Skip to main content
Log in

Aqueous ionic liquids in comparison with standard co-solutes

Differences and common principles in their interaction with protein and DNA structures

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Ionic liquids (ILs) are versatile solvents for a broad range of biotechnological applications. Recent experimental and simulation results highlight the potential benefits of dilute ILs in aqueous solution (aqueous ILs) in order to modify protein and DNA structures systematically. In contrast to a limited number of standard co-solutes like urea, ectoine, trimethylamine-N-oxide (TMAO), or guanidinium chloride, the large amount of possible cation and anion combinations in aqueous ILs can be used to develop tailor-made stabilizers or destabilizers for specific purposes. In this review article, we highlight common principles and differences between aqueous ILs and standard co-solutes with a specific focus on their underlying macromolecular stabilization or destabilization behavior. In combination with statistical thermodynamics theories, we present an efficient framework, which is used to classify structure modification effects consistently. The crucial importance of enthalpic and entropic contributions to the free energy change upon IL-assisted macromolecular unfolding in combination with a complex destabilization mechanism is described in detail. A special focus is also set on aqueous IL-DNA interactions, for which experimental and simulation outcomes are summarized and discussed in the context of previous findings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Ajloo D, Sangian M, Ghadamgahi M, Evini M, Saboury AA (2013) Effect of two imidazolium derivatives of ionic liquids on the structure and activity of adenosine deaminase. Int J Biol Macromol 55:47–61

    CAS  PubMed  Google Scholar 

  • Araújo J, Pereiro A, Alves F, Marrucho I, Rebelo L (2013) Nucleic acid bases in 1-alkyl-3-methylimidazolium acetate ionic liquids: a thermophysical and ionic conductivity analysis. J Chem Thermodyn 57:1–8

    Google Scholar 

  • Atkins PW, de Paula J (2010) Physical chemistry. Oxford Univ Press, Oxford

    Google Scholar 

  • Auton M, Bolen DW (2004) Additive transfer free energies of the peptide backbone unit that are independent of the model compound and the choice of concentration scale. Biochemistry 43(5):1329–1342

    CAS  PubMed  Google Scholar 

  • Baker SN, McCleskey TM, Pandey S, Baker GA (2004) Fluorescence studies of protein thermostability in ionic liquids. Chem Commun 8:940–941

    Google Scholar 

  • Baker JL, Furbish J, Lindberg GE (2015) Influence of the ionic liquid [c4 mpy][tf2n] on the structure of the miniprotein trp-cage. J Mol Graph Model 62:202–212

    CAS  PubMed  Google Scholar 

  • Baynes BM, Trout BL (2003) Proteins in mixed solvents: a molecular-level perspective. J Phys Chem B 107(50):14058–14067

    CAS  Google Scholar 

  • Ben-Naim A (2013) Statistical thermodynamics for chemists and biochemists. Springer Science & Business Media, Berlin

    Google Scholar 

  • Benedetto A, Ballone P (2015) Room temperature ionic liquids meet biomolecules: a microscopic view of structure and dynamics. ACS Sustain Chem Eng 4(2):392–412

    Google Scholar 

  • Bryngelson JD, Onuchic JN, Socci ND, Wolynes PG (1995) Funnels, pathways, and the energy landscape of protein folding: a synthesis. Prot Struct Funct Bioinf 21(3):167–195

    CAS  Google Scholar 

  • Byrne N, Angell CA (2008) Protein unfolding, and the ‘tuning in’ of reversible intermediate states, in protic ionic liquid media. J Mol Biol 378(3):707–714

    CAS  PubMed  Google Scholar 

  • Canchi DR, García AE (2013a) Cosolvent effects on protein stability. Ann Rev Phys Chem 64:273–293

    CAS  Google Scholar 

  • Canchi DR, García AE (2013b) Cosolvent effects on protein stability. Annu Rev Phys Chem 64:273–293

    CAS  PubMed  Google Scholar 

  • Cardoso L, Micaelo NM (2011) DNA molecular solvation in neat ionic liquids. Chemphyschem 12(2):275–277

    CAS  PubMed  Google Scholar 

  • Chandran A, Ghoshdastidar D, Senapati S (2012) Groove binding mechanism of ionic liquids: a key factor in long term stability of DNA in hydrated ionic liquids? J Am Chem Soc 134(50):20330–20339

    CAS  PubMed  Google Scholar 

  • Chen M, Xiong H, Wen W, Zhang X, Gu H, Wang S (2013) Electrochemical biosensors for the assay of DNA damage initiated by ferric ions catalyzed oxidation of dopamine in room temperature ionic liquid. Electrochim Acta 114:265–270

    CAS  Google Scholar 

  • Cheng DH, Chen XW, Wang JH, Fang ZL (2007) An abnormal resonance light scattering arising from ionic-liquid/DNA/ethidium interactions. Chem Eur J 13(17):4833–4839

    CAS  PubMed  Google Scholar 

  • Chevrot G, Fileti EE, Chaban VV (2016) Protein remains stable at unusually high temperatures when solvated in aqueous mixtures of amino acid based ionic liquids. J Mol Model 22(11):258

    PubMed  Google Scholar 

  • Clark KD, Nacham O, Yu H, Li T, Yamsek MM, Ronning DR, Anderson JL (2015a) Extraction of DNA by magnetic ionic liquids: tunable solvents for rapid and selective DNA analysis. Anal Chem 87(3):1552–1559

    CAS  PubMed  Google Scholar 

  • Clark KD, Yamsek MM, Nacham O, Anderson JL (2015b) Magnetic ionic liquids as PCR-compatible solvents for dna extraction from biological samples. Chem Commun 51(94):16771–16773

    CAS  Google Scholar 

  • Clark KD, Sorensen M, Nacham O, Anderson JL (2016) Preservation of DNA in nuclease-rich samples using magnetic ionic liquids. RSC Adv 6(46):39846–39851

    CAS  Google Scholar 

  • Collins KD (2004) Ions from the hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34(3):300–311

    CAS  PubMed  Google Scholar 

  • Constantinescu D, Weingärtner H, Herrmann C (2007) Protein denaturation by ionic liquids and the hofmeister series: a case study of aqueous solutions of ribonuclease a. Angew Chem Int Ed 46(46):8887–8889

    CAS  Google Scholar 

  • Constatinescu D, Herrmann C, Weingärtner H (2010) Patterns of protein unfolding and protein aggregation in ionic liquids. Phys Chem Chem Phys 12(8):1756–1763

    CAS  PubMed  Google Scholar 

  • Courtenay E, Capp M, Anderson C, Record M (2000) Vapor pressure osmometry studies of osmolyte-protein interactions: implications for the action of osmoprotectants in vivo and for the interpretation of “osmotic stress” experiments in vitro. Biochemistry 39(15):4455–4471

    CAS  PubMed  Google Scholar 

  • Dabirmanesh B, Daneshjou S, Sepahi AA, Ranjbar B, Khavari-Nejad RA, Gill P, Heydari A, Khajeh K (2011) Effect of ionic liquids on the structure, stability and activity of two related \(\alpha \)-amylases. Int J Biol Macromol 48(1):93–97

    CAS  PubMed  Google Scholar 

  • Dandia A, Singh R, Saini D (2013) Ionic liquid-mediated three-component synthesis of fluorinated spiro-thiazine derivatives and their antimycobacterial and DNA cleavage activities. J Chem Sci 125(5):1045–1053

    CAS  Google Scholar 

  • Diddens D, Lesch V, Heuer A, Smiatek J (2017) Aqueous ionic liquids and their influence on peptide conformations: denaturation and dehydration mechanisms. Phys Chem Chem Phys 19(31):20430–20440

    CAS  PubMed  Google Scholar 

  • Ding Y, Zhang L, Xie J, Guo R (2010) Binding characteristics and molecular mechanism of interaction between ionic liquid and DNA. J Phys Chem B 114(5):2033–2043

    CAS  PubMed  Google Scholar 

  • Dommert F, Wendler K, Berger R, Delle Site L, Holm C (2012) Force fields for studying the structure and dynamics of ionic liquids: a critical review of recent developments. ChemPhysChem 13(7):1625–1637

    CAS  PubMed  Google Scholar 

  • Egorova KS, Gordeev EG, Ananikov VP (2017) Biological activity of ionic liquids and their application in pharmaceutics and medicine. Chem Rev 117(10):7132–7189

    CAS  PubMed  Google Scholar 

  • Eisenberg H (1976) Biological macromolecules and polyelectrolytes in solution. Clarendon Press, Oxford

    Google Scholar 

  • Figueiredo AM, Sardinha J, Moore GR, Cabrita EJ (2013) Protein destabilisation in ionic liquids: the role of preferential interactions in denaturation. Phys Chem Chem Phys 15(45):19632–19643

    CAS  PubMed  Google Scholar 

  • Fujita K, Ohno H (2010) Enzymatic activity and thermal stability of metallo proteins in hydrated ionic liquids. Biopolymers 93(12):1093–1099

    CAS  PubMed  Google Scholar 

  • Fujita K, Ohno H (2012) Stable G-quadruplex structure in a hydrated ion pair: cholinium cation and dihydrogen phosphate anion. Chem Commun 48:5751–5753

    CAS  Google Scholar 

  • Fujita K, MacFarlane DR, Forsyth M (2005) Protein solubilising and stabilising ionic liquids. Chem Commun 38:4804–4806

    Google Scholar 

  • Fujita K, Forsyth M, MD R, Reid RW, Elliott GD (2006) Unexpected improvement in stability and utility of cytochrome c by solution in biocompatible ionic liquids. Biotechnol Bioeng 94:1209–1213

    CAS  PubMed  Google Scholar 

  • Fukumoto K, Yoshizawa M, Ohno H (2005) Room temperature ionic liquids from 20 natural amino acids. J Am Chem Soc 127(8):2398–2399

    CAS  PubMed  Google Scholar 

  • Fyta M, Netz RR (2012) Ionic force field optimization based on single-ion and ion-pair solvation properties: going beyond standard mixing rules. J Chem Phys 136(12):124103

    PubMed  Google Scholar 

  • Gee MB, Cox NR, Jiao Y, Bentenitis N, Weerasinghe S, Smith PE (2011) A kirkwood-buff derived force field for aqueous alkali halides. J Chem Theory Comput 7(5):1369–1380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghaemi M, Absalan G (2014) Study on the adsorption of DNA on Fe3O4 nanoparticles and on ionic liquid-modified Fe3O4 nanoparticles. Microchim Acta 181(1-2):45–53

    CAS  Google Scholar 

  • Haberler M, Steinhauser O (2012) On the influence of of hydrated ionic liquids on the dynamical structure of model proteins: a computational study. Phys Chem Chem Phys 13(40):17994–18004

    Google Scholar 

  • Haberler M, Schröder C, Steinhauser O (2011) Solvation studies of a zinc finger protein in hydrated ionic liquids. Phys Chem Chem Phys 13(15):6955–6969

    CAS  PubMed  Google Scholar 

  • Haberler M, Schröder C, Steinhauser O (2012a) Hydrated ionic liquids with and without solute: the influence of water content and protein solutes. J Chem Theory Comput 8(10):3911–3928

    CAS  PubMed  Google Scholar 

  • Haberler M, Schröder C, Steinhauser O (2012b) Hydrated ionic liquids with and without solute: the influence of water content and protein solutes. J Chem Theo Comput 8(10):3911–3928

    CAS  Google Scholar 

  • Hahn MB, Solomun T, Wellhausen R, Hermann S, Seitz H, Meyer S, Kunte HJ, Zeman J, Uhlig F, Smiatek J, Sturm H (2015) Influence of the compatible solute ectoine on the local water structure: implications for the binding of the protein g5p to dna. J Phys Chem B 119(49):15212–15220

    CAS  PubMed  Google Scholar 

  • Hahn MB, Uhlig F, Solomun T, Smiatek J, Sturm H (2016) Combined influence of ectoine and salt: spectroscopic and numerical evidence for compensating effects on aqueous solutions. Phys Chem Chem Phys 18(41):28398–28402

    CAS  PubMed  Google Scholar 

  • Hall D (1971) Kirkwood-buff theory of solutions. An alternative derivation of part of it and some applications. Transact Farad Soc 67:2516–2524

    CAS  Google Scholar 

  • Haque A, Khan I, Hassan SI, Khan MS (2017) Interaction studies of cholinium-based ionic liquids with calf thymus DNA: spectrophotometric and computational methods. J Mol Liq 237:201–207

    CAS  Google Scholar 

  • Harries D, Rösgen J (2008) A practical guide on how osmolytes modulate macromolecular properties. Methods Cell Biol 84:679–735

    CAS  PubMed  Google Scholar 

  • He Y, Shang Y, Liu Z, Shao S, Liu H, Hu Y (2013) Interactions between ionic liquid surfactant C(12)mim Br and DNA in dilute brine. Colloids Surf B 101:398–404

    CAS  Google Scholar 

  • Heyda J, Okur HI, Hladílkova J, Rembert KB, Hunn W, Yang T, Dzubiella J, Jungwirth P, Cremer PS (2017) Guanidinium can both cause and prevent the hydrophobic collapse of biomacromolecules. J Am Chem Soc 139(2):863–870

    CAS  PubMed  PubMed Central  Google Scholar 

  • Horinek D, Netz RR (2011) Can simulations quantitatively predict peptide transfer free energies to urea solutions? Thermodynamic concepts and force field limitations. J Phys Chem A 115(23):6125–6136

    CAS  PubMed  Google Scholar 

  • Jha SK, Marqusee S (2014) Kinetic evidence for a two-stage mechanism of protein denaturation by guanidinium chloride. Proc Natl Acad Sci USA 111(13):4856–4861

    CAS  PubMed  Google Scholar 

  • Jumbri K, Rahman MBA, Abdulmalek E, Ahmad H, Micaelo NM (2014) An insight into structure and stability of DNA in ionic liquids from molecular dynamics simulation and experimental studies. PCCP 16(27):14036–14046

    CAS  PubMed  Google Scholar 

  • Jumbri K, Ahmad H, Abdulmalek E, Rahman MBA (2016) Binding energy and biophysical properties of ionic liquid-DNA complex: understanding the role of hydrophobic interactions. J Mol Liq 223:1197–1203

    CAS  Google Scholar 

  • Kanduċ M, Chudoba R, Palczynski K, Kim WK, Roa R, Dzubiella J (2017) Selective solute adsorption and partitioning around single pnipam chains. Phys Chem Chem Phys 19(8):5906–5916

    PubMed  Google Scholar 

  • Khandelwal G, Bhyravabhotla J (2010) A phenomenological model for predicting melting temperatures of DNA sequences. PLoS One 5(8):e12433

    PubMed  PubMed Central  Google Scholar 

  • Kirkwood JG, Buff FP (1951) The statistical mechanical theory of solutions. I. J Chem Phys 19(6):774–777

    CAS  Google Scholar 

  • Klähn M, Lim GS, Sedurama nA, Wu P (2011) On the different roles of anions and cations in th e solvation of enzymes in ionic liquids. Phys Chem Chem Phys 13(4):1649–1662

    PubMed  Google Scholar 

  • Kobayashi T, Reid JE, Shimizu S, Fyta M, Smiatek J (2017) The properties of residual water molecules in ionic liquids: a comparison between direct and inverse Kirkwood–Buff approaches. Phys Chem Chem Phys 19:18924–18937

    CAS  PubMed  Google Scholar 

  • Krishnamoorthy AN, Zeman J, Holm C, Smiatek J (2016) Preferential solvation and ion association properties in aqueous dimethyl sulfoxide solutions. Phys Chem Chem Phys 18(45):31312–31322

    CAS  PubMed  Google Scholar 

  • Krishnamoorthy AN, Holm C, Smiatek J (2018) The influence of co-solutes on the chemical equilibrium — a Kirkwood-Buff theory for ion pair association-dissociation processes in ternary electrolyte solutions. in revision

  • Kulkarni M, Mukherjee A (2016) Ionic liquid prolongs DNA translocation through graphene nanopores. RSC Adv 6(51):46019–46029

    CAS  Google Scholar 

  • Kumar A, Venkatesu P (2013) Prevention of insulin self-aggregation by a protic ionic liquid. RSC Adv 3:362–367

    CAS  Google Scholar 

  • Kumar P, Franzese G, Buldyrev SV, Stanley HE (2006) Molecular dynamics study of orientational cooperativity in water. Phys Rev E 73:0415051–0415058

    Google Scholar 

  • Kumar P, Buldyrev SV, Stanley HE (2009) A tetrahedral entropy for water. Proc Natl Acad Sci USA 106:22130–22134

    CAS  PubMed  Google Scholar 

  • Kunz W (2010) Specific ion effects. World Scientific

  • Kusalik PG, Patey G (1987) The thermodynamic properties of electrolyte solutions: some formal results. J Chem Phys 86(9):5110–5116

    CAS  Google Scholar 

  • Kusalik PG, Patey G (1988) On the molecular theory of aqueous electrolyte solutions. i. The solution of the rhnc approximation for models at finite concentration. J Chem Phys 88(12):7715–7738

    CAS  Google Scholar 

  • Lesch V, Heuer A, Holm C, Smiatek J (2015a) Solvent effects of 1-ethyl-3-methylimidazolium acetate: solvation and dynamic behavior of polar and apolar solutes. Phys Chem Chem Phys 17(13):8480–8490

    CAS  PubMed  Google Scholar 

  • Lesch V, Heuer A, Tatsis VA, Holm C, Smiatek J (2015b) Peptides in the presence of aqueous ionic liquids: tunable co-solutes as denaturants or protectants? Phys Chem Chem Phys 17(39):26049–26053

    CAS  PubMed  Google Scholar 

  • Lesch V, Heuer A, Holm C, Smiatek J (2016) Properties of apolar solutes in alkyl imidazolium-based ionic liquids: the importance of local interactions. ChemPhysChem 17(3):387–394

    CAS  PubMed  Google Scholar 

  • Li T, Joshi MD, Ronning DR, Anderson JL (2013a) Ionic liquids as solvents for in situ dispersive liquid–liquid microextraction of DNA. J Chromatogr A 1272:8–14

    CAS  PubMed  Google Scholar 

  • Li X, Ma J, Lei W, Li J, Zhang Y, Li Y (2013b) Cloning of cytochrome P450 3A137 complementary DNA in silver carp and expression induction by ionic liquid. Chemosphere 92(9):1238–1244

    CAS  PubMed  Google Scholar 

  • Lo Nostro P, Ninham BW (2012) Hofmeister phenomena: an update on ion specificity in biology. Chem Rev 112(4):2286–2322

    CAS  PubMed  Google Scholar 

  • Machado I, Özalp VC, Rezabal E, Schäfer T (2014) DNA aptamers are functional molecular recognition sensors in protic ionic liquids. Chem Eur J 20(37):11820–11825

    CAS  PubMed  Google Scholar 

  • Mann JP, McCluskey A, Atkin R (2009) Activity and thermal stability of lysozyme in alkylammonium formate ionic liquids—influence of cation modification. Green Chem 11(6):785–792

    CAS  Google Scholar 

  • Marcus Y (2009) Effect of ions on the structure of water: structure making and breaking. Chem Rev 109(3):1346–1370

    CAS  PubMed  Google Scholar 

  • Martinez L, Shimizu S (2017) Molecular interpretation of preferential interactions in protein solvation: a solvent-shell perspective by means of minimum-distance distribution functions. J Chem Theory Comput 13(12):6358–6372

    CAS  PubMed  Google Scholar 

  • Marušič M, Tateishi-Karimata H, Sugimoto N, Plavec J (2015) Structural foundation for DNA behavior in hydrated ionic liquid: an NMR study. Biochimie 108:169–177

    PubMed  Google Scholar 

  • Mazid RR, Cooper A, Zhang Y, Vijayaraghavan R, MacFarlane DR, Cortez-Jugo C, Cheng W (2015) Enhanced enzymatic degradation resistance of plasmid DNA in ionic liquids. RSC Adv 5(54):43839–43844

    CAS  Google Scholar 

  • Micaêlo NM, Soares CM (2008) Protein structure and dynamics in ionic liquids. Insights from molecular dynamics simulation studies. J Phys Chem B 112(9):2566–2572

    PubMed  Google Scholar 

  • Micciulla S, Michalowsky J, Schroer MA, Holm C, von Klitzing R, Smiatek J (2016) Concentration dependent effects of urea binding to poly (n-isopropylacrylamide) brushes: a combined experimental and numerical study. Phys Chem Chem Phys 18:5324–5335

    CAS  PubMed  Google Scholar 

  • Mishra A, Ekka MK, Maiti S (2016) Influence of ionic liquids on thermodynamics of small molecule DNA interaction: the binding of ethidium bromide to calf thymus DNA. J Phys Chem B 120(10):2691–2700

    CAS  PubMed  Google Scholar 

  • Mukesh C, Mondal D, Sharma M, Prasad K (2013) Rapid dissolution of DNA in a novel bio-based ionic liquid with long-term structural and chemical stability: successful recycling of the ionic liquid for reuse in the process. Chem Commun 49(61):6849–6851

    CAS  Google Scholar 

  • Nakano M, Tateishi-Karimata H, Tanaka S, Sugimoto N (2014) Choline ion interactions with DNA atoms explain unique stabilization of A–T base pairs in DNA duplexes: a microscopic view. J Phys Chem B 118(2):379–389

    CAS  PubMed  Google Scholar 

  • Narayanan Krishnamoorthy A, Holm C, Smiatek J (2014) Local water dynamics around antifreeze protein residues in the presence of osmolytes: the importance of hydroxyl and disaccharide groups. J Phys Chem B 118(40):11613–11621

    CAS  Google Scholar 

  • Newman KE (1994) Kirkwood–buff solution theory: derivation and applications. Chem Soc Rev 23(1):31–40

    CAS  Google Scholar 

  • Nishimura N, Nomura Y, Nakamura N, Ohno H (2005) DNA strands robed with ionic liquid moiety. Biomaterials 26(27):5558–5563

    CAS  PubMed  Google Scholar 

  • Okur HI, Hladílková J, Rembert KB, Cho Y, Heyda J, Dzubiella J, Cremer PS, Jungwirth P (2017) Beyond the hofmeister series: ion-specific effects on proteins and their biological functions. J Phys Chem B 121(9):1997–2014

    CAS  PubMed  Google Scholar 

  • Oprzeska-Zingrebe EA, Smiatek J (2018) Preferential binding of urea to single-stranded DNA structures:a molecular dynamics study. Biophys J (to be published)

  • Pabbathi A, Samanta A (2015) Spectroscopic and molecular docking study of the interaction of DNA with a morpholinium ionic liquid. J Phys Chem B 119(34):11099–11105

    CAS  PubMed  Google Scholar 

  • Pandey PK, Rawat K, Aswal VK, Kohlbrecher J, Bohidar HB (2018) Imidazolium based ionic liquid induced DNA gelation at remarkably low concentration. Coll Surf 538:184–191

    CAS  Google Scholar 

  • Patel R, Kumari M, Khan AB (2014a) Recent advances in the application of ionic liquids in protein stability and activity: a review. Appl Biochem Biotechnol 172:3701–3720

    CAS  PubMed  Google Scholar 

  • Patel R, Kumari M, Khan AB (2014b) Recent advances in the application of ionic liquids in protein stability and activity: a review. Appl Biochem Biotechnol 172:3701–3720

    CAS  PubMed  Google Scholar 

  • Pierce V, Kang M, Aburi M, Weerasinghe S, Smith PE (2008) Recent applications of kirkwood-buff theory to biological systems. Cell Biochem Biophys 50:1–22

    CAS  PubMed  Google Scholar 

  • Qin W, Li SFY (2003) Electrophoresis of DNA in ionic liquid coated capillary. Analyst 128:37–41

    CAS  PubMed  Google Scholar 

  • Reid JE, Walker AJ, Shimizu S (2015) Residual water in ionic liquids: clustered or dissociated? Phys Chem Chem Phys 17(22):14710–14718

    CAS  PubMed  Google Scholar 

  • Reid JESJ, Gammons RJ, Slattery JM, Walker AJ, Shimizu S (2017) Interactions in water–ionic liquid mixtures: comparing protic and aprotic systems. J Phys Chem B. https://doi.org/10.1021/acs.jpcb.6b10562

  • Rodríguez-Ropero F, van der Vegt NF (2015) On the urea induced hydrophobic collapse of a water soluble polymer. Phys Chem Chem Phys 17(13):8491–8498

    PubMed  Google Scholar 

  • Rösgen J, Pettitt BM, Bolen DW (2004) Uncovering the basis for nonideal behavior of biological molecules. Biochemistry 43(45):14472–14484

    PubMed  Google Scholar 

  • Rösgen J, Pettitt BM, Bolen DW (2005) Protein folding, stability, and solvation structure in osmolyte solutions. Biophys J 89(5):2988–2997

    PubMed  PubMed Central  Google Scholar 

  • Rösgen J, Pettitt BM, Bolen DW (2007) An analysis of the molecular origin of osmolyte-dependent protein stability. Protein Sci 16(4):733–743

    PubMed  PubMed Central  Google Scholar 

  • Roy A, Banerjee P, Dutta R, Kundu S, Sarkar N (2016) Probing the interaction between a DNA nucleotide (adenosine-5 ’-monophosphate disodium) and surface active ionic liquids by rotational relaxation measurement and fluorescence correlation spectroscopy. Langmuir 32(42):10946–10956

    CAS  PubMed  Google Scholar 

  • Saha D, Mukherjee A (2018) Effect of water and ionic liquids on biomolecules. Biophys Rev, 1–14

  • Saha D, Kulkarni M, Mukherjee A (2016) Water modulates the ultraslow dynamics of hydrated ionic liquids near CG rich DNA: consequences for DNA stability. Phys Chem Chem Phys 18(47):32107–32115

    CAS  PubMed  Google Scholar 

  • Sapir L, Harries D (2017) Wisdom of the crowd. Bunsen-Magazin 19:152–162

    Google Scholar 

  • Satpathi S, Kulkarni M, Mukherjee A, Hazra P (2016) Ionic liquid induced G-quadruplex formation and stabilization: spectroscopic and simulation studies. Phys Chem Chem Phys 18(43):29740–29746

    CAS  PubMed  Google Scholar 

  • Schröder C (2017) Proteins in ionic liquids: current status of experiments and simulations. Top Curr Chem 375(2):25

    Google Scholar 

  • Schroer MA, Michalowsky J, Fischer B, Smiatek J, Grübel G (2016) Stabilizing effect of tmao on globular pnipam states: preferential attraction induces preferential hydration. Phys Chem Chem Phys 18(46):31459–31470

    CAS  PubMed  Google Scholar 

  • Schurr JM, Rangel DP, Aragon SR (2005) A contribution to the theory of preferential interaction coefficients. Biophys J 89(4):2258–2276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senske M, Constantinescu-Aruxandei D, Havenith M, Herrmann C, Weingärtner H, Ebbinghaus S (2016) The temperature dependence of the hofmeister series: thermodynamic fingerprints of cosolute–protein interactions. Phys Chem Chem Phys 18(43):29698–29708

    CAS  PubMed  Google Scholar 

  • Sharma M, Mondal D, Singh N, Trivedi N, Bhattab J, Prasad K (2015) High concentration DNA solubility in bio-ionic liquids with long-lasting chemical and structural stability at room temperature. RSC Adv 5:40546–40551

    CAS  Google Scholar 

  • Shimizu S (2004) Estimating hydration changes upon biomolecular reactions from osmotic stress, high pressure, and preferential hydration experiments. Proc Natl Acad Sci USA 101(5):1195–1199

    CAS  PubMed  Google Scholar 

  • Shimizu S, Matubayasi N (2018) A unified perspective on preferential solvation and adsorption based on inhomogeneous solvation theory. Physica A 492:1988–1996

    CAS  Google Scholar 

  • Shimizu S, Smith DJ (2004) Preferential hydration and the exclusion of cosolvents from protein surfaces. J Chem Phys 121(2):1148–1154

    CAS  PubMed  Google Scholar 

  • Singh PK, Sujana J, Mora AK, Nath S (2012) Probing the dna-ionic liquid interaction using an ultrafast molecular rotor. J Photochem Photobiol A 246:16–22

    CAS  Google Scholar 

  • Smiatek J (2014) Osmolyte effects: impact on the aqueous solution around charged and neutral spheres. J Phys Chem B 118(3):771–782

    CAS  PubMed  Google Scholar 

  • Smiatek J (2017) Aqueous ionic liquids and their influence on protein structures: an overview on recent theoretical and experimental results. J Phys Condens Matter 29:233001

    PubMed  Google Scholar 

  • Smiatek J, Heuer A (2014) Deprotonation mechanism of a single-stranded DNA i-motif. RSC Adv 4:17110–17113

    CAS  Google Scholar 

  • Smiatek J, Harishchandra RK, Rubner O, Galla HJ, Heuer A (2012) Properties of compatible solutes in aqueous solution. Biophys Chem 160(1):62–68

    CAS  PubMed  Google Scholar 

  • Smith PE (1999) Computer simulation of cosolvent effects on hydrophobic hydration. J Phys Chem B 103(3):525–534

    CAS  Google Scholar 

  • Smith PE (2004) Cosolvent interactions with biomolecules: relating computer simulation data to experimental thermodynamic data. J Phys Chem B 108:18716–18724

    CAS  Google Scholar 

  • Smith PE (2006) Chemical potential derivatives and preferential interaction parameters in biological systems from Kirkwood-Buff theory. Biophys J 91(3):849–856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith PE, Matteoli E, O’Connell JP (2013) Fluctuation theory of solutions: applications in chemistry, chemical engineering, and biophysics. CRC Press

  • Soni SK, Sarkar S, Mirzadeh N, Selvakannan PR, Bhargava SK (2015) Self-assembled functional nanostructure of plasmid DNA with ionic liquid Bmim PF6 : enhanced efficiency in bacterial gene transformation. Langmuir 31(16):4722–4732

    CAS  PubMed  Google Scholar 

  • Sukenik S, Sapir L, Gilman-Politi R, Harries D (2013a) Diversity in the mechanisms of cosolute action on biomolecular processes. Farad Discuss 160:225–237

    CAS  Google Scholar 

  • Sukenik S, Sapir L, Harries D (2013b) Balance of enthalpy and entropy in depletion forces. Curr Opin Coll Interface Sci 18:495–501

    CAS  Google Scholar 

  • Sun W, Zhang Y, Hu A, Lu Y, Shi F, Lei B, Sun Z (2013) Electrochemical DNA biosensor based on partially reduced graphene oxide modified carbon ionic liquid electrode for the detection of transgenic soybean A2704-12 gene sequence. Electroanal 25(6):1417–1424

    CAS  Google Scholar 

  • Tanford C (1964) Isothermal unfolding of globular proteins in aqueous urea solutions. J Am Chem Soc 86(10):2050–2059

    CAS  Google Scholar 

  • Tanford C (1969) Extension of the theory of linked functions to incorporate the effects of protein hydration. J Mol Biol 39(3):539–544

    CAS  PubMed  Google Scholar 

  • Tateishi-Karimata H, Sugimoto N (2012) A-T base pairs are more stable than G-C base pairs in a hydrated ionic liquid. Angew Chem Int Ed 51(6):1416–1419

    CAS  Google Scholar 

  • Tateishi-Karimata H, Sugimoto N (2014) Structure, stability and behaviour of nucleic acids in ionic liquids. Nucleic Acids Res 42(14):8831–8844

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tateishi-Karimata H, Nakano M, Pramanik S, Tanaka S, Sugimoto N (2015) i-motifs are more stable than G-quadruplexes in hydrated ionic liquid. Chem Commun 51(32):6909–6912

    CAS  Google Scholar 

  • Timasheff SN (2002) Protein hydration, thermodynamic binding, and preferential hydration. Biochemistry 41(46):13473–13482

    CAS  PubMed  Google Scholar 

  • Tung HJ, Pfaendtner J (2016) Kinetics and mechanism of ionic-liquid induced protein unfolding: application to the model protein hp35. Mol Syst Des Eng 1(4):382–390

    CAS  Google Scholar 

  • Uhlig F, Zeman J, Smiatek J, Holm C (2018) First-principles parameterization of polarizable coarse-grained force fields for ionic liquids. J Chem Theory Comput. https://doi.org/10.1021/acs.jctc.7b00903

  • van Rantwijk F, Sheldon RA (2007) Biocatalysis in ionic liquids. Chem Rev 107(6):2757–2785

    PubMed  Google Scholar 

  • Vijayaraghavan R, Izgorodin A, Ganesh V, Surianarayanan M, MacFarlane DR (2010) Long-term structural and chemical stability of DNA in hydrated ionic liquids. Angew Chem Int Ed 49(9):1631–1633

    CAS  Google Scholar 

  • Wang JH, Cheng DH, Chen XW, Du Z, Fang ZL (2007) Direct extraction of double-stranded DNA into ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate and its quantification. Anal Chem 79(2):620–625

    CAS  PubMed  Google Scholar 

  • Wang H, Wang J, Zhang S (2011) Binding Gibbs energy of ionic liquids to calf thymus DNA: a fluorescence spectroscopy study. PCCP 13(9):3906–3910

    CAS  PubMed  Google Scholar 

  • Weerasinghe S, Smith PE (2003) A Kirkwood–uff derived force field for sodium chloride in water. J Chem Phys 119(21):11342–11349

    CAS  Google Scholar 

  • Weingärtner H, Cabrele C, Herrmann C (2012) How ionic liquids can help to stabilize native proteins. Phys Chem Chem Phys 14(2):415–426

    PubMed  Google Scholar 

  • Wilkes JS (2004) Properties of ionic liquid solvents for catalysis. J Mol Catal A 214(1):11–17

    CAS  Google Scholar 

  • Wyman Jr, J (1964) Linked functions and reciprocal effects in hemoglobin: a second look. Adv Prot Chem 19:223–286

    CAS  Google Scholar 

  • Xia Z, Das P, Shakhnovich EI, Zhou R (2012) Collapse of unfolded proteins in a mixture of denaturants. J Am Chem Soc 134(44):18266–18274

    CAS  PubMed  Google Scholar 

  • Xie YN, Wang SF, Zhang ZL, Pang DW (2008) Interaction between room temperature ionic liquid bmim BF4 and DNA investigated by electrochemical micromethod. J Phys Chem B 112(32):9864–9868

    CAS  PubMed  Google Scholar 

  • Yan H, Wu J, Dai G, Zhong A, Chen H, Yang J, Han D (2012) Interaction mechanisms of ionic liquids [cnmim] br (n = 4, 6, 8, 10) with bovine serum albumin. J Lumin 132(3):622–628

    CAS  Google Scholar 

  • Yancey PH (2005) Organic osmolytes as compatible, metabolic and counteracting cytoprotectants in high osmolarity and other stresses. J Exp Biol 208(15):2819–2830

    CAS  PubMed  Google Scholar 

  • Yang Z (2009) Hofmeister effects: an explanation for the impact of ionic liquids on biocatalysis. J Biotechnol 144(1):12–22

    CAS  PubMed  Google Scholar 

  • Zeindlhofer V, Khlan D, Bica K, Schröder C (2017) Computational analysis of the solvation of coffee ingredients in aqueous ionic liquid mixtures. RSC Adv 7(6):3495–3504

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zeindlhofer V, Berger M, Steinhauser O, Schröder C (2018) A shell-resolved analysis of preferential solvation of coffee ingredients in aqueous mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate. J Chem Phys 148(19):193819

    PubMed  Google Scholar 

  • Zeman J, Uhlig F, Smiatek J, Holm C (2017) A coarse-grained polarizable force field for the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate. J Phys Condens Matter 29:504004

    PubMed  Google Scholar 

  • Zhang Y, Chen X, Lan J, You J, Chen L (2009) Synthesis and biological applications of imidazolium-based polymerized ionic liquid as a gene delivery vector. Chem Biol Drug Des 74(3):282–288

    CAS  PubMed  Google Scholar 

  • Zhao H (2005) Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquids. J Mol Cat B 37(1-6):16–25

    CAS  Google Scholar 

  • Zhao H (2015a) DNA stability in ionic liquids and deep eutectic solvents. J Chem Technol Biotechnol 90(1):19–25

    CAS  PubMed  Google Scholar 

  • Zhao H (2015b) Protein stabilization and enzyme activation in ionic liquids: specific ion effects. J Chem Technol Biotechnol 91:25–50

    PubMed  PubMed Central  Google Scholar 

  • Zheng W, Borgia A, Buholzer K, Grishaev A, Schuler B, Best RB (2016) Probing the action of chemical denaturant on an intrinsically disordered protein by simulation and experiment. J Am Chem Soc 138(36):11702–11713

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge helpful discussions with Diddo Diddens, Volker Lesch, Andreas Heuer, Hans-Joachim Galla, Julian Michalowsky, Miriam Kohagen, Frank Uhlig, Johannes Zeman, Maria Fyta, Takeshi Kobayashi, Anand Narayanan Krishnamoorthy, Samantha Micciulla, Martin Grininger, Wilhelm-Maximilian Hützler, Marc-Benjamin Hahn, Tihomir Solomun, Heinz Sturm, Martin Schroer, Christian Schröder, and Christian Holm.

Funding

This work was funded by the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 716 (SFB 716)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens Smiatek.

Ethics declarations

Conflict of interest

Ewa Anna Oprzeska-Zingrebe declares that she has no conflicts of interest. Jens Smiatek declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue on “Ionic Liquids and Biomolecules” edited by Antonio Benedetto and Hans-Joachim Galla

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oprzeska-Zingrebe, E.A., Smiatek, J. Aqueous ionic liquids in comparison with standard co-solutes. Biophys Rev 10, 809–824 (2018). https://doi.org/10.1007/s12551-018-0414-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-018-0414-7

Keywords

Navigation