Skip to main content
Log in

The mechanobiology of tight junctions

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Tight junctions (TJ) play a central role in the homeostasis of epithelial and endothelial tissues, by providing a semipermeable barrier to ions and solutes, by contributing to the maintenance of cell polarity, and by functioning as signaling platforms. TJ are associated with the actomyosin and microtubule cytoskeletons, and the crosstalk with the cytoskeleton is fundamental for junction biogenesis and physiology. TJ are spatially and functionally connected to adherens junctions (AJ), which are essential for the maintenance of tissue integrity. Mechano-sensing and mechano-transduction properties of several AJ proteins have been characterized during the last decade. However, little is known about how mechanical forces act on TJ and their proteins, how TJ control the mechanical properties of cells and tissues, and what are the underlying molecular mechanisms. Here I review recent studies that have advanced our understanding of the relationships between mechanical force and TJ biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ABR:

actin binding region

AFM:

atomic force microscopy

AJ:

adherens junction

CAM:

cell adhesion molecule

CAR:

Coxsackie adenovirus receptor

dATP:

deoxyadenosine triphosphate

DbpA:

DNA binding protein A

ESAM:

endothelial cell-selective adhesion molecule

FRAP:

fluorescence recovery after photobleaching

FRET:

fluorescence resonance energy transfer

GAP:

GTPase activating protein

GEF:

guanine nucleotide exchange factor

GUK:

guanylate kinase (domain)

JAM:

junction associated molecule

MAGI:

membrane-associated guanylate kinase with Inverted orientation

MDCK:

Madin Darby Canine Kidney

MLCK:

myosin light chain kinase

PALS:

protein associated with Lin-7

PAR:

partition-defective (gene/protein)

PATJ:

Pals1-associated tight junction protein

PDZ:

PSD-95/disks large/zonula occludens-1 (domain)

PLEKHA7:

Pleckstrin Homology Domain Containing A7

ROCK:

Rho-associated protein Kinase

SH3:

Src homology-3

TAMPS:

TJ-associated MARVEL proteins

TEER:

trans-epithelial electrical resistance

TJ:

tight junction

TNF:

tumor necrosis factor

ZA:

zonula adhaerens

ZO:

zonula occludens

ZO-1:

zonula-occludens-1 (protein)

ZO-2:

zonula-occludens-2 (protein)

ZO-3:

zonula-occludens-3 (protein)

ZONAB:

ZO-1–associated nucleic acid binding protein

ZPSG:

ZO protein PDZ3-SH3-GUK (domains)

References

  • Aijaz S, D'Atri F, Citi S, Balda MS, Matter K (2005) Binding of GEF-H1 to the tight junction-associated adaptor cingulin results in inhibition of Rho signaling and G1/S phase transition. Dev Cell 8:777–786

    Article  CAS  PubMed  Google Scholar 

  • Anderson JM, Van Itallie CM (2009) Physiology and function of the tight junction. Cold Spring Harb Perspect Biol 1(a002584):1–16

    Google Scholar 

  • Bazellieres E, Conte V, Elosegui-Artola A, Serra-Picamal X, Bintanel-Morcillo M, Roca-Cusachs P, Munoz JJ, Sales-Pardo M, Guimera R, Trepat X (2015) Control of cell-cell forces and collective cell dynamics by the intercellular adhesome. Nat Cell Biol 17:409–420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birukova AA, Smurova K, Birukov KG, Usatyuk P, Liu F, Kaibuchi K, Ricks-Cord A, Natarajan V, Alieva I, Garcia JG, Verin AD (2004) Microtubule disassembly induces cytoskeletal remodeling and lung vascular barrier dysfunction: role of Rho-dependent mechanisms. J Cell Physiol 201:55–70

    Article  CAS  PubMed  Google Scholar 

  • Birukova AA, Fu P, Xing J, Yakubov B, Cokic I, Birukov KG (2010) Mechanotransduction by GEF-H1 as a novel mechanism of ventilator-induced vascular endothelial permeability. Am J Physiol Lung Cell Mol Physiol 298:L837–L848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birukova AA, Zebda N, Fu P, Poroyko V, Cokic I, Birukov KG (2011) Association between adherens junctions and tight junctions via Rap1 promotes barrier protective effects of oxidized phospholipids. J Cell Physiol 226:2052–2062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Birukova AA, Shah AS, Tian Y, Moldobaeva N, Birukov KG (2016) Dual role of vinculin in barrier-disruptive and barrier-enhancing endothelial cell responses. Cell Signal 28:541–551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braga V (2017) Signaling by small GTPases at cell-cell junctions: protein interactions building control and networks. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a028746

    Article  Google Scholar 

  • Brieher WM, Yap AS (2013) Cadherin junctions and their cytoskeleton(s). Curr Opin Cell Biol 25:39–46

    Article  CAS  PubMed  Google Scholar 

  • Bruckner BR, Janshoff A (2018) Importance of integrity of cell-cell junctions for the mechanics of confluent MDCK II cells. Sci Rep 8:14117

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Buckley, A., and J.R. Turner. 2018. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb Perspect Biol 10. https://doi.org/10.1101/cshperspect.a029314

    Article  CAS  Google Scholar 

  • Campbell HK, Maiers JL, DeMali KA (2017) Interplay between tight junctions & adherens junctions. Exp Cell Res 358:39–44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartagena-Rivera AX, Van Itallie CM, Anderson JM, Chadwick RS (2017) Apical surface supracellular mechanical properties in polarized epithelium using noninvasive acoustic force spectroscopy. Nat Commun 8:1030

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cavanaugh KJ Jr, Oswari J, Margulies SS (2001) Role of stretch on tight junction structure in alveolar epithelial cells. Am J Respir Cell Mol Biol 25:584–591

    Article  CAS  PubMed  Google Scholar 

  • Charras G, Yap AS (2018) Tensile forces and mechanotransduction at cell-cell junctions. Curr Biol 28:R445–R457

    Article  CAS  PubMed  Google Scholar 

  • Choi W, Jung KC, Nelson KS, Bhat MA, Beitel GJ, Peifer M, Fanning AS (2011) The single Drosophila ZO-1 protein Polychaetoid regulates embryonic morphogenesis in coordination with canoe/afadin and enabled. Mol Biol Cell 22:2010–2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi W, Acharya BR, Peyret G, Fardin MA, Mege RM, Ladoux B, Yap AS, Fanning AS, Peifer M (2016) Remodeling the zonula adherens in response to tension and the role of afadin in this response. J Cell Biol 213:243–260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Citi S (2018) Intestinal barriers protect against disease. Science. 359:1097–1098

    Article  CAS  PubMed  Google Scholar 

  • Citi S, Pulimeno P, Paschoud S (2012) Cingulin, paracingulin, and PLEKHA7: signaling and cytoskeletal adaptors at the apical junctional complex. Ann N Y Acad Sci 1257:125–132

    Article  CAS  PubMed  Google Scholar 

  • Citi S, Guerrera D, Spadaro D, Shah J (2014) Epithelial junctions and rho family GTPases: the zonular signalosome. Small GTPases 5:1–15

    Article  PubMed  CAS  Google Scholar 

  • Conway DE, Schwartz MA (2015) Mechanotransduction of shear stress occurs through changes in VE-cadherin and PECAM-1 tension: implications for cell migration. Cell Adhes Migr 9:335–339

    Article  CAS  Google Scholar 

  • Cordenonsi M, D'Atri F, Hammar E, Parry DA, Kendrick-Jones J, Shore D, Citi S (1999) Cingulin contains globular and coiled-coil domains and interacts with ZO-1, ZO-2, ZO-3, and myosin. J Cell Biol 147:1569–1582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D'Atri F, Citi S (2001) Cingulin interacts with F-actin in vitro. FEBS Lett 507:21–24

    Article  CAS  PubMed  Google Scholar 

  • D'Atri F, Nadalutti F, Citi S (2002) Evidence for a functional interaction between cingulin and ZO-1 in cultured cells. J Biol Chem 277:27757–27764

    Article  CAS  PubMed  Google Scholar 

  • De Pascalis C, Etienne-Manneville S (2017) Single and collective cell migration: the mechanics of adhesions. Mol Biol Cell 28:1833–1846

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ebnet K, Suzuki A, Ohno S, Vestweber D (2004) Junctional adhesion molecules (JAMs): more molecules with dual functions? J Cell Sci 117:19–29

    Article  CAS  PubMed  Google Scholar 

  • Ebrahim S, Fujita T, Millis BA, Kozin E, Ma X, Kawamoto S, Baird MA, Davidson M, Yonemura S, Hisa Y, Conti MA, Adelstein RS, Sakaguchi H, Kachar B (2013) NMII forms a contractile transcellular sarcomeric network to regulate apical cell junctions and tissue geometry. Curr Biol 23:731–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elbediwy A, Zihni C, Terry SJ, Clark P, Matter K, Balda MS (2012) Epithelial junction formation requires confinement of Cdc42 activity by a novel SH3BP1 complex. J Cell Biol 198:677–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Etournay R, Zwaenepoel I, Perfettini I, Legrain P, Petit C, El-Amraoui A (2007) Shroom2, a myosin-VIIa- and actin-binding protein, directly interacts with ZO-1 at tight junctions. J Cell Sci 120:2838–2850

    Article  CAS  PubMed  Google Scholar 

  • Fanning AS, Anderson JM (2009) Zonula occludens-1 and -2 are cytosolic scaffolds that regulate the assembly of cellular junctions. Ann N Y Acad Sci 1165:113–120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fanning AS, Jameson BJ, Jesaitis LA, Anderson JM (1998) The tight junction protein ZO-1 establishes a link between the transmembrane protein occludin and the actin cytoskeleton. J Biol Chem 273:29745–29753

    Article  CAS  PubMed  Google Scholar 

  • Fanning AS, Ma TY, Anderson JM (2002) Isolation and functional characterization of the actin binding region in the tight junction protein ZO-1. FASEB J 16:1835–1837

    Article  CAS  PubMed  Google Scholar 

  • Fanning AS, Van Itallie CM, Anderson JM (2012) Zonula occludens-1 and -2 regulate apical cell structure and the zonula adherens cytoskeleton in polarized epithelia. Mol Biol Cell 23:577–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fesenko I, Kurth T, Sheth B, Fleming TP, Citi S, Hausen P (2000) Tight junction biogenesis in the early Xenopus embryo. Mech Dev 96:51–65

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Izumi Y, Oda Y, Higashi T, Iwamoto N (2014) Molecular organization of tricellular tight junctions. Tissue Barriers 2:e28960

    Article  PubMed  PubMed Central  Google Scholar 

  • Guillemot L, Hammar E, Kaister C, Ritz J, Caille D, Jond L, Bauer C, Meda P, Citi S (2004) Disruption of the cingulin gene does not prevent tight junction formation but alters gene expression. J Cell Sci 117:5245–5256

    Article  CAS  PubMed  Google Scholar 

  • Guillemot L, Paschoud S, Pulimeno P, Foglia A, Citi S (2008) The cytoplasmic plaque of tight junctions: a scaffolding and signalling center. Biochimica et Biophysica Acta (BBA)-Biomembranes 1778:601–613

    Article  CAS  Google Scholar 

  • Guillemot L, Schneider Y, Brun P, Castagliuolo I, Pizzuti D, Martines D, Jond L, Bongiovanni M, Citi S (2012) Cingulin is dispensable for epithelial barrier function and tight junction structure, and plays a role in the control of claudin-2 expression and response to duodenal mucosa injury. J Cell Sci 125:5005–5012

    CAS  PubMed  Google Scholar 

  • Guillemot L, Guerrera D, Spadaro D, Tapia R, Jond L, Citi S (2014) MgcRacGAP interacts with cingulin and paracingulin to regulate Rac1 activation and development of the tight junction barrier during epithelial junction assembly. Mol Biol Cell 25:1995–2005

    Article  PubMed  PubMed Central  Google Scholar 

  • Gunzel D, Yu AS (2013) Claudins and the modulation of tight junction permeability. Physiol Rev 93:525–569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hatte, G., C. Prigent, and J.P. Tassan. 2018. Tight junctions negatively regulate mechanical forces applied to adherens junctions in vertebrate epithelial tissue J Cell Sci 131. https://doi.org/10.1242/jcs.208736

    Article  CAS  Google Scholar 

  • Higashi T, Arnold TR, Stephenson RE, Dinshaw KM, Miller AL (2016) Maintenance of the epithelial barrier and remodeling of cell-cell junctions during cytokinesis. Curr Biol 26:1829–1842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Howarth AG, Hughes MR, Stevenson BR (1992) Detection of the tight junction-associated protein ZO-1 in astrocytes and other nonepithelial cell types. Am J Phys 262:C461–C469

    Article  CAS  Google Scholar 

  • Ikeda W, Nakanishi H, Miyoshi J, Mandai K, Ishizaki H, Tanaka M, Togawa A, Takahashi K, Nishioka H, Yoshida H, Mizoguchi A, Nishikawa S, Takai Y (1999) Afadin: a key molecule essential for structural organization of cell-cell junctions of polarized epithelia during embryogenesis. J Cell Biol 146:1117–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ikenouchi J, Suzuki M, Umeda K, Ikeda K, Taguchi R, Kobayashi T, Sato SB, Kobayashi T, Stolz DB, Umeda M (2012) Lipid polarity is maintained in absence of tight junctions. J Biol Chem 287:9525–9533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh M, Nagafuchi A, Yonemura S, Yasuda-Kitani T, Tsukita S, Tsukita S (1993) The 220kD protein colocalizing with cadherins in non-epithelial cells is identical to ZO-1, a tight junction-associated protein in epithelial cells: cDNA cloning and immunoelectron microscopy. J Cell Biol 121:491–502

    Article  CAS  PubMed  Google Scholar 

  • Itoh M, Nagafuchi A, Moroi S, Tsukita S (1997) Involvement of ZO-1 in cadherin-based cell adhesion through its direct binding to alpha catenin and actin filaments. J Cell Biol 138:181–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoh M, Tsukita S, Yamazaki Y, Sugimoto H (2012) Rho GTP exchange factor ARHGEF11 regulates the integrity of epithelial junctions by connecting ZO-1 and RhoA-myosin II signaling. Proc Natl Acad Sci U S A 109:9905–9910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ivanov AI, McCall IC, Parkos CA, Nusrat A (2004) Role for actin filament turnover and a myosin II motor in cytoskeleton-driven disassembly of the epithelial apical junctional complex. Mol Biol Cell 15:2639–2651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumi Y, Motoishi M, Furuse K, Furuse M (2016) A tetraspanin regulates septate junction formation in Drosophila midgut. J Cell Sci 129:1155–1164

    CAS  PubMed  Google Scholar 

  • Katsube T, Takahisa M, Ueda R, Hashimoto N, Kobayashi M, Togashi S (1998) Cortactin associates with the cell-cell junction protein ZO-1 in both Drosophila and mouse. J Biol Chem 273:29672–29677

    Article  CAS  PubMed  Google Scholar 

  • Ko CS, Tserunyan V, Martin AC (2018) Microtubules promote intercellular contractile force transmission during tissue folding. J. Cell Biol 218(8): 2726–2742. https://doi.org/10.1083/jcb.201902011

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Konishi S, Yano T, Tanaka H, Mizuno T, Kanoh H, Tsukita K, Namba T, Tamura A, Yonemura S, Gotoh S, Matsumoto H, Hirai T, Tsukita S (2019) Vinculin is critical for the robustness of the epithelial cell sheet paracellular barrier for ions. Life Sci Alliance 2. https://doi.org/10.26508/lsa.201900414

    Article  PubMed  PubMed Central  Google Scholar 

  • Krug SM, Gunzel D, Conrad MP, Lee IF, Amasheh S, Fromm M, Yu AS (2012) Charge-selective claudin channels. Ann N Y Acad Sci 1257:20–28

    Article  CAS  PubMed  Google Scholar 

  • Kubota K, Furuse M, Sasaki H, Sonoda N, Fujita K, Nagafuchi A, Tsukita S (1999) Ca(2+)-independent cell-adhesion activity of claudins, a family of integral membrane proteins localized at tight junctions. Curr Biol 9:1035–1038

    Article  CAS  PubMed  Google Scholar 

  • Ladoux B, Nelson WJ, Yan J, Mege RM (2015) The mechanotransduction machinery at work at adherens junctions. Integr Biol (Camb) 7:1109–1119

    Article  CAS  Google Scholar 

  • Leckband DE, de Rooij J (2014) Cadherin adhesion and mechanotransduction. Annu Rev Cell Dev Biol 30:291–315

    Article  CAS  PubMed  Google Scholar 

  • Lim TS, Vedula SR, Hui S, Kausalya PJ, Hunziker W, Lim CT (2008) Probing effects of pH change on dynamic response of Claudin-2 mediated adhesion using single molecule force spectroscopy. Exp Cell Res 314:2643–2651

    Article  CAS  PubMed  Google Scholar 

  • Luissint AC, Parkos CA, Nusrat A (2016) Inflammation and the intestinal barrier: leukocyte-epithelial cell interactions, cell junction remodeling, and mucosal repair. Gastroenterology 151:616–632

    Article  CAS  PubMed  Google Scholar 

  • Madara JL (1987) Intestinal absorptive cell tight junctions are linked to the cytoskeleton. Am J Phys 253:C171–C175

    Article  CAS  Google Scholar 

  • Madara JL, Barenberg D, Carlson S (1986) Effects of cytochalasin D on occluding junctions of intestinal absorptive cells: further evidence that the cytoskeleton may influence paracellular permeability and junctional charge selectivity. J Cell Biol 102:2125–2136

    Article  CAS  PubMed  Google Scholar 

  • Maiers JL, Peng X, Fanning AS, DeMali KA (2013) ZO-1 recruitment to alpha-catenin--a novel mechanism for coupling the assembly of tight junctions to adherens junctions. J Cell Sci 126:3904–3915

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandel LJ, Bacallao R, Zampighi G (1993) Uncoupling of the molecular ‘fence’ and paracellular ‘gate’ functions in epithelial tight junctions. Nature. 361:552–555

    Article  CAS  PubMed  Google Scholar 

  • Mangan AJ, Sietsema DV, Li D, Moore JK, Citi S, Prekeris R (2016) Cingulin and actin mediate midbody-dependent apical lumen formation during polarization of epithelial cells. Nat Commun 7:12426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marchiando AM, Shen L, Graham WV, Weber CR, Schwarz BT, Austin JR 2nd, Raleigh DR, Guan Y, Watson AJ, Montrose MH, Turner JR (2010) Caveolin-1-dependent occludin endocytosis is required for TNF-induced tight junction regulation in vivo. J Cell Biol 189:111–126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martinez-Rico C, Pincet F, Perez E, Thiery JP, Shimizu K, Takai Y, Dufour S (2005) Separation force measurements reveal different types of modulation of E-cadherin-based adhesion by nectin-1 and -3. J Biol Chem 280:4753–4760

    Article  CAS  PubMed  Google Scholar 

  • Mattagajasingh SN, Huang SC, Hartenstein JS, Benz EJ Jr (2000) Characterization of the interaction between protein 4.1R and ZO-2: a possible link between the tight junction and the actin cytoskeleton. J Biol Chem 275:30573–30585

    Article  CAS  PubMed  Google Scholar 

  • McNeil E, Capaldo CT, Macara IG (2006) Zonula occludens-1 function in the assembly of tight junctions in Madin-Darby canine kidney epithelial cells. Mol Biol Cell 17:1922–1932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meng W, Takeichi M (2009) Adherens junction: molecular architecture and regulation. Cold Spring Harbor Perspectives in Biology. https://doi.org/10.1101/cshperspect.a002899

    Article  PubMed  PubMed Central  Google Scholar 

  • Meza I, Sabenero M, Stefoni E, Cereijido M (1982) Occluding junctions in MDCK cells: modulation of transepithelial permeability by the cytoskeleton. J Cell Biochem 18:407–421

    Article  CAS  PubMed  Google Scholar 

  • Mino A, Ohtsuka T, Inoue E, Takai Y (2000) Membrane-associated guanylate kinase with inverted orientation (MAGI)-1/brain angiogenesis inhibitor 1-associated protein (BAP1) as a scaffolding molecule for rap small G protein GDP/GTP exchange protein at tight junctions. Genes Cells 5:1009–1016

    Article  CAS  PubMed  Google Scholar 

  • Mohanan V, Nakata T, Desch AN, Levesque C, Boroughs A, Guzman G, Cao Z, Creasey E, Yao J, Boucher G, Charron G, Bhan AK, Schenone M, Carr SA, Reinecker HC, Daly MJ, Rioux JD, Lassen KG, Xavier RJ (2018) C1orf106 is a colitis risk gene that regulates stability of epithelial adherens junctions. Science. 359:1161–1166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monteiro AC, Sumagin R, Rankin CR, Leoni G, Mina MJ, Reiter DM, Stehle T, Dermody TS, Schaefer SA, Hall RA, Nusrat A, Parkos CA (2013) JAM-A associates with ZO-2, afadin, and PDZ-GEF1 to activate Rap2c and regulate epithelial barrier function. Mol Biol Cell 24:2849–2860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Odenwald MA, Choi W, Kuo WT, Singh G, Sailer A, Wang Y, Shen L, Fanning AS, Turner JR (2018) The scaffolding protein ZO-1 coordinates actomyosin and epithelial apical specializations in vitro and in vivo. J Biol Chem

  • Otani T, Ichii T, Aono S, Takeichi M (2006) Cdc42 GEF tuba regulates the junctional configuration of simple epithelial cells. J Cell Biol 175:135–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paschoud S, Citi S (2008) Inducible overexpression of cingulin in stably transfected MDCK cells does not affect tight junction organization and gene expression. Mol Membr Biol 25:1–13

    Article  CAS  PubMed  Google Scholar 

  • Paschoud S, Bongiovanni M, Pache JC, Citi S (2007) Claudin-1 and claudin-5 expression patterns differentiate lung squamous cell carcinomas from adenocarcinomas. Mod Pathol 20:947–954

    Article  CAS  PubMed  Google Scholar 

  • Pinto da Silva P, Kachar B (1982) On tight-junction structure. Cell. 28:441–450

    Article  CAS  PubMed  Google Scholar 

  • Rahner C, Mitic LL, Anderson JM (2001) Heterogeneity in expression and subcellular localization of claudins 2, 3, 4 and 5 in rat liver, pancreas and gut. Gastroenterology. 120:411–422

    Article  CAS  PubMed  Google Scholar 

  • Rubsam M, Mertz AF, Kubo A, Marg S, Jungst C, Goranci-Buzhala G, Schauss AC, Horsley V, Dufresne ER, Moser M, Ziegler W, Amagai M, Wickstrom SA, Niessen CM (2017) E-cadherin integrates mechanotransduction and EGFR signaling to control junctional tissue polarization and tight junction positioning. Nat Commun 8:1250

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sakakibara S, Maruo T, Miyata M, Mizutani K, Takai Y (2018) Requirement of the F-actin-binding activity of l-afadin for enhancing the formation of adherens and tight junctions. Genes Cells 23:185–199

    Article  CAS  PubMed  Google Scholar 

  • Shah J, Rouaud F, Guerrera D, Vasileva E, Popov LM, Kelley WL, Rubinstein E, Carette JE, Amieva MR, Citi S (2018) A dock-and-lock mechanism clusters ADAM10 at cell-cell junctions to promote alpha-toxin cytotoxicity. Cell Rep 25(2132–2147):e2137

    Google Scholar 

  • Shen L, Weber CR, Turner JR (2008) The tight junction protein complex undergoes rapid and continuous molecular remodeling at steady state. J Cell Biol 181:683–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen L, Weber CR, Raleigh DR, Yu D, Turner JR (2011) Tight junction pore and leak pathways: a dynamic duo. Annu Rev Physiol 73:283–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shigetomi K, Ono Y, Inai T, Ikenouchi J (2018) Adherens junctions influence tight junction formation via changes in membrane lipid composition. J Cell Biol 217:2373–2381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin K, Fogg VC, Margolis B (2006) Tight junctions and cell polarity. Annu Rev Cell Dev Biol 22:207–235

    Article  CAS  PubMed  Google Scholar 

  • Singh A, Saha T, Begemann I, Ricker A, Nusse H, Thorn-Seshold O, Klingauf J, Galic M, Matis M (2018) Polarized microtubule dynamics directs cell mechanics and coordinates forces during epithelial morphogenesis. Nat Cell Biol 20:1126–1133

    Article  CAS  PubMed  Google Scholar 

  • Sluysmans S, Vasileva E, Spadaro D, Shah J, Rouaud F, Citi S (2017) The role of apical cell-cell junctions and associated cytoskeleton in mechanotransduction. Biol Cell 109:139–161

    Article  PubMed  Google Scholar 

  • Spadaro D, Le S, Laroche T, Mean I, Jond L, Yan J, Citi S (2017) Tension-dependent stretching activates ZO-1 to control the junctional localization of its interactors. Curr Biol 27(3783–3795):e3788

    Google Scholar 

  • Stephenson RE, Higashi T, Erofeev IS, Arnold TR, Leda M, Goryachev AB, Miller AL (2019) Rho flares repair local tight junction leaks. Dev Cell 48(445–459):e445

    Article  CAS  Google Scholar 

  • Sugimura K, Lenne PF, Graner F (2016) Measuring forces and stresses in situ in living tissues. Development. 143:186–196

    Article  CAS  PubMed  Google Scholar 

  • Takai Y, Nakanishi H (2003) Nectin and afadin: novel organizers of intercellular junctions. J Cell Sci 116:17–27

    Article  CAS  PubMed  Google Scholar 

  • Takeda M, Sami MM, Wang YC (2018) A homeostatic apical microtubule network shortens cells for epithelial folding via a basal polarity shift. Nat Cell Biol 20:36–45

    Article  CAS  PubMed  Google Scholar 

  • Takeichi M (2014) Dynamic contacts: rearranging adherens junctions to drive epithelial remodelling. Nat Rev Mol Cell Biol. 15:397–410

    Article  CAS  PubMed  Google Scholar 

  • Tanaka-Okamoto M, Hori K, Ishizaki H, Itoh Y, Onishi S, Yonemura S, Takai Y, Miyoshi J (2011) Involvement of afadin in barrier function and homeostasis of mouse intestinal epithelia. J Cell Sci 124:2231–2240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terry SJ, Zihni C, Elbediwy A, Vitiello E, San IVLC, Balda MS, Matter K (2011) Spatially restricted activation of RhoA signalling at epithelial junctions by p114RhoGEF drives junction formation and morphogenesis. Nat Cell Biol 13:159–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokuda S, Higashi T, Furuse M (2014) ZO-1 knockout by TALEN-mediated gene targeting in MDCK cells: involvement of ZO-1 in the regulation of cytoskeleton and cell shape. PLoS One 9:e104994

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tornavaca O, Chia M, Dufton N, Almagro LO, Conway DE, Randi AM, Schwartz MA, Matter K, Balda MS (2015) ZO-1 controls endothelial adherens junctions, cell-cell tension, angiogenesis, and barrier formation. J Cell Biol 208:821–838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukita S, Tanaka H, Tamura A (2019) The claudins: from tight junctions to biological systems. Trends Biochem Sci 44:141–152

    Article  CAS  PubMed  Google Scholar 

  • Turner JR (2000) ‘Putting the squeeze’ on the tight junction: understanding cytoskeletal regulation. Semin Cell Dev Biol 11:301–308

    Article  CAS  PubMed  Google Scholar 

  • Turner JR, Rill BK, Carlson SL, Carnes D, Kerner R, Mrsny RJ, Madara JL (1997) Physiological regulation of epithelial tight junctions is associated with myosin light-chain phosphorylation. Am J Phys 273:C1378–C1385

    Article  CAS  Google Scholar 

  • Umeda K, Matsui T, Nakayama M, Furuse K, Sasaki H, Furuse M, Tsukita S (2004) Establishment and characterization of cultured epithelial cells lacking expression of ZO-1. J Biol Chem 279:44785–44794

    Article  CAS  PubMed  Google Scholar 

  • Umeda K, Ikenouchi J, Katahira-Tayama S, Furuse K, Sasaki H, Nakayama M, Matsui T, Tsukita S, Furuse M, Tsukita S (2006) ZO-1 and ZO-2 independently determine where claudins are polymerized in tight-junction strand formation. Cell. 126:741–754

    Article  CAS  PubMed  Google Scholar 

  • Van Itallie CM, Anderson JM (1997) Occludin confers adhesiveness when expressed in fibroblasts. J Cell Sci 110:1113–1121

    Article  PubMed  Google Scholar 

  • Van Itallie CM, Fanning AS, Bridges A, Anderson JM (2009) ZO-1 stabilizes the tight junction solute barrier through coupling to the perijunctional cytoskeleton. Mol Biol Cell 20:3930–3940

    Article  PubMed  PubMed Central  Google Scholar 

  • Van Itallie CM, Fanning AS, Holmes J, Anderson JM (2010) Occludin is required for cytokine-induced regulation of tight junction barriers. J Cell Sci 123:2844–2852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Van Itallie CM, Tietgens AJ, Krystofiak E, Kachar B, Anderson JM (2015) A complex of ZO-1 and the BAR-domain protein TOCA-1 regulates actin assembly at the tight junction. Mol Biol Cell 26:2769–2787

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vasileva E, Citi S (2018) The role of microtubules in the regulation of epithelial junctions. Tissue Barriers:1–20

  • Vedula SRK, Lim TS, Kausalya PJ, Lane EB, Rajagopal G, Hunziker W, Lim CT (2009) Quantifying forces mediated by integral tight junction proteins in cell-cell adhesion. Exp Mechanics 49:3–9

    Article  CAS  Google Scholar 

  • Wang F, Graham WV, Wang Y, Witkowski ED, Schwarz BT, Turner JR (2005) Interferon-gamma and tumor necrosis factor-alpha synergize to induce intestinal epithelial barrier dysfunction by up-regulating myosin light chain kinase expression. Am J Pathol 166:409–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wells CD, Fawcett JP, Traweger A, Yamanaka Y, Goudreault M, Elder K, Kulkarni S, Gish G, Virag C, Lim C, Colwill K, Starostine A, Metalnikov P, Pawson T (2006) A Rich1/Amot complex regulates the Cdc42 GTPase and apical-polarity proteins in epithelial cells. Cell. 125:535–548

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Harada N, Kano K, Taya S, Canaani E, Matsuura Y, Mizoguchi A, Ide C, Kaibuchi K (1997) The Ras target AF-6 interacts with ZO-1 and serves as a peripheral component of tight junctions in epithelial cells. J Cell Biol 139:785–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki Y, Umeda K, Wada M, Nada S, Okada M, Tsukita S, Tsukita S (2008) ZO-1- and ZO-2-dependent integration of myosin-2 to epithelial zonula adherens. Mol Biol Cell 19:3801–3811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano T, Matsui T, Tamura A, Uji M, Tsukita S (2013) The association of microtubules with tight junctions is promoted by cingulin phosphorylation by AMPK. J Cell Biol 203:605–614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu D, Marchiando A, Weber C, Raleigh D, Wang Y, Shen L, Turner J (2010) MLCK-dependent exchange and actin binding region-dependent anchoring of ZO-1 regulate tight junction barrier function. Proc Natl Acad Sci U S A 107:8237–8241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemljic-Harpf AE, Godoy JC, Platoshyn O, Asfaw EK, Busija AR, Domenighetti AA, Ross RS (2014) Vinculin directly binds zonula occludens-1 and is essential for stabilizing connexin-43-containing gap junctions in cardiac myocytes. J Cell Sci 127:1104–1116

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zihni C, Mills C, Matter K, Balda MS (2016) Tight junctions: from simple barriers to multifunctional molecular gates. Nat Rev Mol Cell Biol 17:564–580

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am grateful to Sophie Sluysmans, Ekaterina Vasileva, Florian Rouaud, and Jimit Shah for comments on the manuscript. The Citi laboratory is supported by the Swiss National Foundation, the State of Geneva, and the Novartis Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Citi.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Citi, S. The mechanobiology of tight junctions. Biophys Rev 11, 783–793 (2019). https://doi.org/10.1007/s12551-019-00582-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-019-00582-7

Keywords

Navigation