Advertisement

Biophysical Reviews

, Volume 11, Issue 2, pp 157–165 | Cite as

Proteases from dengue, West Nile and Zika viruses as drug targets

  • Christoph NitscheEmail author
Review

Abstract

Proteases from flaviviruses have gained substantial interest as potential drug targets to combat infectious diseases caused by dengue, West Nile, Zika and related viruses. Despite nearly two decades of drug discovery campaigns, promising lead compounds for clinical trials have not yet been identified. The main challenges for successful lead compound development are associated with limited drug-likeness of inhibitors and structural ambiguity of the protease target. This brief review focuses on the available information on the structure of flavivirus proteases and their interactions with inhibitors and attempts to point the way forward for successful identification of future lead compounds.

Keywords

Flavivirus Serine protease NS2B-NS3 Protease inhibitor 

Notes

Acknowledgments

Christoph Nitsche thanks the Alexander von Humboldt Foundation for a Feodor Lynen Fellowship and the Free University of Berlin for a Rising Star Fellowship.

Compliance with ethical standards

Conflict of interest

Christoph Nitsche declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. Aleshin AE, Shiryaev SA, Strongin AY, Liddington RC (2007) Structural evidence for regulation and specificity of flaviviral proteases and evolution of the Flaviviridae fold. Protein Sci 16:795–806.  https://doi.org/10.1110/ps.072753207 CrossRefPubMedCentralPubMedGoogle Scholar
  2. Barrows NJ, Campos RK, Liao KC, Prasanth KR, Soto-Acosta R, Yeh SC, Schott-Lerner G, Pompon J, Sessions OM, Bradrick SS, Garcia-Blanco MA (2018) Biochemistry and molecular biology of flaviviruses. Chem Rev 118:4448–4482.  https://doi.org/10.1021/acs.chemrev.7b00719 CrossRefPubMedCentralPubMedGoogle Scholar
  3. Baud D, Gubler DJ, Schaub B, Lanteri MC, Musso D (2017) An update on Zika virus infection. Lancet 390:2099–2109.  https://doi.org/10.1016/s0140-6736(17)31450-2 CrossRefPubMedGoogle Scholar
  4. Behnam MA, Graf D, Bartenschlager R, Zlotos DP, Klein CD (2015) Discovery of nanomolar dengue and West Nile virus protease inhibitors containing a 4-benzyloxyphenylglycine residue. J Med Chem 58:9354–9370.  https://doi.org/10.1021/acs.jmedchem.5b01441 CrossRefPubMedGoogle Scholar
  5. Behnam MA, Nitsche C, Boldescu V, Klein CD (2016) The medicinal chemistry of dengue virus. J Med Chem 59:5622–5649.  https://doi.org/10.1021/acs.jmedchem.5b01653 CrossRefPubMedGoogle Scholar
  6. Bhatt S, Gething PW, Brady OJ, Messina JP, Farlow AW, Moyes CL, Drake JM, Brownstein JS, Hoen AG, Sankoh O, Myers MF, George DB, Jaenisch T, Wint GR, Simmons CP, Scott TW, Farrar JJ, Hay SI (2013) The global distribution and burden of dengue. Nature 496:504–507.  https://doi.org/10.1038/nature12060 CrossRefPubMedCentralPubMedGoogle Scholar
  7. Boldescu V, Behnam MAM, Vasilakis N, Klein CD (2017) Broad-spectrum agents for flaviviral infections: dengue, Zika and beyond. Nat Rev Drug Discov 16:565–586.  https://doi.org/10.1038/nrd.2017.33 CrossRefPubMedCentralPubMedGoogle Scholar
  8. Brecher M, Li Z, Liu B, Zhang J, Koetzner CA, Alifarag A, Jones SA, Lin Q, Kramer LD, Li H (2017) A conformational switch high-throughput screening assay and allosteric inhibition of the flavivirus NS2B-NS3 protease. PLoS Pathog 13:e1006411.  https://doi.org/10.1371/journal.ppat.1006411 CrossRefPubMedCentralPubMedGoogle Scholar
  9. Burki T (2018) Increase of West Nile virus cases in Europe for 2018. Lancet 392:1000.  https://doi.org/10.1016/S0140-6736(18)32286-4 CrossRefPubMedGoogle Scholar
  10. Chandramouli S, Joseph JS, Daudenarde S, Gatchalian J, Cornillez-Ty C, Kuhn P (2010) Serotype-specific structural differences in the protease-cofactor complexes of the dengue virus family. J Virol 84:3059–3067.  https://doi.org/10.1128/jvi.02044-09 CrossRefPubMedGoogle Scholar
  11. Chen X, Yang K, Wu C, Chen C, Hu C, Buzovetsky O, Wang Z, Ji X, Xiong Y, Yang H (2016) Mechanisms of activation and inhibition of Zika virus NS2B-NS3 protease. Cell Res 26:1260–1263.  https://doi.org/10.1038/cr.2016.116 CrossRefPubMedCentralPubMedGoogle Scholar
  12. Choksupmanee O, Hodge K, Katzenmeier G, Chimnaronk S (2012) Structural platform for the autolytic activity of an intact NS2B-NS3 protease complex from dengue virus. Biochemistry 51:2840–2851.  https://doi.org/10.1021/bi2018267 CrossRefPubMedGoogle Scholar
  13. de la Cruz L, Nguyen TH, Ozawa K, Shin J, Graham B, Huber T, Otting G (2011) Binding of low molecular weight inhibitors promotes large conformational changes in the dengue virus NS2B-NS3 protease: fold analysis by pseudocontact shifts. J Am Chem Soc 133:19205–19015.  https://doi.org/10.1021/ja208435s CrossRefPubMedGoogle Scholar
  14. de la Cruz L, Chen WN, Graham B, Otting G (2014) Binding mode of the activity-modulating C-terminal segment of NS2B to NS3 in the dengue virus NS2B-NS3 protease. FEBS J 281:1517–1533.  https://doi.org/10.1111/febs.12729 CrossRefPubMedGoogle Scholar
  15. ECDC (2018) Epidemiological update: West Nile virus transmission season in Europe, 2018. https://ecdc.europa.eu/en/news-events/epidemiological-update-west-nile-virus-transmission-season-europe-2018. Accessed 21 February 2019
  16. Erbel P, Schiering N, D’Arcy A, Renatus M, Kroemer M, Lim SP, Yin Z, Keller TH, Vasudevan SG, Hommel U (2006) Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol 13:372–373.  https://doi.org/10.1038/nsmb1073 CrossRefPubMedGoogle Scholar
  17. Hammamy MZ, Haase C, Hammami M, Hilgenfeld R, Steinmetzer T (2013) Development and characterization of new peptidomimetic inhibitors of the West Nile virus NS2B-NS3 protease. ChemMedChem 8:231–241.  https://doi.org/10.1002/cmdc.201200497 CrossRefPubMedGoogle Scholar
  18. Hill ME, Yildiz M, Hardy JA (2018) Cysteine disulfide traps reveal distinct conformational ensembles in dengue virus NS2B-NS3 protease. Biochemistry.  https://doi.org/10.1021/acs.biochem.8b00978
  19. Huang Q, Li Q, Joy J, Chen AS, Ruiz-Carrillo D, Hill J, Lescar J, Kang C (2013) Lyso-myristoyl phosphatidylcholine micelles sustain the activity of dengue non-structural (NS) protein 3 protease domain fused with the full-length NS2B. Protein Expr Purif 92:156–162.  https://doi.org/10.1016/j.pep.2013.09.015 CrossRefPubMedGoogle Scholar
  20. Johnston PA, Phillips J, Shun TY, Shinde S, Lazo JS, Huryn DM, Myers MC, Ratnikov BI, Smith JW, Su Y, Dahl R, Cosford ND, Shiryaev SA, Strongin AY (2007) HTS identifies novel and specific uncompetitive inhibitors of the two-component NS2B-NS3 proteinase of West Nile virus. Assay Drug Dev Technol 5:737–750.  https://doi.org/10.1089/adt.2007.101 CrossRefPubMedGoogle Scholar
  21. Kang C, Keller TH, Luo D (2017) Zika virus protease: an antiviral drug target. Trends Microbiol 25:797–808.  https://doi.org/10.1016/j.tim.2017.07.001 CrossRefPubMedGoogle Scholar
  22. Kim YM, Gayen S, Kang C, Joy J, Huang Q, Chen AS, Wee JL, Ang MJ, Lim HA, Hung AW, Li R, Noble CG, Lee le T, Yip A, Wang QY, Chia CS, Hill J, Shi PY, Keller TH (2013) NMR analysis of a novel enzymatically active unlinked dengue NS2B-NS3 protease complex. J Biol Chem 288:12891–12900.  https://doi.org/10.1074/jbc.M112.442723 CrossRefPubMedCentralPubMedGoogle Scholar
  23. Koh-Stenta X, Joy J, Wang SF, Kwek PZ, Wee JL, Wan KF, Gayen S, Chen AS, Kang C, Lee MA, Poulsen A, Vasudevan SG, Hill J, Nacro K (2015) Identification of covalent active site inhibitors of dengue virus protease. Drug Des Devel Ther 9:6389–6399.  https://doi.org/10.2147/dddt.s94207 CrossRefPubMedCentralPubMedGoogle Scholar
  24. Lei J, Hansen G, Nitsche C, Klein CD, Zhang L, Hilgenfeld R (2016) Crystal structure of Zika virus NS2B-NS3 protease in complex with a boronate inhibitor. Science 353:503–505.  https://doi.org/10.1126/science.aag2419 CrossRefPubMedGoogle Scholar
  25. Leung D, Schroder K, White H, Fang NX, Stoermer MJ, Abbenante G, Martin JL, Young PR, Fairlie DP (2001) Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. J Biol Chem 276:45762–45771.  https://doi.org/10.1074/jbc.M107360200 CrossRefPubMedGoogle Scholar
  26. Li J, Lim SP, Beer D, Patel V, Wen D, Tumanut C, Tully DC, Williams JA, Jiricek J, Priestle JP, Harris JL, Vasudevan SG (2005) Functional profiling of recombinant NS3 proteases from all four serotypes of dengue virus using tetrapeptide and octapeptide substrate libraries. J Biol Chem 280:28766–28774.  https://doi.org/10.1074/jbc.M500588200 CrossRefPubMedGoogle Scholar
  27. Li Y, Phoo WW, Loh YR, Zhang Z, Ng EY, Wang W, Keller TH, Luo D, Kang C (2017a) Structural characterization of the linked NS2B-NS3 protease of Zika virus. FEBS Lett 591:2338–2347.  https://doi.org/10.1002/1873-3468.12741 CrossRefPubMedGoogle Scholar
  28. Li Y, Zhang Z, Phoo WW, Loh YR, Wang W, Liu S, Chen MW, Hung AW, Keller TH, Luo D, Kang C (2017b) Structural dynamics of Zika virus NS2B-NS3 protease binding to dipeptide inhibitors. Structure 25:1242–1250.  https://doi.org/10.1016/j.str.2017.06.006 CrossRefPubMedGoogle Scholar
  29. Li Y, Zhang Z, Phoo WW, Loh YR, Li R, Yang HY, Jansson AE, Hill J, Keller TH, Nacro K, Luo D, Kang C (2018) Structural insights into the inhibition of Zika virus NS2B-NS3 protease by a small-molecule inhibitor. Structure 26:555–564.  https://doi.org/10.1016/j.str.2018.02.005 CrossRefPubMedGoogle Scholar
  30. Lim SP, Shi PY (2013) West Nile virus drug discovery. Viruses 5:2977–3006.  https://doi.org/10.3390/v5122977 CrossRefPubMedCentralPubMedGoogle Scholar
  31. Lim SP, Wang QY, Noble CG, Chen YL, Dong H, Zou B, Yokokawa F, Nilar S, Smith P, Beer D, Lescar J, Shi PY (2013) Ten years of dengue drug discovery: progress and prospects. Antivir Res 100:500–519.  https://doi.org/10.1016/j.antiviral.2013.09.013 CrossRefPubMedGoogle Scholar
  32. Luo D, Xu T, Hunke C, Gruber G, Vasudevan SG, Lescar J (2008) Crystal structure of the NS3 protease-helicase from dengue virus. J Virol 82:173–183.  https://doi.org/10.1128/jvi.01788-07 CrossRefPubMedGoogle Scholar
  33. Luo D, Wei N, Doan DN, Paradkar PN, Chong Y, Davidson AD, Kotaka M, Lescar J, Vasudevan SG (2010) Flexibility between the protease and helicase domains of the dengue virus NS3 protein conferred by the linker region and its functional implications. J Biol Chem 285:18817–18827.  https://doi.org/10.1074/jbc.M109.090936 CrossRefPubMedCentralPubMedGoogle Scholar
  34. Mahawaththa MC, Pearce BJG, Szabo M, Graham B, Klein CD, Nitsche C, Otting G (2017) Solution conformations of a linked construct of the Zika virus NS2B-NS3 protease. Antivir Res 142:141–147.  https://doi.org/10.1016/j.antiviral.2017.03.011 CrossRefPubMedGoogle Scholar
  35. Mahawaththa MC, Lee MD, Giannoulis A, Adams LA, Feintuch A, Swarbrick JD, Graham B, Nitsche C, Goldfarb D, Otting G (2018) Small neutral Gd(III) tags for distance measurements in proteins by double electron-electron resonance experiments. Phys Chem Chem Phys 20:23535–23545.  https://doi.org/10.1039/c8cp03532f CrossRefPubMedGoogle Scholar
  36. Nall TA, Chappell KJ, Stoermer MJ, Fang NX, Tyndall JD, Young PR, Fairlie DP (2004) Enzymatic characterization and homology model of a catalytically active recombinant West Nile virus NS3 protease. J Biol Chem 279:48535–48542.  https://doi.org/10.1074/jbc.M406810200 CrossRefPubMedGoogle Scholar
  37. Ng EY, Loh YR, Li Y, Li Q, Kang C (2019) Expression, purification of Zika virus membrane protein-NS2B in detergent micelles for NMR studies. Protein Expr Purif 154:1–6.  https://doi.org/10.1016/j.pep.2018.09.013 CrossRefPubMedGoogle Scholar
  38. Nitsche C (2018) Strategies towards protease inhibitors for emerging flaviviruses. In: Hilgenfeld R, Vasudevan SG (eds) Dengue and Zika: control and antiviral treatment strategies. Springer, Singapore, pp 175–186.  https://doi.org/10.1007/978-981-10-8727-1_13 CrossRefGoogle Scholar
  39. Nitsche C, Holloway S, Schirmeister T, Klein CD (2014) Biochemistry and medicinal chemistry of the dengue virus protease. Chem Rev 114:11348–11381.  https://doi.org/10.1021/cr500233q CrossRefPubMedGoogle Scholar
  40. Nitsche C, Zhang L, Weigel LF, Schilz J, Graf D, Bartenschlager R, Hilgenfeld R, Klein CD (2017) Peptide–boronic acid inhibitors of flaviviral proteases: medicinal chemistry and structural biology. J Med Chem 60:511–516.  https://doi.org/10.1021/acs.jmedchem.6b01021 CrossRefPubMedGoogle Scholar
  41. Nitsche C, Passioura T, Varava P, Mahawaththa MC, Leuthold MM, Klein CD, Suga H, Otting G (2019) De novo discovery of nonstandard macrocyclic peptides as noncompetitive inhibitors of the Zika virus NS2B-NS3 protease. ACS Med Chem Lett 10:168–174.  https://doi.org/10.1021/acsmedchemlett.8b00535
  42. Noble CG, Seh CC, Chao AT, Shi PY (2012) Ligand-bound structures of the dengue virus protease reveal the active conformation. J Virol 86:438–446.  https://doi.org/10.1128/jvi.06225-11 CrossRefPubMedCentralPubMedGoogle Scholar
  43. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF chimera - a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612.  https://doi.org/10.1002/jcc.20084 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Phoo WW, Li Y, Zhang Z, Lee MY, Loh YR, Tan YB, Ng EY, Lescar J, Kang C, Luo D (2016) Structure of the NS2B-NS3 protease from Zika virus after self-cleavage. Nat Commun 7(13410).  https://doi.org/10.1038/ncomms13410
  45. Phoo WW, Zhang Z, Wirawan M, Chew EJC, Chew ABL, Kouretova J, Steinmetzer T, Luo D (2018) Structures of Zika virus NS2B-NS3 protease in complex with peptidomimetic inhibitors. Antivir Res 160:17–24.  https://doi.org/10.1016/j.antiviral.2018.10.006 CrossRefPubMedGoogle Scholar
  46. Poland GA, Kennedy RB, Ovsyannikova IG, Palacios R, Ho PL, Kalil J (2018) Development of vaccines against Zika virus. Lancet Infect Dis 18:e211–e219.  https://doi.org/10.1016/s1473-3099(18)30063-x CrossRefPubMedGoogle Scholar
  47. Poulsen A, Kang C, Keller TH (2014) Drug design for flavivirus proteases: what are we missing? Curr Pharm Des 20:3422–3427CrossRefPubMedGoogle Scholar
  48. Robin G, Chappell K, Stoermer MJ, Hu SH, Young PR, Fairlie DP, Martin JL (2009) Structure of West Nile virus NS3 protease: ligand stabilization of the catalytic conformation. J Mol Biol 385:1568–1577.  https://doi.org/10.1016/j.jmb.2008.11.026 CrossRefPubMedGoogle Scholar
  49. Roy A, Lim L, Srivastava S, Lu Y, Song J (2017) Solution conformations of Zika NS2B-NS3pro and its inhibition by natural products from edible plants. PLoS One 12:e0180632.  https://doi.org/10.1371/journal.pone.0180632 CrossRefPubMedCentralPubMedGoogle Scholar
  50. Schechter I, Berger A (1967) On the size of the active site in proteases. I. Papain. Biochem Biophys Res Commun 27:157–162.  https://doi.org/10.1016/S0006-291X(67)80055-X CrossRefPubMedGoogle Scholar
  51. Schüller A, Yin Z, Brian Chia CS, Doan DN, Kim HK, Shang L, Loh TP, Hill J, Vasudevan SG (2011) Tripeptide inhibitors of dengue and West Nile virus NS2B-NS3 protease. Antivir Res 92:96–101.  https://doi.org/10.1016/j.antiviral.2011.07.002 CrossRefPubMedGoogle Scholar
  52. Shiryaev SA, Ratnikov BI, Chekanov AV, Sikora S, Rozanov DV, Godzik A, Wang J, Smith JW, Huang Z, Lindberg I, Samuel MA, Diamond MS, Strongin AY (2006) Cleavage targets and the D-arginine-based inhibitors of the West Nile virus NS3 processing proteinase. Biochem J 393:503–511.  https://doi.org/10.1042/bj20051374 CrossRefPubMedGoogle Scholar
  53. Shiryaev SA, Farhy C, Pinto A, Huang CT, Simonetti N, Elong Ngono A, Dewing A, Shresta S, Pinkerton AB, Cieplak P, Strongin AY, Terskikh AV (2017) Characterization of the Zika virus two-component NS2B-NS3 protease and structure-assisted identification of allosteric small-molecule antagonists. Antivir Res 143:218–229.  https://doi.org/10.1016/j.antiviral.2017.04.015 CrossRefPubMedGoogle Scholar
  54. Sidique S, Shiryaev SA, Ratnikov BI, Herath A, Su Y, Strongin AY, Cosford ND (2009) Structure-activity relationship and improved hydrolytic stability of pyrazole derivatives that are allosteric inhibitors of West Nile virus NS2B-NS3 proteinase. Bioorg Med Chem Lett 19:5773–5777.  https://doi.org/10.1016/j.bmcl.2009.07.150 CrossRefPubMedCentralPubMedGoogle Scholar
  55. Stoermer MJ, Chappell KJ, Liebscher S, Jensen CM, Gan CH, Gupta PK, Xu WJ, Young PR, Fairlie DP (2008) Potent cationic inhibitors of West Nile virus NS2B/NS3 protease with serum stability, cell permeability and antiviral activity. J Med Chem 51:5714–5721.  https://doi.org/10.1021/jm800503y CrossRefPubMedGoogle Scholar
  56. Su XC, Ozawa K, Qi R, Vasudevan SG, Lim SP, Otting G (2009) NMR analysis of the dynamic exchange of the NS2B cofactor between open and closed conformations of the West Nile virus NS2B-NS3 protease. PLoS Negl Trop Dis 3:e561.  https://doi.org/10.1371/journal.pntd.0000561 CrossRefPubMedCentralPubMedGoogle Scholar
  57. Suthar MS, Diamond MS, Gale M Jr (2013) West Nile virus infection and immunity. Nat Rev Microbiol 11:115–128.  https://doi.org/10.1038/nrmicro2950 CrossRefPubMedGoogle Scholar
  58. Timiri AK, Sinha BN, Jayaprakash V (2016) Progress and prospects on DENV protease inhibitors. Eur J Med Chem 117:125–143.  https://doi.org/10.1016/j.ejmech.2016.04.008 CrossRefPubMedGoogle Scholar
  59. WHO (2018) Dengue vaccine: WHO position paper – September 2018. Wkly Epidemiol Rec 93:457–476Google Scholar
  60. Wu H, Bock S, Snitko M, Berger T, Weidner T, Holloway S, Kanitz M, Diederich WE, Steuber H, Walter C, Hofmann D, Weissbrich B, Spannaus R, Acosta EG, Bartenschlager R, Engels B, Schirmeister T, Bodem J (2015) Novel dengue virus NS2B/NS3 protease inhibitors. Antimicrob Agents Chemother 59:1100–1109.  https://doi.org/10.1128/aac.03543-14 CrossRefPubMedCentralPubMedGoogle Scholar
  61. Yildiz M, Ghosh S, Bell JA, Sherman W, Hardy JA (2013) Allosteric inhibition of the NS2B-NS3 protease from dengue virus. ACS Chem Biol 8:2744–2752.  https://doi.org/10.1021/cb400612h CrossRefPubMedCentralPubMedGoogle Scholar
  62. Yin Z, Patel SJ, Wang W-L, Wang G, Chan W-L, Rao KRR, Alam J, Jeyaraj DA, Ngew X, Patel V, Beer D, Lim SP, Vasudevan SG, Keller TH (2006) Peptide inhibitors of dengue virus NS3 protease. Part 1: warhead. Bioorg Med Chem Lett 16:36–39.  https://doi.org/10.1016/j.bmcl.2005.09.062 CrossRefPubMedGoogle Scholar
  63. Zhang Z, Li Y, Loh YR, Phoo WW, Hung AW, Kang C, Luo D (2016) Crystal structure of unlinked NS2B-NS3 protease from Zika virus. Science 354:1597–1600.  https://doi.org/10.1126/science.aai9309 CrossRefPubMedGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Research School of ChemistryAustralian National UniversityCanberraAustralia

Personalised recommendations