BAR domain proteins—a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton

Abstract

Actin filament assembly typically occurs in association with cellular membranes. A large number of proteins sit at the interface between actin networks and membranes, playing diverse roles such as initiation of actin polymerization, modulation of membrane curvature, and signaling. Bin/Amphiphysin/Rvs (BAR) domain proteins have been implicated in all of these functions. The BAR domain family of proteins comprises a diverse group of multi-functional effectors, characterized by their modular architecture. In addition to the membrane-curvature sensing/inducing BAR domain module, which also mediates antiparallel dimerization, most contain auxiliary domains implicated in protein-protein and/or protein-membrane interactions, including SH3, PX, PH, RhoGEF, and RhoGAP domains. The shape of the BAR domain itself varies, resulting in three major subfamilies: the classical crescent-shaped BAR, the more extended and less curved F-BAR, and the inverse curvature I-BAR subfamilies. Most members of this family have been implicated in cellular functions that require dynamic remodeling of the actin cytoskeleton, such as endocytosis, organelle trafficking, cell motility, and T-tubule biogenesis in muscle cells. Here, we review the structure and function of mammalian BAR domain proteins and the many ways in which they are interconnected with the actin cytoskeleton.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Abou-Kheir W, Isaac B, Yamaguchi H, Cox D (2008) Membrane targeting of WAVE2 is not sufficient for WAVE2-dependent actin polymerization: a role for IRSp53 in mediating the interaction between Rac and WAVE2. J Cell Sci 121:379–390. https://doi.org/10.1242/jcs.010272

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  2. Almeida-Souza L et al (2018) A flat BAR protein promotes actin polymerization at the base of clathrin-coated pits. Cell 174:325–337 e314. https://doi.org/10.1016/j.cell.2018.05.020

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Andersson F, Jakobsson J, Low P, Shupliakov O, Brodin L (2008) Perturbation of syndapin/PACSIN impairs synaptic vesicle recycling evoked by intense stimulation. J Neurosci 28:3925–3933. https://doi.org/10.1523/JNEUROSCI.1754-07.2008

    CAS  Article  Google Scholar 

  4. Antonny B et al (2016) Membrane fission by dynamin: what we know and what we need to know. EMBO J 35:2270–2284. https://doi.org/10.15252/embj.201694613

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Aspenstrom P (1997) A Cdc42 target protein with homology to the non-kinase domain of FER has a potential role in regulating the actin cytoskeleton. Curr Biol 7:479–487

    CAS  Article  Google Scholar 

  6. Aspenstrom P (2014) BAR domain proteins regulate rho GTPase signaling. Small GTPases 5:7. https://doi.org/10.4161/sgtp.28580

    Article  Google Scholar 

  7. Bacon C, Endris V, Rappold GA (2013) The cellular function of srGAP3 and its role in neuronal morphogenesis. Mech Dev 130:391–395. https://doi.org/10.1016/j.mod.2012.10.005

    CAS  Article  Google Scholar 

  8. Bai Z, Grant BD (2015) A TOCA/CDC-42/PAR/WAVE functional module required for retrograde endocytic recycling. Proc Natl Acad Sci U S A 112:E1443–E1452. https://doi.org/10.1073/pnas.1418651112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  9. Beck S, Fotinos A, Lang F, Gawaz M, Elvers M (2013) Isoform-specific roles of the GTPase activating protein Nadrin in cytoskeletal reorganization of platelets. Cell Signal 25:236–246. https://doi.org/10.1016/j.cellsig.2012.09.005

    CAS  Article  Google Scholar 

  10. Bharti S et al (2007) Src-dependent phosphorylation of ASAP1 regulates podosomes. Mol Cell Biol 27:8271–8283. https://doi.org/10.1128/MCB.01781-06

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. Bhatia VK, Madsen KL, Bolinger PY, Kunding A, Hedegard P, Gether U, Stamou D (2009) Amphipathic motifs in BAR domains are essential for membrane curvature sensing. EMBO J 28:3303–3314. https://doi.org/10.1038/emboj.2009.261

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. Blood PD, Swenson RD, Voth GA (2008) Factors influencing local membrane curvature induction by N-BAR domains as revealed by molecular dynamics simulations. Biophys J 95:1866–1876. https://doi.org/10.1529/biophysj.107.121160

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Boczkowska M, Rebowski G, Dominguez R (2015) The challenges of polydisperse SAXS data analysis: two SAXS studies of PICK1 produce different structural models. Structure 23:1967–1968. https://doi.org/10.1016/j.str.2015.10.007

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. Bompard G, Sharp SJ, Freiss G, Machesky LM (2005) Involvement of Rac in actin cytoskeleton rearrangements induced by MIM-B. J Cell Sci 118:5393–5403. https://doi.org/10.1242/jcs.02640

    CAS  Article  Google Scholar 

  15. Bos JL, Rehmann H, Wittinghofer A (2007) GEFs and GAPs: critical elements in the control of small. G proteins. Cell 129:865–877. https://doi.org/10.1016/j.cell.2007.05.018

    CAS  Article  Google Scholar 

  16. Boucrot E et al (2015) Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 517:460–465. https://doi.org/10.1038/nature14067

    CAS  Article  Google Scholar 

  17. Braberg H, Webb BM, Tjioe E, Pieper U, Sali A, Madhusudhan MS (2012) SALIGN: a web server for alignment of multiple protein sequences and structures. Bioinformatics 28:2072–2073. https://doi.org/10.1093/bioinformatics/bts302

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Bu W, Chou AM, Lim KB, Sudhaharan T, Ahmed S (2009) The Toca-1-N-WASP complex links filopodial formation to endocytosis. J Biol Chem 284:11622–11636. https://doi.org/10.1074/jbc.M805940200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Bu W, Lim KB, Yu YH, Chou AM, Sudhaharan T, Ahmed S (2010) Cdc42 interaction with N-WASP and Toca-1 regulates membrane tubulation, vesicle formation and vesicle motility: implications for endocytosis. PLoS One 5:e12153. https://doi.org/10.1371/journal.pone.0012153

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Butler MH et al (1997) Amphiphysin II (SH3P9; BIN1), a member of the amphiphysin/Rvs family, is concentrated in the cortical cytomatrix of axon initial segments and nodes of ranvier in brain and around T tubules in skeletal muscle. J Cell Biol 137:1355–1367

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Cao M, Xu J, Shen C, Kam C, Huganir RL, Xia J (2007) PICK1-ICA69 heteromeric BAR domain complex regulates synaptic targeting and surface expression of AMPA receptors. J Neurosci 27:12945–12956

    CAS  Article  Google Scholar 

  22. Cao H et al (2013) FCHSD1 and FCHSD2 are expressed in hair cell stereocilia and cuticular plate and regulate actin polymerization in vitro. PLoS One 8:e56516. https://doi.org/10.1371/journal.pone.0056516

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. Cestra G, Kwiatkowski A, Salazar M, Gertler F, De Camilli P (2005) Tuba, a GEF for CDC42, links dynamin to actin regulatory proteins. Methods Enzymol 404:537–545

    CAS  Article  Google Scholar 

  24. Chen Y et al (2013) Loss of the F-BAR protein CIP4 reduces platelet production by impairing membrane-cytoskeleton remodeling. Blood 122:1695–1706. https://doi.org/10.1182/blood-2013-03-484550

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. Chou AM, Sem KP, Wright GD, Sudhaharan T, Ahmed S (2014) Dynamin1 is a novel target for IRSp53 protein and works with mammalian enabled (Mena) protein and Eps8 to regulate filopodial dynamics. J Biol Chem 289:24383–24396. https://doi.org/10.1074/jbc.M114.553883

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Cohen D, Fernandez D, Lazaro-Dieguez F, Musch A (2011) The serine/threonine kinase Par1b regulates epithelial lumen polarity via IRSp53-mediated cell-ECM signaling. J Cell Biol 192:525–540. https://doi.org/10.1083/jcb.201007002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Coutinho-Budd J, Ghukasyan V, Zylka MJ, Polleux F (2012) The F-BAR domains from srGAP1, srGAP2 and srGAP3 regulate membrane deformation differently. J Cell Sci 125:3390–3401. https://doi.org/10.1242/jcs.098962

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  28. Craig AW (2012) FES/FER kinase signaling in hematopoietic cells and leukemias. Front Biosci (Landmark Ed) 17:861–875

    CAS  Article  Google Scholar 

  29. D'Alessandro M, Hnia K, Gache V, Koch C, Gavriilidis C, Rodriguez D, et (2015) Amphiphysin 2 Orchestrates Nucleus Positioning and Shape by Linking the Nuclear Envelope to the Actin and Microtubule Cytoskeleton. Dev Cell. 35:186-198. https://doi.org/10.1016/j.devcel.2015.09.018

  30. Dawson JC, Legg JA, Machesky LM (2006) Bar domain proteins: a role in tubulation, scission and actin assembly in clathrin-mediated endocytosis. Trends Cell Biol 16:493–498

    CAS  Article  Google Scholar 

  31. de Kreuk BJ, Hordijk PL (2012) Control of Rho GTPase function by BAR-domains. Small GTPases 3:45–52. https://doi.org/10.4161/sgtp.18960

    Article  PubMed  PubMed Central  Google Scholar 

  32. de Kreuk BJ et al (2011) The F-BAR domain protein PACSIN2 associates with Rac1 and regulates cell spreading and migration. J Cell Sci 124:2375–2388. https://doi.org/10.1242/jcs.080630

    CAS  Article  Google Scholar 

  33. de Kreuk BJ et al (2013) The human minor histocompatibility antigen 1 is a RhoGAP. PLoS One 8:e73962. https://doi.org/10.1371/journal.pone.0073962

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. Dharmalingam E, Haeckel A, Pinyol R, Schwintzer L, Koch D, Kessels MM, Qualmann B (2009) F-BAR proteins of the syndapin family shape the plasma membrane and are crucial for neuromorphogenesis. J Neurosci 29:13315–13327. https://doi.org/10.1523/JNEUROSCI.3973-09.2009

    CAS  Article  Google Scholar 

  35. Disanza A et al (2006) Regulation of cell shape by Cdc42 is mediated by the synergic actin-bundling activity of the Eps8-IRSp53 complex. Nat Cell Biol 8:1337–1347. https://doi.org/10.1038/ncb1502

    CAS  Article  Google Scholar 

  36. Disanza A et al (2013) CDC42 switches IRSp53 from inhibition of actin growth to elongation by clustering of VASP. EMBO J 32:2735–2750. https://doi.org/10.1038/emboj.2013.208

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Doherty JT, Lenhart KC, Cameron MV, Mack CP, Conlon FL, Taylor JM (2011) Skeletal muscle differentiation and fusion are regulated by the BAR-containing rho-GTPase-activating protein (Rho-GAP), GRAF1. J Biol Chem 286:25903–25921. https://doi.org/10.1074/jbc.M111.243030

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Dombrosky-Ferlan P et al (2003) Felic (CIP4b), a novel binding partner with the Src kinase Lyn and Cdc42, localizes to the phagocytic cup. Blood 101:2804–2809. https://doi.org/10.1182/blood-2002-03-0851

    CAS  Article  Google Scholar 

  39. Dominguez R (2011) Tropomyosin: the gatekeeper’s view of the actin filament revealed. Biophys J 100:797–798. https://doi.org/10.1016/j.bpj.2011.01.018

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. Dominguez R (2016) The WH2 domain and actin nucleation: necessary but insufficient. Trends Biochem Sci 41:478–490. https://doi.org/10.1016/j.tibs.2016.03.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. Drager NM et al (2017) Bin1 directly remodels actin dynamics through its BAR domain. EMBO Rep 18:2051–2066. https://doi.org/10.15252/embr.201744137

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  42. Drummond ML et al (2018) Actin polymerization controls cilia-mediated signaling. J Cell Biol. https://doi.org/10.1083/jcb.201703196

  43. D'Souza-Schorey C, Boshans RL, McDonough M, Stahl PD, Van Aelst L (1997) A role for POR1, a Rac1-interacting protein, in ARF6-mediated cytoskeletal rearrangements. Embo J 16:5445–5454. https://doi.org/10.1093/emboj/16.17.5445

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. Eberth A, Lundmark R, Gremer L, Dvorsky R, Koessmeier KT, McMahon HT, Ahmadian MR (2009) A BAR domain-mediated autoinhibitory mechanism for RhoGAPs of the GRAF family. Biochem J 417:371–377. https://doi.org/10.1042/BJ20081535

    CAS  Article  Google Scholar 

  45. Elvers M, Beck S, Fotinos A, Ziegler M, Gawaz M (2012) The GRAF family member oligophrenin1 is a RhoGAP with BAR domain and regulates Rho GTPases in platelets. Cardiovasc Res 94:526–536. https://doi.org/10.1093/cvr/cvs079

    CAS  Article  Google Scholar 

  46. Falcone S et al (2014) N-WASP is required for Amphiphysin-2/BIN1-dependent nuclear positioning and triad organization in skeletal muscle and is involved in the pathophysiology of centronuclear myopathy. EMBO Mol Med 6:1455–1475. https://doi.org/10.15252/emmm.201404436

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Farsad K, Ringstad N, Takei K, Floyd SR, Rose K, De Camilli P (2001) Generation of high curvature membranes mediated by direct endophilin bilayer interactions. J Cell Biol 155:193–200. https://doi.org/10.1083/jcb.200107075

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Fauchereau F et al (2003) The RhoGAP activity of OPHN1, a new F-actin-binding protein, is negatively controlled by its amino-terminal domain. Mol Cell Neurosci 23:574–586

    CAS  Article  Google Scholar 

  49. Ferguson SM et al (2009) Coordinated actions of actin and BAR proteins upstream of dynamin at endocytic clathrin-coated pits. Dev Cell 17:811–822. https://doi.org/10.1016/j.devcel.2009.11.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  50. Fricke R et al (2009) Drosophila Cip4/Toca-1 integrates membrane trafficking and actin dynamics through WASP and SCAR/WAVE. Curr Biol 19:1429–1437. https://doi.org/10.1016/j.cub.2009.07.058

    CAS  Article  Google Scholar 

  51. Friesen H, Humphries C, Ho Y, Schub O, Colwill K, Andrews B (2006) Characterization of the yeast amphiphysins Rvs161p and Rvs167p reveals roles for the Rvs heterodimer in vivo. Mol Biol Cell 17:1306–1321. https://doi.org/10.1091/mbc.E05-06-0476

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. Fritz RD, Menshykau D, Martin K, Reimann A, Pontelli V, Pertz O (2015) SrGAP2-dependent integration of membrane geometry and Slit-Robo-repulsive cues regulates fibroblast contact inhibition of locomotion. Dev Cell 35:78–92. https://doi.org/10.1016/j.devcel.2015.09.002

    CAS  Article  Google Scholar 

  53. Frost A, De Camilli P, Unger VM (2007) F-BAR proteins join the BAR family fold. Structure 15:751–753

    CAS  Article  Google Scholar 

  54. Frost A et al (2008) Structural basis of membrane invagination by F-BAR domains. Cell 132:807–817

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Fujiwara T, Mammoto A, Kim Y, Takai Y (2000) Rho small G-protein-dependent binding of mDia to an Src homology 3 domain-containing IRSp53/BAIAP2. Biochem Biophys Res Commun 271:626–629. https://doi.org/10.1006/bbrc.2000.2671

    CAS  Article  Google Scholar 

  56. Galic M, Tsai FC, Collins SR, Matis M, Bandara S, Meyer T (2014) Dynamic recruitment of the curvature-sensitive protein ArhGAP44 to nanoscale membrane deformations limits exploratory filopodia initiation in neurons. Elife 3:e03116. https://doi.org/10.7554/eLife.03116

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gallop JL, Jao CC, Kent HM, Butler PJ, Evans PR, Langen R, McMahon HT (2006) Mechanism of endophilin N-BAR domain-mediated membrane curvature. EMBO J 25:2898–2910. https://doi.org/10.1038/sj.emboj.7601174

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Gallop JL, Walrant A, Cantley LC, Kirschner MW (2013) Phosphoinositides and membrane curvature switch the mode of actin polymerization via selective recruitment of toca-1 and Snx9. Proc Natl Acad Sci U S A 110:7193–7198. https://doi.org/10.1073/pnas.1305286110

    Article  PubMed  PubMed Central  Google Scholar 

  59. Garabedian MV, Stanishneva-Konovalova T, Lou C, Rands TJ, Pollard LW, Sokolova OS, Goode BL (2018) Integrated control of formin-mediated actin assembly by a stationary inhibitor and a mobile activator. J Cell Biol. https://doi.org/10.1083/jcb.201803164

  60. Garcia-Mata R, Boulter E, Burridge K (2011) The ‘invisible hand’: regulation of RHO GTPases by RHOGDIs. Nat Rev Mol Cell Biol 12:493–504. https://doi.org/10.1038/nrm3153

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  61. Ge K, Prendergast GC (2000) Bin2, a functionally nonredundant member of the BAR adaptor gene family. Genomics 67:210–220. https://doi.org/10.1006/geno.2000.6216

    CAS  Article  Google Scholar 

  62. Gkourtsa A et al (2015) Identification and characterization of Rvs162/Rvs167-3, a novel N-BAR heterodimer in the human fungal pathogen Candida albicans. Eukaryot Cell 14:182–193. https://doi.org/10.1128/EC.00282-14

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  63. Goh SL, Wang Q, Byrnes LJ, Sondermann H (2012a) Versatile membrane deformation potential of activated pacsin. PLoS One 7:e51628. https://doi.org/10.1371/journal.pone.0051628

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  64. Goh WI, Lim KB, Sudhaharan T, Sem KP, Bu W, Chou AM, Ahmed S (2012b) mDia1 and WAVE2 proteins interact directly with IRSp53 in filopodia and are involved in filopodium formation. J Biol Chem 287:4702–4714. https://doi.org/10.1074/jbc.M111.305102

    CAS  Article  Google Scholar 

  65. Gould CJ, Maiti S, Michelot A, Graziano BR, Blanchoin L, Goode BL (2011) The formin DAD domain plays dual roles in autoinhibition and actin nucleation. Curr Biol 21:384–390. https://doi.org/10.1016/j.cub.2011.01.047

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Graziano BR et al (2014) The F-BAR protein Hof1 tunes formin activity to sculpt actin cables during polarized growth. Mol Biol Cell 25:1730–1743. https://doi.org/10.1091/mbc.E14-03-0850

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Guerrier S et al (2009) The F-BAR domain of srGAP2 induces membrane protrusions required for neuronal migration and morphogenesis. Cell 138:990–1004. https://doi.org/10.1016/j.cell.2009.06.047

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  68. Habermann B (2004) The BAR-domain family of proteins: a case of bending and binding? EMBO Rep 5:250–255

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Haft CR, de la Luz Sierra M, Barr VA, Haft DH, Taylor SI (1998) Identification of a family of sorting nexin molecules and characterization of their association with receptors. Mol Cell Biol 18:7278–7287

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  70. Hall A (2012) Rho family GTPases. Biochem Soc Trans 40:1378–1382. https://doi.org/10.1042/BST20120103

    CAS  Article  Google Scholar 

  71. Hartig SM et al (2009) The F-BAR protein CIP4 promotes GLUT4 endocytosis through bidirectional interactions with N-WASp and Dynamin-2. J Cell Sci 122:2283–2291. https://doi.org/10.1242/jcs.041343

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  72. He J, Xia M, Tsang WH, Chow KL, Xia J (2015) ICA1L forms BAR-domain complexes with PICK1 and is critical for acrosome formation in spermiogenesis. J Cell Sci. https://doi.org/10.1242/jcs.173534

  73. Henne WM et al (2007) Structure and analysis of FCHo2 F-BAR domain: a dimerizing and membrane recruitment module that effects membrane curvature. Structure 15:839–852. https://doi.org/10.1016/j.str.2007.05.002

    CAS  Article  Google Scholar 

  74. Ho HY, Rohatgi R, Lebensohn AM, Le M, Li J, Gygi SP, Kirschner MW (2004) Toca-1 mediates Cdc42-dependent actin nucleation by activating the N-WASP-WIP complex. Cell 118:203–216

    CAS  Article  Google Scholar 

  75. Holst B et al (2013) PICK1 deficiency impairs secretory vesicle biogenesis and leads to growth retardation and decreased glucose tolerance. PLoS Biol 11:e1001542. https://doi.org/10.1371/journal.pbio.1001542

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  76. Hong T et al (2014) Cardiac BIN1 folds T-tubule membrane, controlling ion flux and limiting arrhythmia. Nat Med 20:624–632. https://doi.org/10.1038/nm.3543

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Itoh T, De Camilli P (2006) BAR, F-BAR (EFC) and ENTH/ANTH domains in the regulation of membrane-cytosol interfaces and membrane curvature. Biochim Biophys Acta 1761:897–912

    CAS  Article  Google Scholar 

  78. Itoh T, Erdmann KS, Roux A, Habermann B, Werner H, De Camilli P (2005) Dynamin and the actin cytoskeleton cooperatively regulate plasma membrane invagination by BAR and F-BAR proteins. Dev Cell 9:791–804

    CAS  Article  Google Scholar 

  79. Jian X, Brown P, Schuck P, Gruschus JM, Balbo A, Hinshaw JE, Randazzo PA (2009) Autoinhibition of Arf GTPase-activating protein activity by the BAR domain in ASAP1. J Biol Chem 284:1652–1663. https://doi.org/10.1074/jbc.M804218200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  80. Jin W et al (2006) Lipid binding regulates synaptic targeting of PICK1, AMPA receptor trafficking, and synaptic plasticity. J Neurosci 26:2380–2390. https://doi.org/10.1523/JNEUROSCI.3503-05.2006

    CAS  Article  PubMed  Google Scholar 

  81. Kamioka Y, Fukuhara S, Sawa H, Nagashima K, Masuda M, Matsuda M, Mochizuki N (2004) A novel dynamin-associating molecule, formin-binding protein 17, induces tubular membrane invaginations and participates in endocytosis. J Biol Chem 279:40091–40099. https://doi.org/10.1074/jbc.M404899200

    CAS  Article  PubMed  Google Scholar 

  82. Kast DJ et al (2014) Mechanism of IRSp53 inhibition and combinatorial activation by Cdc42 and downstream effectors. Nat Struct Mol Biol 21:413–422. https://doi.org/10.1038/nsmb.2781

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  83. Kessels MM, Qualmann B (2004) The syndapin protein family: linking membrane trafficking with the cytoskeleton. J Cell Sci 117:3077–3086

    CAS  Article  PubMed  Google Scholar 

  84. Kessels MM, Qualmann B (2015) Different functional modes of BAR domain proteins in formation and plasticity of mammalian postsynapses. J Cell Sci 128:3177–3185. https://doi.org/10.1242/jcs.174193

    CAS  Article  PubMed  Google Scholar 

  85. Koduru S et al (2010) Cdc42 interacting protein 4 (CIP4) is essential for integrin-dependent T-cell trafficking. Proc Natl Acad Sci U S A 107:16252–16256. https://doi.org/10.1073/pnas.1002747107

    Article  PubMed  PubMed Central  Google Scholar 

  86. Kostan J et al (2014) Direct interaction of actin filaments with F-BAR protein pacsin2. EMBO Rep 15:1154–1162. https://doi.org/10.15252/embr.201439267

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  87. Krugmann S, Jordens I, Gevaert K, Driessens M, Vandekerckhove J, Hall A (2001) Cdc42 induces filopodia by promoting the formation of an IRSp53:Mena complex. Curr Biol 11:1645–1655

    CAS  Article  Google Scholar 

  88. Lee E et al (2002) Amphiphysin 2 (Bin1) and T-tubule biogenesis in muscle. Science 297:1193–1196. https://doi.org/10.1126/science.1071362

    CAS  Article  Google Scholar 

  89. Lee SH, Kerff F, Chereau D, Ferron F, Klug A, Dominguez R (2007) Structural basis for the actin-binding function of missing-in-metastasis. Structure 15:145–155. https://doi.org/10.1016/j.str.2006.12.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. Leprince C, Le Scolan E, Meunier B, Fraisier V, Brandon N, De Gunzburg J, Camonis J (2003) Sorting nexin 4 and amphiphysin 2, a new partnership between endocytosis and intracellular trafficking. J Cell Sci 116:1937–1948. https://doi.org/10.1242/jcs.00403

    CAS  Article  PubMed  Google Scholar 

  91. Leung Y, Ally S, Goldberg MB (2008) Bacterial actin assembly requires toca-1 to relieve N-wasp autoinhibition. Cell Host Microbe 3:39–47. https://doi.org/10.1016/j.chom.2007.10.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  92. Li XE, Tobacman LS, Mun JY, Craig R, Fischer S, Lehman W (2011) Tropomyosin position on F-actin revealed by EM reconstruction and computational chemistry. Biophys J 100:1005–1013. https://doi.org/10.1016/j.bpj.2010.12.3697

    CAS  Article  PubMed  Google Scholar 

  93. Lichte B, Veh RW, Meyer HE, Kilimann MW (1992) Amphiphysin, a novel protein associated with synaptic vesicles. EMBO J 11:2521–2530

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  94. Lim KB et al (2008) The Cdc42 effector IRSp53 generates filopodia by coupling membrane protrusion with actin dynamics. J Biol Chem 283:20454–20472. https://doi.org/10.1074/jbc.M710185200

    CAS  Article  PubMed  Google Scholar 

  95. Lo WT et al (2017) A coincidence detection mechanism controls PX-BAR domain-mediated endocytic membrane remodeling via an allosteric structural switch. Dev Cell 43:522–529 e524. https://doi.org/10.1016/j.devcel.2017.10.019

    CAS  Article  PubMed  Google Scholar 

  96. Lombardi R, Riezman H (2001) Rvs161p and Rvs167p, the two yeast amphiphysin homologs, function together in vivo. J Biol Chem 276:6016–6022. https://doi.org/10.1074/jbc.M008735200

    CAS  Article  PubMed  Google Scholar 

  97. Lu W, Ziff EB (2005) PICK1 interacts with ABP/GRIP to regulate AMPA receptor trafficking. Neuron 47:407–421. https://doi.org/10.1016/j.neuron.2005.07.006

    CAS  Article  PubMed  Google Scholar 

  98. Luo W et al (2017) ARHGAP42 is activated by Src-mediated tyrosine phosphorylation to promote cell motility. J Cell Sci 130:2382–2393. https://doi.org/10.1242/jcs.197434

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  99. Madasu Y et al (2015) PICK1 is implicated in organelle motility in an Arp2/3 complex-independent manner. Mol Biol Cell 26:1308–1322. https://doi.org/10.1091/mbc.E14-10-1448

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  100. Maddugoda MP et al (2011) cAMP signaling by anthrax edema toxin induces transendothelial cell tunnels, which are resealed by MIM via Arp2/3-driven actin polymerization. Cell Host Microbe 10:464–474. https://doi.org/10.1016/j.chom.2011.09.014

    CAS  Article  Google Scholar 

  101. Madsen KL et al (2008) Membrane localization is critical for activation of the PICK1 BAR domain. Traffic 9:1327–1343. https://doi.org/10.1111/j.1600-0854.2008.00761.x

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  102. Masuda M, Takeda S, Sone M, Ohki T, Mori H, Kamioka Y, Mochizuki N (2006) Endophilin BAR domain drives membrane curvature by two newly identified structure-based mechanisms. EMBO J 25:2889–2897

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  103. Mattila PK, Pykalainen A, Saarikangas J, Paavilainen VO, Vihinen H, Jokitalo E, Lappalainen P (2007) Missing-in-metastasis and IRSp53 deform PI(4,5)P2-rich membranes by an inverse BAR domain-like mechanism. J Cell Biol 176:953–964. https://doi.org/10.1083/jcb.200609176

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  104. McDonald NA, Gould KL (2016) Linking up at the BAR: oligomerization and F-BAR protein function. Cell Cycle 15:1977–1985. https://doi.org/10.1080/15384101.2016.1190893

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  105. McIntosh BB, Pyrpassopoulos S, Holzbaur ELF, Ostap EM (2018) Opposing kinesin and myosin-I motors drive membrane deformation and tubulation along engineered cytoskeletal networks. Curr Biol 28:236–248 e235. https://doi.org/10.1016/j.cub.2017.12.007

    CAS  Article  Google Scholar 

  106. McMahon HT, Gallop JL (2005) Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438:590–596. https://doi.org/10.1038/nature04396

    CAS  Article  Google Scholar 

  107. McPherson VA et al (2009) Contributions of F-BAR and SH2 domains of Fes protein tyrosine kinase for coupling to the FcepsilonRI pathway in mast cells. Mol Cell Biol 29:389–401. https://doi.org/10.1128/MCB.00904-08

    CAS  Article  Google Scholar 

  108. Meinecke M, Boucrot E, Camdere G, Hon WC, Mittal R, McMahon HT (2013) Cooperative recruitment of dynamin and BIN/amphiphysin/Rvs (BAR) domain-containing proteins leads to GTP-dependent membrane scission. J Biol Chem 288:6651–6661. https://doi.org/10.1074/jbc.M112.444869

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  109. Meiring JCM et al (2018) Co-polymers of actin and tropomyosin account for a major fraction of the human actin cytoskeleton. Curr Biol 28:2331–2337 e2335. https://doi.org/10.1016/j.cub.2018.05.053

    CAS  Article  Google Scholar 

  110. Miki H, Yamaguchi H, Suetsugu S, Takenawa T (2000) IRSp53 is an essential intermediate between Rac and WAVE in the regulation of membrane ruffling. Nature 408:732–735. https://doi.org/10.1038/35047107

    CAS  Article  Google Scholar 

  111. Millard TH, Bompard G, Heung MY, Dafforn TR, Scott DJ, Machesky LM, Futterer K (2005) Structural basis of filopodia formation induced by the IRSp53/MIM homology domain of human IRSp53. EMBO J 24:240–250. https://doi.org/10.1038/sj.emboj.7600535

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  112. Mim C, Unger VM (2012) Membrane curvature and its generation by BAR proteins. Trends Biochem Sci 37:526–533. https://doi.org/10.1016/j.tibs.2012.09.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  113. Mim C, Cui H, Gawronski-Salerno JA, Frost A, Lyman E, Voth GA, Unger VM (2012) Structural basis of membrane bending by the N-BAR protein endophilin. Cell 149:137–145. https://doi.org/10.1016/j.cell.2012.01.048

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  114. Modregger J, Ritter B, Witter B, Paulsson M, Plomann M (2000) All three PACSIN isoforms bind to endocytic proteins and inhibit endocytosis. J Cell Sci 113(Pt 24):4511–4521

    CAS  Google Scholar 

  115. Moravcevic K, Oxley CL, Lemmon MA (2012) Conditional peripheral membrane proteins: facing up to limited specificity. Structure 20:15–27. https://doi.org/10.1016/j.str.2011.11.012

    CAS  Article  Google Scholar 

  116. Munn AL, Stevenson BJ, Geli MI, Riezman H (1995) end5, end6, and end7: mutations that cause actin delocalization and block the internalization step of endocytosis in Saccharomyces cerevisiae. Mol Biol Cell 6:1721–1742

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  117. Nishimura T, Morone N, Suetsugu S (2018) Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors. Biochem Soc Trans 46:379–389. https://doi.org/10.1042/BST20170322

    CAS  Article  Google Scholar 

  118. Oikawa T, Okamura H, Dietrich F, Senju Y, Takenawa T, Suetsugu S (2013) IRSp53 mediates podosome formation via VASP in NIH-Src cells. PLoS One 8:e60528. https://doi.org/10.1371/journal.pone.0060528

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  119. Pan L, Wu H, Shen C, Shi Y, Jin W, Xia J, Zhang M (2007) Clustering and synaptic targeting of PICK1 requires direct interaction between the PDZ domain and lipid membranes. EMBO J 26:4576–4587. https://doi.org/10.1038/sj.emboj.7601860

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  120. Panchal SC, Kaiser DA, Torres E, Pollard TD, Rosen MK (2003) A conserved amphipathic helix in WASP/Scar proteins is essential for activation of Arp2/3 complex. Nat Struct Biol 10:591–598

    CAS  Article  Google Scholar 

  121. Parks WT et al (2001) Sorting nexin 6, a novel SNX, interacts with the transforming growth factor-beta family of receptor serine-threonine kinases. J Biol Chem 276:19332–19339. https://doi.org/10.1074/jbc.M100606200

    CAS  Article  Google Scholar 

  122. Pei J, Grishin NV (2014) PROMALS3D: multiple protein sequence alignment enhanced with evolutionary and three-dimensional structural information. Methods Mol Biol 1079:263–271. https://doi.org/10.1007/978-1-62703-646-7_17

    Article  PubMed  PubMed Central  Google Scholar 

  123. Perez JL, Khatri L, Chang C, Srivastava S, Osten P, Ziff EB (2001) PICK1 targets activated protein kinase Calpha to AMPA receptor clusters in spines of hippocampal neurons and reduces surface levels of the AMPA-type glutamate receptor subunit 2. J Neurosci 21:5417–5428

    CAS  Article  Google Scholar 

  124. Peter BJ, Kent HM, Mills IG, Vallis Y, Butler PJ, Evans PR, McMahon HT (2004) BAR domains as sensors of membrane curvature: the amphiphysin BAR structure. Science 303:495–499

    CAS  Article  Google Scholar 

  125. Pichot CS et al (2010) Cdc42-interacting protein 4 promotes breast cancer cell invasion and formation of invadopodia through activation of N-WASp. Cancer Res 70:8347–8356. https://doi.org/10.1158/0008-5472.CAN-09-4149

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  126. Pollard TD (2007) Regulation of actin filament assembly by Arp2/3 complex and formins. Annu Rev Biophys Biomol Struct 36:451–477

    CAS  Article  Google Scholar 

  127. Pykalainen A et al (2011) Pinkbar is an epithelial-specific BAR domain protein that generates planar membrane structures. Nat Struct Mol Biol 18:902–907. https://doi.org/10.1038/nsmb.2079

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  128. Pylypenko O, Lundmark R, Rasmuson E, Carlsson SR, Rak A (2007) The PX-BAR membrane-remodeling unit of sorting nexin 9. EMBO J 26:4788–4800

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  129. Qualmann B, Kelly RB (2000) Syndapin isoforms participate in receptor-mediated endocytosis and actin organization. J Cell Biol 148:1047–1062

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  130. Qualmann B, Roos J, DiGregorio PJ, Kelly RB (1999) Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott-Aldrich syndrome protein. Mol Biol Cell 10:501–513

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  131. Quan A, Robinson PJ (2013) Syndapin--a membrane remodelling and endocytic F-BAR protein. FEBS J 280:5198–5212. https://doi.org/10.1111/febs.12343

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  132. Ramjaun AR, Philie J, de Heuvel E, McPherson PS (1999) The N terminus of amphiphysin II mediates dimerization and plasma membrane targeting. J Biol Chem 274:19785–19791

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  133. Rao Y et al (2010) Molecular basis for SH3 domain regulation of F-BAR-mediated membrane deformation. Proc Natl Acad Sci U S A 107:8213–8218. https://doi.org/10.1073/pnas.1003478107

    Article  PubMed  PubMed Central  Google Scholar 

  134. Renard HF et al (2015) Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature 517:493–496. https://doi.org/10.1038/nature14064

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  135. Ridley AJ (2012) Historical overview of Rho GTPases. Methods Mol Biol 827:3–12. https://doi.org/10.1007/978-1-61779-442-1_1

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  136. Ridley AJ (2015) Rho GTPase signalling in cell migration. Curr Opin Cell Biol 36:103–112. https://doi.org/10.1016/j.ceb.2015.08.005

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  137. Robens JM, Yeow-Fong L, Ng E, Hall C, Manser E (2010) Regulation of IRSp53-dependent filopodial dynamics by antagonism between 14-3-3 binding and SH3-mediated localization. Mol Cell Biol 30:829–844. https://doi.org/10.1128/MCB.01574-08

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  138. Rocca DL, Martin S, Jenkins EL, Hanley JG (2008) Inhibition of Arp2/3-mediated actin polymerization by PICK1 regulates neuronal morphology and AMPA receptor endocytosis. Nat Cell Biol 10:259–271. https://doi.org/10.1038/ncb1688

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  139. Saarikangas J, Hakanen J, Mattila PK, Grumet M, Salminen M, Lappalainen P (2008) ABBA regulates plasma-membrane and actin dynamics to promote radial glia extension. J Cell Sci 121:1444–1454. https://doi.org/10.1242/jcs.027466

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  140. Saarikangas J et al (2009) Molecular mechanisms of membrane deformation by I-BAR domain proteins. Curr Biol 19:95–107. https://doi.org/10.1016/j.cub.2008.12.029

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  141. Saarikangas J, Zhao H, Lappalainen P (2010) Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides. Physiol Rev 90:259–289. https://doi.org/10.1152/physrev.00036.2009

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  142. Saarikangas J et al (2011) Missing-in-metastasis MIM/MTSS1 promotes actin assembly at intercellular junctions and is required for integrity of kidney epithelia. J Cell Sci 124:1245–1255. https://doi.org/10.1242/jcs.082610

    CAS  Article  Google Scholar 

  143. Saarikangas J et al (2015) MIM-induced membrane bending promotes dendritic spine initiation. Dev Cell 33:644–659. https://doi.org/10.1016/j.devcel.2015.04.014

    CAS  Article  Google Scholar 

  144. Sakamuro D, Elliott KJ, Wechsler-Reya R, Prendergast GC (1996) BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat Genet 14:69–77. https://doi.org/10.1038/ng0996-69

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  145. Salazar MA et al (2003) Tuba, a novel protein containing bin/amphiphysin/Rvs and Dbl homology domains, links dynamin to regulation of the actin cytoskeleton. J Biol Chem 278:49031–49043

    CAS  Article  Google Scholar 

  146. Sanchez-Barrena MJ, Vallis Y, Clatworthy MR, Doherty GJ, Veprintsev DB, Evans PR, McMahon HT (2012) Bin2 is a membrane sculpting N-BAR protein that influences leucocyte podosomes, motility and phagocytosis. PLoS One 7:e52401. https://doi.org/10.1371/journal.pone.0052401

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  147. Sathe M et al (2018) Small GTPases and BAR domain proteins regulate branched actin polymerisation for clathrin and dynamin-independent endocytosis. Nat Commun 9:1835. https://doi.org/10.1038/s41467-018-03955-w

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  148. Schuler S, Hauptmann J, Perner B, Kessels MM, Englert C, Qualmann B (2013) Ciliated sensory hair cell formation and function require the F-BAR protein syndapin I and the WH2 domain-based actin nucleator. Cobl J Cell Sci 126:196–208. https://doi.org/10.1242/jcs.111674

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  149. Schwintzer L, Koch N, Ahuja R, Grimm J, Kessels MM, Qualmann B (2011) The functions of the actin nucleator Cobl in cellular morphogenesis critically depend on syndapin I. EMBO J 30:3147–3159. https://doi.org/10.1038/emboj.2011.207

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  150. Scita G, Confalonieri S, Lappalainen P, Suetsugu S (2008) IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol 18:52–60. https://doi.org/10.1016/j.tcb.2007.12.002

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  151. Seaman MN, Williams HP (2002) Identification of the functional domains of yeast sorting nexins Vps5p and Vps17p. Mol Biol Cell 13:2826–2840. https://doi.org/10.1091/mbc.02-05-0064

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  152. Senju Y, Itoh Y, Takano K, Hamada S, Suetsugu S (2011) Essential role of PACSIN2/syndapin-II in caveolae membrane sculpting. J Cell Sci 124:2032–2040. https://doi.org/10.1242/jcs.086264

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  153. Shimada A et al (2007) Curved EFC/F-BAR-domain dimers are joined end to end into a filament for membrane invagination in endocytosis. Cell 129:761–772

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  154. Simionescu-Bankston A et al (2013) The N-BAR domain protein, Bin3, regulates Rac1- and Cdc42-dependent processes in myogenesis. Dev Biol 382:160–171. https://doi.org/10.1016/j.ydbio.2013.07.004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  155. Simunovic M, Mim C, Marlovits TC, Resch G, Unger VM, Voth GA (2013) Protein-mediated transformation of lipid vesicles into tubular networks. Biophys J 105:711–719. https://doi.org/10.1016/j.bpj.2013.06.039

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  156. Simunovic M et al (2016) How curvature-generating proteins build scaffolds on membrane nanotubes. Proc Natl Acad Sci U S A 113:11226–11231. https://doi.org/10.1073/pnas.1606943113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  157. Sivadon P, Bauer F, Aigle M, Crouzet M (1995) Actin cytoskeleton and budding pattern are altered in the yeast rvs161 mutant: the Rvs161 protein shares common domains with the brain protein amphiphysin. Mol Gen Genet 246:485–495

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  158. Slepnev VI, Ochoa GC, Butler MH, Grabs D, De Camilli P (1998) Role of phosphorylation in regulation of the assembly of endocytic coat complexes. Science 281:821–824

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  159. Sporny M et al (2017) Structural history of human SRGAP2 proteins. Mol Biol Evol 34:1463–1478. https://doi.org/10.1093/molbev/msx094

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  160. Stanishneva-Konovalova TB, Kelley CF, Eskin TL, Messelaar EM, Wasserman SA, Sokolova OS, Rodal AA (2016) Coordinated autoinhibition of F-BAR domain membrane binding and WASp activation by Nervous Wreck. Proc Natl Acad Sci U S A 113:E5552–E5561. https://doi.org/10.1073/pnas.1524412113

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  161. Sudhaharan T, Sem KP, Liew HF, Yu YH, Goh WI, Chou AM, Ahmed S (2016) The Rho GTPase Rif signals through IRTKS, Eps8 and WAVE2 to generate dorsal membrane ruffles and filopodia. J Cell Sci 129:2829–2840. https://doi.org/10.1242/jcs.179655

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  162. Suetsugu S, Gautreau A (2012) Synergistic BAR-NPF interactions in actin-driven membrane remodeling. Trends Cell Biol 22:141–150. https://doi.org/10.1016/j.tcb.2012.01.001

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  163. Suetsugu S et al (2006) The RAC binding domain/IRSp53-MIM homology domain of IRSp53 induces RAC-dependent membrane deformation. J Biol Chem 281:35347–35358. https://doi.org/10.1074/jbc.M606814200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  164. Takano K, Toyooka K, Suetsugu S (2008) EFC/F-BAR proteins and the N-WASP-WIP complex induce membrane curvature-dependent actin polymerization. EMBO J 27:2817–2828. https://doi.org/10.1038/emboj.2008.216

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  165. Takei K, Slepnev VI, Haucke V, De Camilli P (1999) Functional partnership between amphiphysin and dynamin in clathrin-mediated endocytosis. Nat Cell Biol 1:33–39. https://doi.org/10.1038/9004

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  166. Tarricone C, Xiao B, Justin N, Walker PA, Rittinger K, Gamblin SJ, Smerdon SJ (2001) The structural basis of Arfaptin-mediated cross-talk between Rac and Arf signalling pathways. Nature 411:215–219

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  167. Toguchi M, Richnau N, Ruusala A, Aspenstrom P (2010) Members of the CIP4 family of proteins participate in the regulation of platelet-derived growth factor receptor-beta-dependent actin reorganization and migration. Biol Cell 102:215–230. https://doi.org/10.1042/BC20090033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  168. Tsuboi S et al (2009) FBP17 mediates a common molecular step in the formation of podosomes and phagocytic cups in macrophages. J Biol Chem 284:8548–8556. https://doi.org/10.1074/jbc.M805638200

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  169. Tsujita K, Suetsugu S, Sasaki N, Furutani M, Oikawa T, Takenawa T (2006) Coordination between the actin cytoskeleton and membrane deformation by a novel membrane tubulation domain of PCH proteins is involved in endocytosis. J Cell Biol 172:269–279

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  170. Tsujita K, Kondo A, Kurisu S, Hasegawa J, Itoh T, Takenawa T (2013) Antagonistic regulation of F-BAR protein assemblies controls actin polymerization during podosome formation. J Cell Sci 126:2267–2278. https://doi.org/10.1242/jcs.122515

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  171. Van Aelst L, Joneson T, Bar-Sagi D (1996) Identification of a novel Rac1-interacting protein involved in membrane ruffling. EMBO J 15:3778–3786

    Article  PubMed  PubMed Central  Google Scholar 

  172. Van Itallie CM, Tietgens AJ, Krystofiak E, Kachar B, Anderson JM (2015) A complex of ZO-1 and the BAR-domain protein TOCA-1 regulates actin assembly at the tight junction. Mol Biol Cell 26:2769–2787. https://doi.org/10.1091/mbc.E15-04-0232

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  173. Vehlow A, Soong D, Vizcay-Barrena G, Bodo C, Law AL, Perera U, Krause M (2013) Endophilin, Lamellipodin, and Mena cooperate to regulate F-actin-dependent EGF-receptor endocytosis. EMBO J 32:2722–2734. https://doi.org/10.1038/emboj.2013.212

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  174. Vingadassalom D et al (2009) Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspF(U) during pedestal formation. Proc Natl Acad Sci U S A 106:6754–6759. https://doi.org/10.1073/pnas.0809131106

    Article  PubMed  PubMed Central  Google Scholar 

  175. Wang Q et al (2009) Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin. Proc Natl Acad Sci U S A 106:12700–12705. https://doi.org/10.1073/pnas.0902974106

    Article  PubMed  PubMed Central  Google Scholar 

  176. Wassmer T, Attar N, Bujny MV, Oakley J, Traer CJ, Cullen PJ (2007) A loss-of-function screen reveals SNX5 and SNX6 as potential components of the mammalian retromer. J Cell Sci 120:45–54. https://doi.org/10.1242/jcs.03302

    CAS  Article  PubMed  Google Scholar 

  177. Waterhouse AM, Procter JB, Martin DM, Clamp M, Barton GJ (2009) Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 25:1189–1191. https://doi.org/10.1093/bioinformatics/btp033

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  178. Watson JR, Fox HM, Nietlispach D, Gallop JL, Owen D, Mott HR (2016) Investigation of THE interaction between Cdc42 and its effector TOCA1: handover of Cdc42 to the actin regulator N-WASP is facilitated by differential binding affinities. J Biol Chem 291:13875–13890. https://doi.org/10.1074/jbc.M116.724294

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  179. Weiss SM et al (2009) IRSp53 links the enterohemorrhagic E. coli effectors Tir and EspFU for actin pedestal formation. Cell Host Microbe 5:244–258. https://doi.org/10.1016/j.chom.2009.02.003

    CAS  Article  PubMed  Google Scholar 

  180. Weissenhorn W (2005) Crystal structure of the endophilin-A1 BAR domain. J Mol Biol 351:653–661

    CAS  Article  PubMed  Google Scholar 

  181. Wigge P, Kohler K, Vallis Y, Doyle CA, Owen D, Hunt SP, McMahon HT (1997) Amphiphysin heterodimers: potential role in clathrin-mediated endocytosis. Mol Biol Cell 8:2003–2015

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  182. Willet AH, McDonald NA, Bohnert KA, Baird MA, Allen JR, Davidson MW, Gould KL (2015) The F-BAR Cdc15 promotes contractile ring formation through the direct recruitment of the formin Cdc12. J Cell Biol 208:391–399. https://doi.org/10.1083/jcb.201411097

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  183. Wu T, Baumgart T (2014) BIN1 membrane curvature sensing and generation show autoinhibition regulated by downstream ligands and PI(4,5)P2. Biochemistry 53:7297–7309. https://doi.org/10.1021/bi501082r

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  184. Yamada H et al (2007) Amphiphysin 1 is important for actin polymerization during phagocytosis. Mol Biol Cell 18:4669–4680. https://doi.org/10.1091/mbc.e07-04-0296

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  185. Yamada H et al (2009) Dynamic interaction of amphiphysin with N-WASP regulates actin assembly. J Biol Chem 284:34244–34256. https://doi.org/10.1074/jbc.M109.064204

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  186. Yan S et al (2013) The F-BAR protein Cip4/Toca-1 antagonizes the formin Diaphanous in membrane stabilization and compartmentalization. J Cell Sci 126:1796–1805. https://doi.org/10.1242/jcs.118422

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  187. Yang C, Hoelzle M, Disanza A, Scita G, Svitkina T (2009) Coordination of membrane and actin cytoskeleton dynamics during filopodia protrusion. PLoS One 4:e5678. https://doi.org/10.1371/journal.pone.0005678

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  188. Yang Y et al (2018) Endophilin A1 promotes actin polymerization in dendritic spines required for synaptic potentiation. Front Mol Neurosci 11:177. https://doi.org/10.3389/fnmol.2018.00177

    Article  PubMed  PubMed Central  Google Scholar 

  189. Yao G et al (2014) Polycystin-1 regulates actin cytoskeleton organization and directional cell migration through a novel PC1-Pacsin 2-N-wasp complex. Hum Mol Genet 23:2769–2779. https://doi.org/10.1093/hmg/ddt672

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  190. Yarar D, Surka MC, Leonard MC, Schmid SL (2008) SNX9 activities are regulated by multiple phosphoinositides through both PX and BAR domains. Traffic 9:133–146. https://doi.org/10.1111/j.1600-0854.2007.00675.x

    CAS  Article  PubMed  Google Scholar 

  191. Youn JY et al (2010) Dissecting BAR domain function in the yeast Amphiphysins Rvs161 and Rvs167 during endocytosis. Mol Biol Cell 21:3054–3069. https://doi.org/10.1091/mbc.E10-03-0181

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  192. Yu D et al (2011) Murine missing in metastasis (MIM) mediates cell polarity and regulates the motility response to growth factors. PLoS One 6:e20845. https://doi.org/10.1371/journal.pone.0020845

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  193. Zeng XC, Luo X, Wang SX, Zhan X (2013) Fibronectin-mediated cell spreading requires ABBA-Rac1 signaling. J Cell Biochem 114:773–781. https://doi.org/10.1002/jcb.24415

    CAS  Article  PubMed  Google Scholar 

  194. Zhang J, Zhang X, Guo Y, Xu L, Pei D (2009) Sorting nexin 33 induces mammalian cell micronucleated phenotype and actin polymerization by interacting with Wiskott-Aldrich syndrome protein. J Biol Chem 284:21659–21669. https://doi.org/10.1074/jbc.M109.007278

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  195. Zhao H, Pykalainen A, Lappalainen P (2011) I-BAR domain proteins: linking actin and plasma membrane dynamics. Curr Opin Cell Biol 23:14–21. https://doi.org/10.1016/j.ceb.2010.10.005

    CAS  Article  PubMed  Google Scholar 

  196. Zheng D et al (2010) Abba promotes PDGF-mediated membrane ruffling through activation of the small GTPase Rac1. Biochem Biophys Res Commun 401:527–532. https://doi.org/10.1016/j.bbrc.2010.09.087

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  197. Zimmerberg J, Kozlov MM (2006) How proteins produce cellular membrane curvature. Nat Rev Mol Cell Biol 7:9–19. https://doi.org/10.1038/nrm1784

    CAS  Article  Google Scholar 

Download references

Funding

This work was supported by the National Institutes of Health grants R01 MH087950 and R01 GM073791.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Roberto Dominguez.

Ethics declarations

Conflict of interest

Peter J. Carman declares that he has no conflict of interest. Roberto Dominguez declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Carman, P.J., Dominguez, R. BAR domain proteins—a linkage between cellular membranes, signaling pathways, and the actin cytoskeleton. Biophys Rev 10, 1587–1604 (2018). https://doi.org/10.1007/s12551-018-0467-7

Download citation

Keywords

  • BAR domain
  • Actin cytoskeleton
  • Membrane remodeling
  • Rho GTPases
  • Signaling