins sense load and signal to reinforce adhesion in less than a second. Nat Mater 16:1262–1270.  https://doi.org/10.1038/nmat5023 CrossRefPubMedGoogle Scholar
  206. Stukel JM, Willits RK (2015) Mechanotransduction of neural cells through cell–substrate interactions. Tissue Eng Part B Rev 22:173–182.  https://doi.org/10.1089/ten.teb.2015.0380 CrossRefGoogle Scholar
  207. Sun Y, Yong KMA, Villa-Diaz LG, Zhang X, Chen W, Philson R, Weng S, Xu H, Krebsbach PH, Fu J (2014) Hippo/YAP-mediated rigidity-dependent motor neuron differentiation of human pluripotent stem cells. Nat Mater 13:599–604.  https://doi.org/10.1038/nmat3945 CrossRefPubMedPubMedCentralGoogle Scholar
  208. Sun Z, Costell M, Fässler R (2019) Integrin activation by talin, kindlin and mechanical forces. Nat Cell Biol 21:25.  https://doi.org/10.1038/s41556-018-0234-9 CrossRefPubMedGoogle Scholar
  209. Sundararaghavan HG, Monteiro GA, Firestein BL, Shreiber DI (2009) Neurite growth in 3D collagen gels with gradients of mechanical properties. Biotechnol Bioeng 102:632–643.  https://doi.org/10.1002/bit.22074 CrossRefPubMedGoogle Scholar
  210. Tajerian M, Hung V, Nguyen H, Lee G, Joubert L-M, Malkovskiy AV, Zou B, Xie S, Huang T-T, Clark JD (2018) The hippocampal extracellular matrix regulates pain and memory after injury. Mol Psychiatry 23:2302.  https://doi.org/10.1038/s41380-018-0209-z CrossRefPubMedPubMedCentralGoogle Scholar
  211. Tanner K (2018) Perspective: the role of mechanobiology in the etiology of brain metastasis. APL Bioeng 2:031801.  https://doi.org/10.1063/1.5024394 CrossRefPubMedPubMedCentralGoogle Scholar
  212. Tate MC, García AJ, Keselowsky BG, Schumm MA, Archer DR, LaPlaca MC (2004) Specific beta1 integrins mediate adhesion, migration, and differentiation of neural progenitors derived from the embryonic striatum. Mol Cell Neurosci 27:22–31.  https://doi.org/10.1016/j.mcn.2004.05.001 CrossRefPubMedGoogle Scholar
  213. Taubenberger A, Cisneros DA, Friedrichs J, Puech P-H, Muller DJ, Franz CM (2007) Revealing early steps of α2β1 integrin-mediated adhesion to collagen type I by using single-cell force spectroscopy. Mol Biol Cell 18:1634–1644.  https://doi.org/10.1091/mbc.E06-09-0777 CrossRefPubMedPubMedCentralGoogle Scholar
  214. Teixeira AI, Ilkhanizadeh S, Wigenius JA, Duckworth JK, Inganäs O, Hermanson O (2009) The promotion of neuronal maturation on soft substrates. Biomaterials 30:4567–4572.  https://doi.org/10.1016/j.biomaterials.2009.05.013 CrossRefPubMedGoogle Scholar
  215. Theodosiou M, Widmaier M, Böttcher RT, Rognoni E, Veelders M, Bharadwaj M, Lambacher A, Austen K, Müller DJ, Zent R, Fässler R (2016) Kindlin-2 cooperates with talin to activate integrins and induces cell spreading by directly binding paxillin. eLife 5:e10130.  https://doi.org/10.7554/eLife.10130 CrossRefPubMedPubMedCentralGoogle Scholar
  216. Thompson AJ, Pillai EK, Dimov IB, Foster SK, Holt CE, Franze K (n.d.) Rapid changes in tissue mechanics regulate cell behaviour in the developing embryonic brain. eLife 8.  https://doi.org/10.7554/eLife.39356
  217. Tonazzini I, Meucci S, Faraci P, Beltram F, Cecchini M (2013) Neuronal differentiation on anisotropic substrates and the influence of nanotopographical noise on neurite contact guidance. Biomaterials 34:6027–6036.  https://doi.org/10.1016/j.biomaterials.2013.04.039 CrossRefPubMedGoogle Scholar
  218. Tonazzini I, Meucci S, Van Woerden GM, Elgersma Y, Cecchini M (2016) Impaired neurite contact guidance in ubiquitin ligase E3a (Ube3a)-deficient hippocampal neurons on nanostructured substrates. Adv Healthc Mater 5:850–862.  https://doi.org/10.1002/adhm.201500815 CrossRefPubMedGoogle Scholar
  219. Tyler WJ (2012) The mechanobiology of brain function. Nat Rev Neurosci 13:867–878.  https://doi.org/10.1038/nrn3383 CrossRefPubMedGoogle Scholar
  220. Uhler C, Shivashankar GV (2017) Chromosome intermingling: mechanical hotspots for genome regulation. Trends Cell Biol.  https://doi.org/10.1016/j.tcb.2017.06.005 CrossRefGoogle Scholar
  221. Vitriol EA, Zheng JQ (2012) Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron 73:1068–1081.  https://doi.org/10.1016/j.neuron.2012.03.005 CrossRefPubMedPubMedCentralGoogle Scholar
  222. Wang X, Ha T (2013) Defining single molecular forces required to activate integrin and notch signaling. Science 340:991–994.  https://doi.org/10.1126/science.1231041 CrossRefPubMedPubMedCentralGoogle Scholar
  223. Wang N, Butler JP, Ingber DE (1993) Mechanotransduction across the cell surface and through the cytoskeleton. Science 260:1124–1127.  https://doi.org/10.1126/science.7684161 CrossRefPubMedGoogle Scholar
  224. Wang HB, Mullins ME, Cregg JM, McCarthy CW, Gilbert RJ (2010) Varying the diameter of aligned electrospun fibers alters neurite outgrowth and Schwann cell migration. Acta Biomater 6:2970–2978.  https://doi.org/10.1016/j.actbio.2010.02.020 CrossRefPubMedGoogle Scholar
  225. Willits RK, Skornia SL (2004) Effect of collagen gel stiffness on neurite extension. J Biomater Sci Polym Ed 15:1521–1531CrossRefGoogle Scholar
  226. Winograd-Katz SE, Fässler R, Geiger B, Legate KR (2014) The integrin adhesome: from genes and proteins to human disease. Nat Rev Mol Cell Biol 15:273–288.  https://doi.org/10.1038/nrm3769 CrossRefPubMedGoogle Scholar
  227. Woo S, Gomez TM (2006) Rac1 and RhoA promote neurite outgrowth through formation and stabilization of growth cone point contacts. J Neurosci 26:1418–1428.  https://doi.org/10.1523/JNEUROSCI.4209-05.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  228. Xie J, Willerth SM, Li X, Macewan MR, Rader A, Sakiyama-Elbert SE, Xia Y (2009) The differentiation of embryonic stem cells seeded on electrospun nanofibers into neural lineages. Biomaterials 30:354–362.  https://doi.org/10.1016/j.biomaterials.2008.09.046 CrossRefPubMedGoogle Scholar
  229. Xiong Y, Lee AC, Suter DM, Lee GU (2009) Topography and nanomechanics of live neuronal growth cones analyzed by atomic force microscopy. Biophys J 96:5060–5072.  https://doi.org/10.1016/j.bpj.2009.03.032 CrossRefPubMedPubMedCentralGoogle Scholar
  230. Xu Z, Chen Y, Chen Y (2019) Spatiotemporal regulation of Rho GTPases in neuronal migration. Cells 8:568.  https://doi.org/10.3390/cells8060568 CrossRefPubMedCentralGoogle Scholar
  231. Yamaguchi Y, Katoh H, Yasui H, Mori K, Negishi M (2001) RhoA inhibits the nerve growth factor-induced Rac1 activation through Rho-associated kinase-dependent pathway. J Biol Chem 276:18977–18983.  https://doi.org/10.1074/jbc.M100254200 CrossRefPubMedGoogle Scholar
  232. Yang K, Jung K, Ko E, Kim J, Park KI, Kim J, Cho S-W (2013) Nanotopographical manipulation of focal adhesion formation for enhanced differentiation of human neural stem cells. ACS Appl Mater Interfaces 5:10529–10540.  https://doi.org/10.1021/am402156f CrossRefPubMedGoogle Scholar
  233. Yang K, Jung H, Lee H-R, Lee JS, Kim SR, Song KY, Cheong E, Bang J, Im SG, Cho S-W (2014) Multiscale, hierarchically patterned topography for directing human neural stem cells into functional neurons. ACS Nano 8:7809–7822.  https://doi.org/10.1021/nn501182f CrossRefPubMedGoogle Scholar
  234. Yang B, Lieu ZZ, Wolfenson H, Hameed FM, Bershadsky AD, Sheetz MP (2016) Mechanosensing controlled directly by tyrosine kinases. Nano Lett 16:5951–5961.  https://doi.org/10.1021/acs.nanolett.6b02995 CrossRefPubMedPubMedCentralGoogle Scholar
  235. Yao M, Goult BT, Chen H, Cong P, Sheetz MP, Yan J (2014) Mechanical activation of vinculin binding to talin locks talin in an unfolded conformation. Sci Rep 4:4610.  https://doi.org/10.1038/srep04610 CrossRefPubMedPubMedCentralGoogle Scholar
  236. Young JL, Holle AW, Spatz JP (2016) Nanoscale and mechanical properties of the physiological cell–ECM microenvironment. Exp Cell Res 343:3–6.  https://doi.org/10.1016/j.yexcr.2015.10.037 CrossRefPubMedGoogle Scholar
  237. Zhang X, Jiang G, Cai Y, Monkley SJ, Critchley DR, Sheetz MP (2008) Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat Cell Biol 10:1062–1068.  https://doi.org/10.1038/ncb1765 CrossRefPubMedPubMedCentralGoogle Scholar
  238. Zhang H, Deo M, Thompson RC, Uhler MD, Turner DL (2012) Negative regulation of Yap during neuronal differentiation. Dev Biol 361:103–115.  https://doi.org/10.1016/j.ydbio.2011.10.017 CrossRefPubMedGoogle Scholar
  239. Zhang D, Yang S, Toledo EM, Gyllborg D, Saltó C, Villaescusa JC, Arenas E (2017) Niche-derived laminin-511 promotes midbrain dopaminergic neuron survival and differentiation through YAP. Sci Signal 10:eaal4165.  https://doi.org/10.1126/scisignal.aal4165 CrossRefPubMedGoogle Scholar
  240. Zhu J, Zhu J, Springer TA (2013) Complete integrin headpiece opening in eight steps. J Cell Biol 201:1053–1068.  https://doi.org/10.1083/jcb.201212037 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Interdisciplinary Centre for Nanostructured Materials and Interfaces (C.I.Ma.I.Na.) and Department of Physics ``Aldo Pontremoli’’Università degli Studi di MilanoMilanItaly

Personalised recommendations