Skip to main content

Advertisement

Log in

Tensile and compressive force regulation on cell mechanosensing

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Receptor-mediated cell mechanosensing plays critical roles in cell spreading, migration, growth, and survival. Dynamic force spectroscopy (DFS) techniques have recently been advanced to visualize such processes, which allow the concurrent examination of molecular binding dynamics and cellular response to mechanical stimuli on single living cells. Notably, the live-cell DFS is able to manipulate the force “waveforms” such as tensile versus compressive, ramped versus clamped, static versus dynamic, and short versus long lasting forces, thereby deriving correlations of cellular responses with ligand binding kinetics and mechanical stimulation profiles. Here, by differentiating extracellular mechanical stimulations into two major categories, tensile force and compressive force, we review the latest findings on receptor-mediated mechanosensing mechanisms that are discovered by the state-of-the-art live-cell DFS technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

DFS:

Dynamic force spectroscopy

AFM:

Atomic force microscopy

BFP:

Biomembrane force probe

OT:

Optical tweezers

TCR:

T cell receptor

pMHC:

Peptide major histocompatibility complex

VWF:

von Willebrand factor

References

  • Akiyoshi B, Sarangapani KK, Powers AF, Nelson CR, Reichow SL, Arellano-Santoyo H, Gonen T, Ranish JA, Asbury CL, Biggins S (2010) Tension directly stabilizes reconstituted kinetochore-microtubule attachments. Nature 468:576–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bacabac RG, Smit TH, Mullender MG, Dijcks SJ, Van Loon JJ, Klein-Nulend J (2004) Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem Biophys Res Commun 315:823–829

    Article  CAS  PubMed  Google Scholar 

  • Block H, Herter JM, Rossaint J, Stadtmann A, Kliche S, Lowell CA, Zarbock A (2012) Crucial role of SLP-76 and ADAP for neutrophil recruitment in mouse kidney ischemia-reperfusion injury. J Exp Med 209:407–421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brockman JM, Blanchard AT, Pui-Yan VM, Derricotte WD, Zhang Y, Fay ME, Lam WA, Evangelista FA, Mattheyses AL, Salaita K (2018) Mapping the 3D orientation of piconewton integrin traction forces. Nat Meth 15:115–118

    Article  CAS  Google Scholar 

  • Charras G, Yap AS (2018) Tensile forces and mechanotransduction at cell-cell junctions. Curr Biol 28:R445–R457

    Article  CAS  PubMed  Google Scholar 

  • Chaudhuri O, Parekh SH, Fletcher DA (2007) Reversible stress softening of actin networks. Nature 445:295–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA, Weaver JC, Huebsch N, Lee HP, Lippens E, Duda GN et al (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15:326–334

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Lou J, Evans EA, Zhu C (2012) Observing force-regulated conformational changes and ligand dissociation from a single integrin on cells. J Cell Biol 199:497–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Ju L, Rushdi M, Ge C, Zhu C (2017a) Receptor-mediated cell mechanosensing. Mol Biol Cell 28:3134–3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Lee H, Tong H, Schwartz M, Zhu C (2017b) Force regulated conformational change of integrin alphaVbeta3. Matrix Biol 60-61:70–85

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Ju LA, Zhou F, Liao J, Xue L, Su QP, Jin D, Yuan Y, Lu H, Jackson SP et al (2019) An integrin alphaIIbbeta3 intermediate affinity state mediates biomechanical platelet aggregation. Nat Mater In press

  • Cheng G, Tse J, Jain RK, Munn LL (2009) Micro-environmental mechanical stress controls tumor spheroid size and morphology by suppressing proliferation and inducing apoptosis in cancer cells. PLoS One 4:e4632

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi YI, Duke-Cohan JS, Chen W, Liu B, Rossy J, Tabarin T, Ju L, Gui J, Gaus K, Zhu C et al (2014) Dynamic control of β1 integrin adhesion by the plexinD1-sema3E axis. Proc Natl Acad Sci U S A 111:379–384

    Article  CAS  PubMed  Google Scholar 

  • Comrie WA, Babich A, Burkhardt JK (2015) F-actin flow drives affinity maturation and spatial organization of LFA-1 at the immunological synapse. J Cell Biol 208:475–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox CD, Bavi N, Martinac B (2017) Origin of the force: the force-from-lipids principle applied to piezo channels. Curr Top Membr 79:59–96

    Article  CAS  PubMed  Google Scholar 

  • Elosegui-Artola A, Oria R, Chen Y, Kosmalska A, Perez-Gonzalez C, Castro N, Zhu C, Trepat X, Roca-Cusachs P (2016) Mechanical regulation of a molecular clutch defines force transmission and transduction in response to matrix rigidity. Nat Cell Biol 18:540–548

    Article  CAS  PubMed  Google Scholar 

  • Farge E (2003) Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr Biol 13:1365–1377

    Article  CAS  PubMed  Google Scholar 

  • Feghhi S, Tooley WW, Sniadecki NJ (2016) Nonmuscle myosin IIA regulates platelet contractile forces through rho kinase and myosin light-chain kinase. J Biomech Eng 138

  • Fiore VF, Ju L, Chen Y, Zhu C, Barker TH (2014) Dynamic catch of a Thy-1-alpha5beta1+syndecan-4 trimolecular complex. Nat Commun 5:4886

    Article  CAS  PubMed  Google Scholar 

  • Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fournier MF, Sauser R, Ambrosi D, Meister JJ, Verkhovsky AB (2010) Force transmission in migrating cells. J Cell Biol 188:287–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo XE, Hung CT, Sandell LJ, Silva MJ (2018) Musculoskeletal mechanobiology: a new era for mechanomedicine. J Orthop Res 36:531–532

    PubMed  Google Scholar 

  • Hattrup CL, Gendler SJ (2008) Structure and function of the cell surface (tethered) mucins. Annu Rev Physiol 70:431–457

    Article  CAS  PubMed  Google Scholar 

  • Hoffman BD, Yap AS (2015) Towards a dynamic understanding of cadherin-based Mechanobiology. Trends Cell Biol 25:803–814

    Article  CAS  PubMed  Google Scholar 

  • Holle AW, Tang X, Vijayraghavan D, Vincent LG, Fuhrmann A, Choi YS, del Alamo JC, Engler AJ (2013) In situ mechanotransduction via vinculin regulates stem cell differentiation. Stem Cells 31:2467–2477

    Article  CAS  PubMed  Google Scholar 

  • Hong J, Ge C, Jothikumar P, Yuan Z, Liu B, Bai K, Li K, Rittase W, Shinzawa M, Zhang Y et al (2018) A TCR mechanotransduction signaling loop induces negative selection in the thymus. Nat Immunol 19:1379–1390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang DL, Bax NA, Buckley CD, Weis WI, Dunn AR (2017) Vinculin forms a directionally asymmetric catch bond with F-actin. Science 357:703–706

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jackson SP, Nesbitt WS, Westein E (2009) Dynamics of platelet thrombus formation. J Thromb Haemost 7:17–20

    Article  CAS  PubMed  Google Scholar 

  • Jacques E, Verbelen JP, Vissenberg K (2013) Mechanical stress in Arabidopsis leaves orients microtubules in a ‘continuous’ supracellular pattern. BMC Plant Biol 13:163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ju L, Dong J-F, Cruz MA, Zhu C (2013) The N-terminal flanking region of the A1 domain regulates the force-dependent binding of von Willebrand factor to platelet glycoprotein Ibα. J Biol Chem 288:32289–32301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju L, Chen Y, Xue L, Du X, Zhu C (2016) Cooperative unfolding of distinctive mechanoreceptor domains transduces force into signals. Elife 5:e15447

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ju L, McFadyen JD, Al-Daher S, Alwis I, Chen Y, Tonnesen LL, Maiocchi S, Coulter B, Calkin AC, Felner EI et al (2018) Compression force sensing regulates integrin alphaIIbbeta3 adhesive function on diabetic platelets. Nat Commun 9:1087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kanzaki H, Chiba M, Shimizu Y, Mitani H (2002) Periodontal ligament cells under mechanical stress induce osteoclastogenesis by receptor activator of nuclear factor kappaB ligand up-regulation via prostaglandin E2 synthesis. J Bone Miner Res 17:210–220

    Article  CAS  PubMed  Google Scholar 

  • Kim OV, Litvinov RI, Alber MS, Weisel JW (2017) Quantitative structural mechanobiology of platelet-driven blood clot contraction. Nat Commun 8:1274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kong F, Garcia AJ, Mould AP, Humphries MJ, Zhu C (2009) Demonstration of catch bonds between an integrin and its ligand. J Cell Biol 185:1275–1284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koyama Y, Mitsui N, Suzuki N, Yanagisawa M, Sanuki R, Isokawa K, Shimizu N, Maeno M (2008) Effect of compressive force on the expression of inflammatory cytokines and their receptors in osteoblastic Saos-2 cells. Arch Oral Biol 53:488–496

    Article  CAS  PubMed  Google Scholar 

  • Kuwano Y, Spelten O, Zhang H, Ley K, Zarbock A (2010) Rolling on E- or P-selectin induces the extended but not high-affinity conformation of LFA-1 in neutrophils. Blood 116:617–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam WA, Chaudhuri O, Crow A, Webster KD, Li T-D, Kita A, Huang J, Fletcher DA (2011) Mechanics and contraction dynamics of single platelets and implications for clot stiffening. Nat Mater 10:61–66

    Article  CAS  PubMed  Google Scholar 

  • Lee C-Y, Lou J, Wen K-k, McKane M, Eskin SG, Ono S, Chien S, Rubenstein PA, Zhu C, Mcintire LV (2013) Actin depolymerization under force is governed by lysine 113:glutamic acid 195-mediated catch-slip bonds. Proc Natl Acad Sci U S A 110:5022–5027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Bhimalapuram P, Dinner AR (2010) Model for how retrograde actin flow regulates adhesion traction stresses. J Phys Condens Matter 22:194113

    Article  PubMed  CAS  Google Scholar 

  • Liu B, Chen W, Evavold BD, Zhu C (2014) Accumulation of dynamic catch bonds between TCR and agonist peptide-MHC triggers T cell signaling. Cell 157:357–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Chen W, Zhu C (2015) Molecular force spectroscopy on cells. Annu Rev Phys Chem 66:427–451

    Article  CAS  PubMed  Google Scholar 

  • Luca VC, Kim BC, Ge C, Kakuda S, Wu D, Roein-Peikar M, Haltiwanger RS, Zhu C, Ha T, Garcia KC (2017) Notch-Jagged complex structure implicates a catch bond in tuning ligand sensitivity. Science 355:1320–1324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maksimovic S, Nakatani M, Baba Y, Nelson AM, Marshall KL, Wellnitz SA, Firozi P, Woo SH, Ranade S, Patapoutian A et al (2014) Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509:617–621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manibog K, Li H, Rakshit S, Sivasankar S (2014) Resolving the molecular mechanism of cadherin catch bond formation. Nat Commun 5:3941

    Article  CAS  PubMed  Google Scholar 

  • Marshall BT, Long M, Piper JW, Yago T, McEver RP, Zhu C (2003) Direct observation of catch bonds involving cell-adhesion molecules. Nature 423:190–193

    Article  CAS  PubMed  Google Scholar 

  • Morikis VA, Chase S, Wun T, Chaikof EL, Magnani JL, Simon SI (2017) Selectin catch-bonds mechanotransduce integrin activation and neutrophil arrest on inflamed endothelium under shear flow. Blood 130:2101–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima R, Yamaguchi M, Kojima T, Takano M, Kasai K (2008) Effects of compression force on fibroblast growth factor-2 and receptor activator of nuclear factor kappa B ligand production by periodontal ligament cells in vitro. J Periodontal Res 43:168–173

    Article  CAS  PubMed  Google Scholar 

  • Naruse K (2018) MECHANOMEDICINE: applications of mechanobiology to medical sciences and next-generation medical technologies. J Smooth Muscle Res 54:83–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nordenfelt P, Elliott HL, Springer TA (2016) Coordinated integrin activation by actin-dependent force during T-cell migration. Nat Commun 7:13119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orr AW, Helmke BP, Blackman BR, Schwartz MA (2006) Mechanisms of mechanotransduction. Dev Cell 10:11–20

    Article  CAS  PubMed  Google Scholar 

  • Pagliara S, Franze K, McClain CR, Wylde GW, Fisher CL, Franklin RJ, Kabla AJ, Keyser UF, Chalut KJ (2014) Auxetic nuclei in embryonic stem cells exiting pluripotency. Nat Mater 13:638–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pang A, Cui Y, Chen Y, Cheng N, Delaney MK, Gu M, Stojanovic-Terpo A, Zhu C, Du X (2018) Shear-induced integrin signaling in platelet phosphatidylserine exposure, microvesicle release, and coagulation. Blood 132:533–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paszek MJ, Boettiger D, Weaver VM, Hammer DA (2009) Integrin clustering is driven by mechanical resistance from the glycocalyx and the substrate. PLoS Comput Biol 5:e1000604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paszek MJ, DuFort CC, Rossier O, Bainer R, Mouw JK, Godula K, Hudak JE, Lakins JN, Wijekoon AC, Cassereau L et al (2014) The cancer glycocalyx mechanically primes integrin-mediated growth and survival. Nature 511:319–325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pryshchep S, Zarnitsyna VI, Hong J, Evavold BD, Zhu C (2014) Accumulation of serial forces on TCR and CD8 frequently applied by agonist antigenic peptides embedded in MHC molecules triggers calcium in T cells. J Immunol 193:68–76

    Article  CAS  PubMed  Google Scholar 

  • Roca-Cusachs P, Conte V, Trepat X (2017) Quantifying forces in cell biology. Nat Cell Biol 19:742–751

    Article  CAS  PubMed  Google Scholar 

  • Roest M, Reininger A, Zwaginga JJ, King MR, Heemskerk JW, Biorheology Subcommittee of the, S.S.C.o.t.I (2011) Flow chamber-based assays to measure thrombus formation in vitro: requirements for standardization. J Thromb Haemost 9:2322–2324

    Article  CAS  PubMed  Google Scholar 

  • Rosetti F, Chen Y, Sen M, Thayer E, Azcutia V, Herter JM, Luscinskas FW, Cullere X, Zhu C, Mayadas TN (2015) A lupus-associated Mac-1 variant has defects in integrin allostery and interaction with ligands under force. Cell Rep 10:1655–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sampathkumar A, Krupinski P, Wightman R, Milani P, Berquand A, Boudaoud A, Hamant O, Jonsson H, Meyerowitz EM (2014) Subcellular and supracellular mechanical stress prescribes cytoskeleton behavior in Arabidopsis cotyledon pavement cells. eLife 3:e01967

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Scrimgeour J, McLane LT, Chang PS, Curtis JE (2017) Single-molecule imaging of proteoglycans in the pericellular matrix. Biophys J 113:2316–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sibener LV, Fernandes RA, Kolawole EM, Carbone CB, Liu F, McAffee D, Birnbaum ME, Yang X, Su LF, Yu W et al (2018) Isolation of a structural mechanism for uncoupling T cell receptor signaling from peptide-MHC binding. Cell 174:672–687 e627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strohmeyer N, Bharadwaj M, Costell M, Fassler R, Muller DJ (2017) Fibronectin-bound alpha5beta1 integrins sense load and signal to reinforce adhesion in less than a second. Nat Mater 16:1262–1270

    Article  CAS  PubMed  Google Scholar 

  • Su QP, Ju LA (2018) Biophysical nanotools for single-molecule dynamics. Biophys Rev 10:1349–1357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Costell M, Fassler R (2019) Integrin activation by Talin, kindlin and mechanical forces. Nat Cell Biol 21:25–31

    Article  CAS  PubMed  Google Scholar 

  • Sundd P, Gutierrez E, Koltsova EK, Kuwano Y, Fukuda S, Pospieszalska MK, Groisman A, Ley K (2012) ‘Slings’ enable neutrophil rolling at high shear. Nature 488:399–403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swaminathan V, Kalappurakkal JM, Mehta SB, Nordenfelt P, Moore TI, Koga N, Baker DA, Oldenbourg R, Tani T, Mayor S et al (2017) Actin retrograde flow actively aligns and orients ligand-engaged integrins in focal adhesions. Proc Natl Acad Sci U S A 114:10648–10653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tarbell JM, Simon SI, Curry FR (2014) Mechanosensing at the vascular interface. Annu Rev Biomed Eng 16:505–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tokarev AA, Butylin AA, Ataullakhanov FI (2011) Platelet adhesion from shear blood flow is controlled by near-wall rebounding collisions with erythrocytes. Biophys J 100:799–808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tovar-Lopez FJ, Rosengarten G, Nasabi M, Sivan V, Khoshmanesh K, Jackson SP, Mitchell A, Nesbitt WS (2013) An investigation on platelet transport during thrombus formation at micro-scale stenosis. PLoS One 8:e74123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valignat MP, Theodoly O, Gucciardi A, Hogg N, Lellouch AC (2013) T lymphocytes orient against the direction of fluid flow during LFA-1-mediated migration. Biophys J 104:322–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinbaum S, Tarbell JM, Damiano ER (2007) The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 9:121–167

    Article  CAS  PubMed  Google Scholar 

  • Wu P, Zhang T, Liu B, Fei P, Cui L, Qin R, Zhu H, Yao D, Martinez RJ, Hu W et al (2019) Mechano-regulation of peptide-MHC class I conformations determines TCR antigen recognition. Mol Cell 73:1015–1027 e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye F, Hu G, Taylor D, Ratnikov B, Bobkov AA, McLean MA, Sligar SG, Taylor KA, Ginsberg MH (2010) Recreation of the terminal events in physiological integrin activation. J Cell Biol 188:157–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh YT, Serrano R, Francois J, Chiu JJ, Li YJ, Del Alamo JC, Chien S, Lasheras JC (2018) Three-dimensional forces exerted by leukocytes and vascular endothelial cells dynamically facilitate diapedesis. Proc Natl Acad Sci U S A 115:133–138

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Cheng Zhu for helpful discussion. This work was supported by the Cardiac Society of Australia and New Zealand BAYER Young Investigator Research Grant (L.A.J.). L.A.J. is an Australian Research Council DECRA Fellow (DE190100609) and a former National Heart Foundation of Australia postdoctoral fellow (101798). Y.C. is a MERU (Medolago-Ruggeri) Foundation post-doctoral awardee. Z.L. is an Australian Research Council Future Fellow (FT140101152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lining Arnold Ju.

Ethics declarations

Conflict of interest

Yunfeng Chen declares that he has no conflict of interest. Zhiyong Li declares that he has no conflict of interest. Lining Arnold Ju declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue dedicated to the “2018 Joint Conference of the Asian Biophysics Association and Australian Society for Biophysics” edited by Kuniaki Nagayama, Raymond Norton, Kyeong Kyu Kim, Hiroyuki Noji, Till Böcking, and Andrew Battle.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, Z. & Ju, L.A. Tensile and compressive force regulation on cell mechanosensing. Biophys Rev 11, 311–318 (2019). https://doi.org/10.1007/s12551-019-00536-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-019-00536-z

Keywords

Navigation