Biophysical Reviews

, Volume 10, Issue 4, pp 961–971 | Cite as

At the heart of inter- and intracellular signaling: the intercalated disc

  • Heather R. Manring
  • Lisa E. Dorn
  • Aidan Ex-Willey
  • Federica AccorneroEmail author
  • Maegen A. AckermannEmail author


Proper cardiac function requires the synchronous mechanical and electrical coupling of individual cardiomyocytes. The intercalated disc (ID) mediates coupling of neighboring myocytes through intercellular signaling. Intercellular communication is highly regulated via intracellular signaling, and signaling pathways originating from the ID control cardiomyocyte remodeling and function. Herein, we present an overview of the inter- and intracellular signaling that occurs at and originates from the intercalated disc in normal physiology and pathophysiology. This review highlights the importance of the intercalated disc as an integrator of signaling events regulating homeostasis and stress responses in the heart and the center of several pathophysiological processes mediating the development of cardiomyopathies.


Intercalated disc Intercalated disc Heart Cardiomyocyte Cardiomyopathy 


Funding information

The authors acknowledge funding from the National Institutes of Health (HL121284 and HL136951 to F.A. and HL116778 to M.A.A.) and a grant from the Saving tiny Hearts Society (M.A.A).

Compliance with ethical standards

Conflict of interest

Heather R. Manring declares that she has no conflicts of interest. Lisa E. Dorn declares that she has no conflicts of interest. Aidan Ex-Willey declares that he has no conflicts of interest. Federica Accornero declares that she has no conflicts of interest. Maegen A. Ackermann declares that she has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Abriel H (2010) Cardiac sodium channel Na(v)1.5 and interacting proteins: physiology and pathophysiology. J Mol Cell Cardiol 48:2–11. PubMedCrossRefGoogle Scholar
  2. Ackermann MA et al (2017a) Novel obscurins mediate cardiomyocyte adhesion and size via the PI3K/AKT/mTOR signaling pathway. J Mol Cell Cardiol 111:27–39. PubMedPubMedCentralCrossRefGoogle Scholar
  3. Ackermann MA et al (2017b) TGF-beta1 affects cell-cell adhesion in the heart in an NCAM1-dependent mechanism. J Mol Cell Cardiol 112:49–57. PubMedCrossRefGoogle Scholar
  4. Agullo-Pascual E, Delmar M (2012) The noncanonical functions of Cx43 in the heart. J Membr Biol 245:477–482. PubMedPubMedCentralCrossRefGoogle Scholar
  5. Ai Z, Fischer A, Spray DC, Brown AM, Fishman GI (2000) Wnt-1 regulation of connexin43 in cardiac myocytes. J Clin Invest 105:161–171. PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bass-Zubek AE, Godsel LM, Delmar M, Green KJ (2009) Plakophilins: multifunctional scaffolds for adhesion and signaling. Curr Opin Cell Biol 21:708–716. PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baurand A et al (2007) Beta-catenin downregulation is required for adaptive cardiac remodeling. Circ Res 100:1353–1362. PubMedCrossRefGoogle Scholar
  8. Beltran-Alvarez P, Pagans S, Brugada R (2011) The cardiac sodium channel is post-translationally modified by arginine methylation. J Proteome Res 10:3712–3719. PubMedCrossRefGoogle Scholar
  9. Beltran-Alvarez P et al (2014) Identification of N-terminal protein acetylation and arginine methylation of the voltage-gated sodium channel in end-stage heart failure human heart. J Mol Cell Cardiol 76:126–129. PubMedCrossRefGoogle Scholar
  10. Beltran-Alvarez P, Feixas F, Osuna S, Diaz-Hernandez R, Brugada R, Pagans S (2015) Interplay between R513 methylation and S516 phosphorylation of the cardiac voltage-gated sodium channel. Amino Acids 47:429–434. PubMedCrossRefGoogle Scholar
  11. Bennett PM, Maggs AM, Baines AJ, Pinder JC (2006) The transitional junction: a new functional subcellular domain at the intercalated disc. Mol Biol Cell 17:2091–2100. PubMedPubMedCentralCrossRefGoogle Scholar
  12. Beyer EC, Paul DL, Goodenough DA (1987) Connexin43: a protein from rat heart homologous to a gap junction protein from liver. J Cell Biol 105:2621–2629PubMedCrossRefGoogle Scholar
  13. Borrmann CM, Grund C, Kuhn C, Hofmann I, Pieperhoff S, Franke WW (2006) The area composita of adhering junctions connecting heart muscle cells of vertebrates. II. Colocalizations of desmosomal and fascia adhaerens molecules in the intercalated disk. Eur J Cell Biol 85:469–485. PubMedCrossRefGoogle Scholar
  14. Calore M, Lorenzon A, De Bortoli M, Poloni G, Rampazzo A (2015) Arrhythmogenic cardiomyopathy: a disease of intercalated discs. Cell Tissue Res 360:491–500. PubMedCrossRefGoogle Scholar
  15. Chen X et al (2006) The beta-catenin/T-cell factor/lymphocyte enhancer factor signaling pathway is required for normal and stress-induced cardiac hypertrophy. Mol Cell Biol 26:4462–4473. PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chen SN, Gurha P, Lombardi R, Ruggiero A, Willerson JT, Marian AJ (2014) The hippo pathway is activated and is a causal mechanism for adipogenesis in arrhythmogenic cardiomyopathy. Circ Res 114:454–468. PubMedCrossRefGoogle Scholar
  17. Clevers H (2006) Wnt/beta-catenin signaling in development and disease. Cell 127:469–480. PubMedCrossRefGoogle Scholar
  18. Cohen ED, Tian Y, Morrisey EE (2008) Wnt signaling: an essential regulator of cardiovascular differentiation, morphogenesis and progenitor self-renewal. Development 135:789–798. PubMedCrossRefGoogle Scholar
  19. Delmar M (2004) The intercalated disk as a single functional unit. Heart Rhythm 1:12–13. PubMedCrossRefGoogle Scholar
  20. Delmar M, Liang FX (2012) Connexin43 and the regulation of intercalated disc function. Heart Rhythm 9:835–838. PubMedCrossRefGoogle Scholar
  21. Detta N, Frisso G, Salvatore F (2015) The multi-faceted aspects of the complex cardiac Nav1.5 protein in membrane function and pathophysiology. Biochim Biophys Acta 1854:1502–1509. PubMedCrossRefGoogle Scholar
  22. Dowling JJ, Gibbs E, Russell M, Goldman D, Minarcik J, Golden JA, Feldman EL (2008) Kindlin-2 is an essential component of intercalated discs and is required for vertebrate cardiac structure and function. Circ Res 102:423–431. PubMedCrossRefGoogle Scholar
  23. Ehler E (2016) Cardiac cytoarchitecture—why the “hardware” is important for heart function! Biochim Biophys Acta 1863:1857–1863. PubMedPubMedCentralCrossRefGoogle Scholar
  24. Ehler E et al (2001) Alterations at the intercalated disk associated with the absence of muscle LIM protein. J Cell Biol 153:763–772PubMedPubMedCentralCrossRefGoogle Scholar
  25. Eichel CA et al (2016) Lateral membrane-specific MAGUK CASK down-regulates NaV1. 5 channel in cardiac myocytes. Circ Res 119:544–556. PubMedCrossRefGoogle Scholar
  26. Estigoy CB et al (2009) Intercalated discs: multiple proteins perform multiple functions in non-failing and failing human hearts. Biophys Rev 1:43. PubMedPubMedCentralCrossRefGoogle Scholar
  27. Evans WH, Martin PE (2002) Gap junctions: structure and function (review). Mol Membr Biol 19:121–136. PubMedCrossRefGoogle Scholar
  28. Ferreira-Cornwell MC, Luo Y, Narula N, Lenox JM, Lieberman M, Radice GL (2002) Remodeling the intercalated disc leads to cardiomyopathy in mice misexpressing cadherins in the heart. J Cell Sci 115:1623–1634PubMedGoogle Scholar
  29. Fontes MS, van Veen TA, de Bakker JM, van Rijen HV (2012) Functional consequences of abnormal Cx43 expression in the heart. Biochim Biophys Acta 1818:2020–2029. PubMedCrossRefGoogle Scholar
  30. Franke WW, Borrmann CM, Grund C, Pieperhoff S (2006) The area composita of adhering junctions connecting heart muscle cells of vertebrates. I. Molecular definition in intercalated disks of cardiomyocytes by immunoelectron microscopy of desmosomal proteins. Eur J Cell Biol 85:69–82. PubMedCrossRefGoogle Scholar
  31. Franke WW et al (2007) The area composita of adhering junctions connecting heart muscle cells of vertebrates—III: assembly and disintegration of intercalated disks in rat cardiomyocytes growing in culture. Eur J Cell Biol 86:127–142. PubMedCrossRefGoogle Scholar
  32. Gehmlich K et al (2011) A novel desmocollin-2 mutation reveals insights into the molecular link between desmosomes and gap junctions. Heart Rhythm 8:711–718. PubMedPubMedCentralCrossRefGoogle Scholar
  33. Geisler SB, Robinson D, Hauringa M, Raeker MO, Borisov AB, Westfall MV, Russell MW (2007) Obscurin-like 1, OBSL1, is a novel cytoskeletal protein related to obscurin. Genomics 89:521–531. PubMedPubMedCentralCrossRefGoogle Scholar
  34. Gessert S, Kuhl M (2010) The multiple phases and faces of wnt signaling during cardiac differentiation and development. Circ Res 107:186–199. PubMedCrossRefGoogle Scholar
  35. Girao H, Catarino S, Pereira P (2009) Eps15 interacts with ubiquitinated Cx43 and mediates its internalization. Exp Cell Res 315:3587–3597. PubMedCrossRefGoogle Scholar
  36. Green KJ, Simpson CL (2007) Desmosomes: new perspectives on a classic. J Investig Dermatol 127:2499–2515. PubMedCrossRefGoogle Scholar
  37. Hallaq H, Wang DW, Kunic JD, George AL Jr, Wells KS, Murray KT (2012) Activation of protein kinase C alters the intracellular distribution and mobility of cardiac Na+ channels. Am J Physiol Heart Circ Physiol 302:H782–H789. PubMedCrossRefGoogle Scholar
  38. Haq S et al (2000) Glycogen synthase kinase-3beta is a negative regulator of cardiomyocyte hypertrophy. J Cell Biol 151:117–130PubMedPubMedCentralCrossRefGoogle Scholar
  39. Haq S et al (2003) Stabilization of beta-catenin by a Wnt-independent mechanism regulates cardiomyocyte growth. Proc Natl Acad Sci U S A 100:4610–4615. PubMedPubMedCentralCrossRefGoogle Scholar
  40. Herfst LJ, Rook MB, Jongsma HJ (2004) Trafficking and functional expression of cardiac Na+ channels. J Mol Cell Cardiol 36:185–193. PubMedCrossRefGoogle Scholar
  41. Hirschy A, Schatzmann F, Ehler E, Perriard JC (2006) Establishment of cardiac cytoarchitecture in the developing mouse heart. Dev Biol 289:430–441. PubMedCrossRefGoogle Scholar
  42. Hirschy A et al (2010) Stabilised beta-catenin in postnatal ventricular myocardium leads to dilated cardiomyopathy and premature death. Basic Res Cardiol 105:597–608. PubMedCrossRefGoogle Scholar
  43. Hoch B, Meyer R, Hetzer R, Krause EG, Karczewski P (1999) Identification and expression of delta-isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human myocardium. Circ Res 84:713–721PubMedCrossRefGoogle Scholar
  44. Hood AR, Ai X, Pogwizd SM (2017) Regulation of cardiac gap junctions by protein phosphatases. J Mol Cell Cardiol 107:52–57. PubMedCrossRefGoogle Scholar
  45. Hoyt RH, Cohen ML, Saffitz JE (1989) Distribution and three-dimensional structure of intercellular junctions in canine myocardium. Circ Res 64:563–574PubMedCrossRefGoogle Scholar
  46. Jung-Ching Lin J et al (2005) Structure, expression, and function of a novel intercalated disc protein, Xin. J Med Sci 25:215–222. PubMedPubMedCentralCrossRefGoogle Scholar
  47. Kargacin GJ et al (2006) Localization of telokin at the intercalated discs of cardiac myocytes. Arch Biochem Biophys 456:151–160. PubMedCrossRefGoogle Scholar
  48. Kehat I et al (2011) Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circ Res 108:176–183. PubMedCrossRefGoogle Scholar
  49. Kimura A (2016) Molecular genetics and pathogenesis of cardiomyopathy. J Hum Genet 61:41–50. PubMedCrossRefGoogle Scholar
  50. Kleber AG, Saffitz JE (2014) Role of the intercalated disc in cardiac propagation and arrhythmogenesis. Front Physiol 5:404. PubMedPubMedCentralCrossRefGoogle Scholar
  51. Koval OM et al (2012) Ca2+/calmodulin-dependent protein kinase II-based regulation of voltage-gated Na+ channel in cardiac disease. Circulation 126:2084–2094. PubMedCrossRefGoogle Scholar
  52. Laing JG, Saffitz JE, Steinberg TH, Yamada KA (2007) Diminished zonula occludens-1 expression in the failing human heart. Cardiovasc Pathol 16:159–164. PubMedCrossRefGoogle Scholar
  53. Lal H, Ahmad F, Woodgett J, Force T (2015) The GSK-3 family as therapeutic target for myocardial diseases. Circ Res 116:138–149. PubMedPubMedCentralCrossRefGoogle Scholar
  54. Lampe PD, TenBroek EM, Burt JM, Kurata WE, Johnson RG, Lau AF (2000) Phosphorylation of connexin43 on serine368 by protein kinase C regulates gap junctional communication. J Cell Biol 149:1503–1512PubMedPubMedCentralCrossRefGoogle Scholar
  55. Lange S et al (2016) MLP and CARP are linked to chronic PKCalpha signalling in dilated cardiomyopathy. Nat Commun 7:12120. PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lee CY et al (2017) Increased beta-catenin accumulation and nuclear translocation are associated with concentric hypertrophy in cardiomyocytes. Cardiovasc Pathol 31:9–16. PubMedCrossRefGoogle Scholar
  57. Leithe E, Mesnil M, Aasen T (2018) The connexin 43 C-terminus: a tail of many tales. Biochim Biophys Acta 1860:48–64. PubMedCrossRefGoogle Scholar
  58. Lengauer C, Kinzler KW, Vogelstein B (1998) Genetic instabilities in human cancers. Nature 396:643–649. PubMedCrossRefGoogle Scholar
  59. Leykauf K, Salek M, Bomke J, Frech M, Lehmann WD, Durst M, Alonso A (2006) Ubiquitin protein ligase Nedd4 binds to connexin43 by a phosphorylation-modulated process. J Cell Sci 119:3634–3642. PubMedCrossRefGoogle Scholar
  60. Li J, Swope D, Raess N, Cheng L, Muller EJ, Radice GL (2011) Cardiac tissue-restricted deletion of plakoglobin results in progressive cardiomyopathy and activation of {beta}-catenin signaling. Mol Cell Biol 31:1134–1144. PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lin J, Keener JP (2010) Modeling electrical activity of myocardial cells incorporating the effects of ephaptic coupling. Proc Natl Acad Sci U S A 107:20935–20940. PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lombardi R et al (2009) Genetic fate mapping identifies second heart field progenitor cells as a source of adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ Res 104:1076–1084. PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lombardi R, da Graca Cabreira-Hansen M, Bell A, Fromm RR, Willerson JT, Marian AJ (2011) Nuclear plakoglobin is essential for differentiation of cardiac progenitor cells to adipocytes in arrhythmogenic right ventricular cardiomyopathy. Circ Res 109:1342–1353. PubMedPubMedCentralCrossRefGoogle Scholar
  64. Ma J et al (2012) Calmodulin kinase II and protein kinase C mediate the effect of increased intracellular calcium to augment late sodium current in rabbit ventricular myocytes. Am J Phys Cell Phys 302:C1141–C1151. CrossRefGoogle Scholar
  65. MacDonald BT, Tamai K, He X (2009) Wnt/beta-catenin signaling: components, mechanisms, and diseases. Dev Cell 17:9–26. PubMedPubMedCentralCrossRefGoogle Scholar
  66. Maeda M, Holder E, Lowes B, Valent S, Bies RD (1997) Dilated cardiomyopathy associated with deficiency of the cytoskeletal protein metavinculin. Circulation 95:17–20PubMedCrossRefGoogle Scholar
  67. Makara MA et al (2014) Ankyrin-G coordinates intercalated disc signaling platform to regulate cardiac excitability in vivo. Circ Res 115:929–938. PubMedPubMedCentralCrossRefGoogle Scholar
  68. Makita N et al (2002) Drug-induced long-QT syndrome associated with a subclinical SCN5A mutation. Circulation 106:1269–1274PubMedCrossRefGoogle Scholar
  69. Marcus FI, Edson S, Towbin JA (2013) Genetics of arrhythmogenic right ventricular cardiomyopathy: a practical guide for physicians. J Am Coll Cardiol 61:1945–1948. PubMedCrossRefGoogle Scholar
  70. Marionneau C, Abriel H (2015) Regulation of the cardiac Na+ channel NaV1.5 by post-translational modifications. J Mol Cell Cardiol 82:36–47. PubMedCrossRefGoogle Scholar
  71. Masuelli L et al (2003) Beta-catenin accumulates in intercalated disks of hypertrophic cardiomyopathic hearts. Cardiovasc Res 60:376–387PubMedCrossRefGoogle Scholar
  72. Matsuda JJ, Lee H, Shibata EF (1992) Enhancement of rabbit cardiac sodium channels by beta-adrenergic stimulation. Circ Res 70:199–207PubMedCrossRefGoogle Scholar
  73. McNally EM, Mestroni L (2017) Dilated cardiomyopathy: genetic determinants and mechanisms. Circ Res 121:731–748. PubMedCrossRefPubMedCentralGoogle Scholar
  74. McNally EM, Golbus JR, Puckelwartz MJ (2013) Genetic mutations and mechanisms in dilated cardiomyopathy. J Clin Invest 123:19–26. PubMedPubMedCentralCrossRefGoogle Scholar
  75. Meraviglia V et al (2015) Acetylation mediates Cx43 reduction caused by electrical stimulation. J Mol Cell Cardiol 87:54–64. PubMedPubMedCentralCrossRefGoogle Scholar
  76. Michela P, Velia V, Aldo P, Ada P (2015) Role of connexin 43 in cardiovascular diseases. Eur J Pharmacol 768:71–76. PubMedCrossRefGoogle Scholar
  77. Mohler PJ, Rivolta I, Napolitano C, LeMaillet G, Lambert S, Priori SG, Bennett V (2004) Nav1.5 E1053K mutation causing Brugada syndrome blocks binding to ankyrin-G and expression of Nav1.5 on the surface of cardiomyocytes. Proc Natl Acad Sci U S A 101:17533–17538. PubMedPubMedCentralCrossRefGoogle Scholar
  78. Muir AR (1957) An electron microscope study of the embryology of the intercalated disc in the heart of the rabbit. J Biophys Biochem Cytol 3:193–202PubMedPubMedCentralCrossRefGoogle Scholar
  79. Niessen CM (2007) Tight junctions/adherens junctions: basic structure and function. J Investig Dermatol 127:2525–2532. PubMedCrossRefGoogle Scholar
  80. Nimlamool W, Andrews RM, Falk MM (2015) Connexin43 phosphorylation by PKC and MAPK signals VEGF-mediated gap junction internalization. Mol Biol Cell 26:2755–2768. PubMedPubMedCentralCrossRefGoogle Scholar
  81. Oxford EM et al (2007) Molecular composition of the intercalated disc in a spontaneous canine animal model of arrhythmogenic right ventricular dysplasia/cardiomyopathy. Heart Rhythm 4:1196–1205. PubMedPubMedCentralCrossRefGoogle Scholar
  82. Palatinus JA, Rhett JM, Gourdie RG (2012) The connexin43 carboxyl terminus and cardiac gap junction organization. Biochim Biophys Acta 1818:1831–1843. PubMedCrossRefGoogle Scholar
  83. Perriard JC, Hirschy A, Ehler E (2003) Dilated cardiomyopathy: a disease of the intercalated disc? Trends Cardiovasc Med 13:30–38PubMedCrossRefGoogle Scholar
  84. Pieperhoff S, Franke WW (2007) The area composita of adhering junctions connecting heart muscle cells of vertebrates—IV: coalescence and amalgamation of desmosomal and adhaerens junction components—late processes in mammalian heart development. Eur J Cell Biol 86:377–391. PubMedCrossRefGoogle Scholar
  85. Qiu XS et al (2016) Increased late sodium current contributes to the electrophysiological effects of chronic, but not acute, dofetilide administration. Circ Arrhythm Electrophysiol 9:e003655. PubMedCrossRefGoogle Scholar
  86. Qu Y, Rogers J, Tanada T, Scheuer T, Catterall WA (1994) Modulation of cardiac Na+ channels expressed in a mammalian cell line and in ventricular myocytes by protein kinase C. Proc Natl Acad Sci U S A 91:3289–3293PubMedPubMedCentralCrossRefGoogle Scholar
  87. Rayns DG, Simpson FO, Ledingham JM (1969) Ultrastructure of desmosomes in mammalian intercalated disc; appearances after lanthanum treatment. J Cell Biol 42:322–326PubMedPubMedCentralCrossRefGoogle Scholar
  88. Rohr S (2004) Role of gap junctions in the propagation of the cardiac action potential. Cardiovasc Res 62:309–322. PubMedCrossRefGoogle Scholar
  89. Rook MB, Evers MM, Vos MA, Bierhuizen MF (2012) Biology of cardiac sodium channel Nav1.5 expression. Cardiovasc Res 93:12–23. PubMedCrossRefGoogle Scholar
  90. Rougier JS et al (2005) Molecular determinants of voltage-gated sodium channel regulation by the Nedd4/Nedd4-like proteins. Am J Phys Cell Phys 288:C692–C701. CrossRefGoogle Scholar
  91. Saphir O, Karsner HT (1924) An anatomical and experimental study of segmentation of the myocardium and its relation to the intercalated discs. J Med Res 44:539–556 535PubMedPubMedCentralGoogle Scholar
  92. \Satomi-Kobayashi S et al (2009) Deficiency of nectin-2 leads to cardiac fibrosis and dysfunction under chronic pressure overload. Hypertension 54:825–831. PubMedCrossRefGoogle Scholar
  93. Schreibmayer W et al (1994) Beta-adrenergic modulation of currents produced by rat cardiac Na+ channels expressed in Xenopus laevis oocytes. Recept Channels 2:339–350PubMedGoogle Scholar
  94. Schroen B et al (2007) Lysosomal integral membrane protein 2 is a novel component of the cardiac intercalated disc and vital for load-induced cardiac myocyte hypertrophy. J Exp Med 204:1227–1235. PubMedPubMedCentralCrossRefGoogle Scholar
  95. Schubert B, VanDongen AM, Kirsch GE, Brown AM (1989) Beta-adrenergic inhibition of cardiac sodium channels by dual G-protein pathways. Science 245:516–519PubMedCrossRefGoogle Scholar
  96. Seeger TS et al (2010) Myozap, a novel intercalated disc protein, activates serum response factor-dependent signaling and is required to maintain cardiac function in vivo. Circ Res 106:880–890. PubMedPubMedCentralCrossRefGoogle Scholar
  97. Seidman JG, Seidman C (2001) The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell 104:557–567PubMedCrossRefGoogle Scholar
  98. Sessions AO, Engler AJ (2016) Mechanical regulation of cardiac aging in model systems. Circ Res 118:1553–1562. PubMedPubMedCentralCrossRefGoogle Scholar
  99. Shaw RM, Fay AJ, Puthenveedu MA, von Zastrow M, Jan YN, Jan LY (2007) Microtubule plus-end-tracking proteins target gap junctions directly from the cell interior to adherens junctions. Cell 128:547–560. PubMedPubMedCentralCrossRefGoogle Scholar
  100. Shimada T, Kawazato H, Yasuda A, Ono N, Sueda K (2004) Cytoarchitecture and intercalated disks of the working myocardium and the conduction system in the mammalian heart. Anat Rec A Discov Mol Cell Evol Biol 280:940–951. PubMedCrossRefGoogle Scholar
  101. Sjostrand FS, Andersson E (1954) Electron microscopy of the intercalated discs of cardiac muscle tissue. Experientia 10:369–370PubMedCrossRefGoogle Scholar
  102. Smyth JW, Vogan JM, Buch PJ, Zhang SS, Fong TS, Hong TT, Shaw RM (2012) Actin cytoskeleton rest stops regulate anterograde traffic of connexin 43 vesicles to the plasma membrane. Circ Res 110:978–989. PubMedPubMedCentralCrossRefGoogle Scholar
  103. Sohl G, Willecke K (2004) Gap junctions and the connexin protein family. Cardiovasc Res 62:228–232. PubMedCrossRefGoogle Scholar
  104. Solan JL, Lampe PD (2009) Connexin43 phosphorylation: structural changes and biological effects. Biochem J 419:261–272. PubMedPubMedCentralCrossRefGoogle Scholar
  105. Solan JL, Lampe PD (2018) Spatio-temporal regulation of connexin43 phosphorylation and gap junction dynamics. Biochim Biophys Acta 1860:83–90. PubMedCrossRefGoogle Scholar
  106. Song W et al (2012) The human Nav1.5 F1486 deletion associated with long QT syndrome leads to impaired sodium channel inactivation and reduced lidocaine sensitivity. J Physiol 590:5123–5139. PubMedPubMedCentralCrossRefGoogle Scholar
  107. Tandler B, Riva L, Loy F, Conti G, Isola R (2006) High resolution scanning electron microscopy of the intracellular surface of intercalated disks in human heart. Tissue Cell 38:417–420. PubMedCrossRefGoogle Scholar
  108. Tepass U, Truong K, Godt D, Ikura M, Peifer M (2000) Cadherins in embryonic and neural morphogenesis. Nat Rev Mol Cell Biol 1:91–100. PubMedCrossRefGoogle Scholar
  109. ter Horst P, Smits JFM, Blankesteijn WM (2012) The Wnt/Frizzled pathway as a therapeutic target for cardiac hypertrophy: where do we stand? Acta Physiol 204:110–117. CrossRefGoogle Scholar
  110. Toyofuku T, Yabuki M, Otsu K, Kuzuya T, Hori M, Tada M (1998) Direct association of the gap junction protein connexin-43 with ZO-1 in cardiac myocytes. J Biol Chem 273:12725–12731PubMedCrossRefGoogle Scholar
  111. van Bemmelen MX et al (2004) Cardiac voltage-gated sodium channel Nav1.5 is regulated by Nedd4-2 mediated ubiquitination. Circ Res 95:284–291. PubMedCrossRefGoogle Scholar
  112. Van Breemen VL (1953) Intercalated discs in heart muscle studied with the electron microscope. Anat Rec 117:49–63CrossRefGoogle Scholar
  113. van der Zwaag PA et al (2009) A genetic variants database for arrhythmogenic right ventricular dysplasia/cardiomyopathy. Hum Mutat 30:1278–1283. PubMedCrossRefGoogle Scholar
  114. Vermij SH, Abriel H, van Veen TA (2017) Refining the molecular organization of the cardiac intercalated disc. Cardiovasc Res 113:259–275. PubMedCrossRefGoogle Scholar
  115. Vozzi C, Dupont E, Coppen SR, Yeh HI, Severs NJ (1999) Chamber-related differences in connexin expression in the human heart. J Mol Cell Cardiol 31:991–1003. PubMedCrossRefGoogle Scholar
  116. Wagner S et al (2006) Ca2+/calmodulin-dependent protein kinase II regulates cardiac Na+ channels. J Clin Invest 116:3127–3138. PubMedPubMedCentralCrossRefGoogle Scholar
  117. Wang Q et al (1995) SCN5A mutations associated with an inherited cardiac arrhythmia, long QT syndrome. Cell 80:805–811PubMedCrossRefGoogle Scholar
  118. Wang N et al (2016) Activation of Wnt/beta-catenin signaling by hydrogen peroxide transcriptionally inhibits NaV1.5 expression. Free Radic Biol Med 96:34–44. PubMedPubMedCentralCrossRefGoogle Scholar
  119. Wilson AJ, Schoenauer R, Ehler E, Agarkova I, Bennett PM (2014) Cardiomyocyte growth and sarcomerogenesis at the intercalated disc. Cell Mol Life Sci 71:165–181. PubMedCrossRefGoogle Scholar
  120. Xu Q, Lin X, Andrews L, Patel D, Lampe PD, Veenstra RD (2013) Histone deacetylase inhibition reduces cardiac connexin43 expression and gap junction communication. Front Pharmacol 4:44. PubMedPubMedCentralCrossRefGoogle Scholar
  121. Xu Z et al (2017) Genotype-phenotype relationship in patients with arrhythmogenic right ventricular cardiomyopathy caused by desmosomal gene mutations: a systematic review and meta-analysis. Sci Rep 7:41387. PubMedPubMedCentralCrossRefGoogle Scholar
  122. Yoshida M et al (2010) Weaving hypothesis of cardiomyocyte sarcomeres: discovery of periodic broadening and narrowing of intercalated disk during volume-load change. Am J Pathol 176:660–678. PubMedPubMedCentralCrossRefGoogle Scholar
  123. Yu L, Meng W, Ding J, Cheng M (2016) Klotho inhibits angiotensin II-induced cardiomyocyte hypertrophy through suppression of the AT1R/beta catenin pathway. Biochem Biophys Res Commun 473:455–461. PubMedCrossRefGoogle Scholar
  124. Zelarayan LC et al (2008) Beta-Catenin downregulation attenuates ischemic cardiac remodeling through enhanced resident precursor cell differentiation. Proc Natl Acad Sci U S A 105:19762–19767. PubMedPubMedCentralCrossRefGoogle Scholar
  125. Zhou Q, Li L, Zhao B, Guan KL (2015) The hippo pathway in heart development, regeneration, and diseases. Circ Res 116:1431–1447. PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Physiology and Cell Biology, Dorothy M. Davis Heart and Lung Research InstituteThe Ohio State University Wexner Medical CenterColumbusUSA

Personalised recommendations