Biophysical Reviews

, Volume 10, Issue 2, pp 535–542 | Cite as

Review of the nature, diversity and structure of bacteriophage receptor binding proteins that target Gram-positive bacteria

  • Ahmed S. A. Dowah
  • Martha R. J. Clokie


As the importance of bacteriophages as novel antimicrobials and potential diagnostics comes increasingly into focus, there is a heightened interest in understanding the mechanisms of how they interact with their bacterial hosts. The first step of a bacteriophage (phage) infection is the recognition of specific moieties on the bacterial cell surface as determined by their phage receptor binding proteins (RBPs). Knowledge of RBPs and how they interact with bacteria has been driven by studies of model phages and of industrially important phages, such as those that impact the dairy industry. Therefore, data from these phage groups constitute the majority of this review. We start with a brief introduction to phages, their life cycles and known receptors. We then review the state-of-the-art knowledge of phage RBPs of Gram-positive bacteria in the context of the better understood Gram-negative bacterial RBPs. In general, more is known about the RBPs of siphoviruses than myoviruses, which is reflected here, but for both virus families, where possible, we show what RBPs are, how they are arranged within phage genomes and what is known about their structures. As RBPs are the key determinant of phage specificity, studying and characterising them is important, for downstream applications such as diagnostic and therapeutic purposes.


Receptor binding proteins Siphoviruses Myoviruses Gram-positive bacteria Bacteria–phage interaction 



We are grateful to the Libyan Ministry of Higher Education for funding the PhD studies of ASAD.

Compliance with ethical standards

Conflict of interest

Ahmed S.A. Dowah declares that he has no conflict of interest. Martha R. J. Clokie declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. Bebeacua C, Bron P, Lai L, Vegge CS, Brøndsted L, Spinelli S, Campanacci V, Veesler D, van Heel M, Cambillau C (2010) Structure and molecular assignment of lactococcal phage TP901-1 baseplate. J Biol Chem 285:39079–39086CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bebeacua C, Tremblay D, Farenc C, Chapot-Chartier MP, Sadovskaya I, van Heel M, Veesler D, Moineau S, Cambillau C (2013) Structure, adsorption to host, and infection mechanism of virulent lactococcal phage p2. J Virol 87:12302–12312CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bertozzi Silva J, Storms Z, Sauvageau D (2016) Host receptors for bacteriophage adsorption. FEMS Microbiol Lett 363:fnw002CrossRefPubMedGoogle Scholar
  4. Bielmann R, Habann M, Eugster MR, Lurz R, Calendar R, Klumpp J, Loessner MJ (2015) Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids. Virology 477:110–118CrossRefPubMedGoogle Scholar
  5. Chatterjee S, Rothenberg E (2012) Interaction of bacteriophage l with its E. coli receptor, LamB. Viruses 4:3162–3178CrossRefPubMedPubMedCentralGoogle Scholar
  6. Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA, Foster S, Gilmore BF, Hancock REW, Harper D, Henderson IR, Hilpert K, Jones BV, Kadioglu A, Knowles D, Ólafsdóttir S, Payne D, Projan S, Shaunak S, Silverman J, Thomas CM, Trust TJ, Warn P, Rex JH (2016) Alternatives to antibiotics—a pipeline portfolio review. Lancet Infect Dis 16:239–251CrossRefPubMedGoogle Scholar
  7. Drulis-Kawa Z, Majkowska-Skrobek G, Maciejewska B (2015) Bacteriophages and phage-derived proteins—application approaches. Curr Med Chem 22:1757–1773CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dupont K, Vogensen FK, Neve H, Bresciani J, Josephsen J (2004) Identification of the receptor-binding protein in 936-species lactococcal bacteriophages. Appl Environ Microbiol 70:5818–5824CrossRefPubMedPubMedCentralGoogle Scholar
  9. Flayhan A, Vellieux FM, Lurz R, Maury O, Contreras-Martel C, Girard E, Boulanger P, Breyton C (2014) Crystal structure of pb9, the distal tail protein of bacteriophage T5: a conserved structural motif among all siphophages. J Virol 88:820–828CrossRefPubMedPubMedCentralGoogle Scholar
  10. González-García VA, Pulido-Cid M, Garcia-Doval C, Bocanegra R, van Raaij MJ, Martín-Benito J, Cuervo A, Carrascosa JL (2015) Conformational changes leading to T7 DNA delivery upon interaction with the bacterial receptor. J Biol Chem 290:10038–10044CrossRefPubMedPubMedCentralGoogle Scholar
  11. Habann M, Leiman PG, Vandersteegen K, Van den Bossche A, Lavigne R, Shneider MM, Bielmann R, Eugster MR, Loessner MJ, Klumpp J (2014) Listeria phage A511, a model for the contractile tail machineries of SPO1-related bacteriophages. Mol Microbiol 92:84–99CrossRefPubMedGoogle Scholar
  12. Haq IU, Chaudhry WN, Akhtar MN, Andleeb S, Qadri I (2012) Bacteriophages and their implications on future biotechnology: a review. Virol J 9:9CrossRefPubMedPubMedCentralGoogle Scholar
  13. Javed MA, Poshtiban S, Arutyunov D, Evoy S, Szymanski CM (2013) Bacteriophage receptor binding protein based assays for the simultaneous detection of Campylobacter jejuni and Campylobacter coli. PLoS One 8:e69770CrossRefPubMedPubMedCentralGoogle Scholar
  14. Kaneko J, Narita-Yamada S, Wakabayashi Y, Kamio Y (2009) Identification of ORF636 in phage phiSLT carrying Panton–Valentine leukocidin genes, acting as an adhesion protein for a poly(glycerophosphate) chain of lipoteichoic acid on the cell surface of Staphylococcus aureus. J Bacteriol 191:4674–4680CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kenny JG, McGrath S, Fitzgerald GF, van Sinderen D (2004) Bacteriophage Tuc2009 encodes a tail-associated cell wall-degrading activity. J Bacteriol 186:3480–3491CrossRefPubMedPubMedCentralGoogle Scholar
  16. Killmann H, Braun M, Herrmann C, Braun V (2001) FhuA barrel-cork hybrids are active transporters and receptors. J Bacteriol 183:3476–3487CrossRefPubMedPubMedCentralGoogle Scholar
  17. Klumpp J, Lavigne R, Loessner MJ, Ackermann HW (2010) The SPO1-related bacteriophages. Arch Virol 155:1547–1561CrossRefPubMedGoogle Scholar
  18. Koç C, Xia G, Kühner P, Spinelli S, Roussel A, Cambillau C, Stehle T (2016) Structure of the host-recognition device of Staphylococcus aureus phage varphi11. Sci Rep 6:27581CrossRefPubMedPubMedCentralGoogle Scholar
  19. Li X, Koç C, Kühner P, Stierhof Y-D, Krismer B, Enright MC, Penadés JR, Wolz C, Stehle T, Cambillau C, Peschel A, Xia G (2016) An essential role for the baseplate protein Gp45 in phage adsorption to Staphylococcus aureus. Sci Rep 6:26455CrossRefPubMedPubMedCentralGoogle Scholar
  20. Mahony J, van Sinderen D (2012) Structural aspects of the interaction of dairy phages with their host bacteria. Viruses 4:1410–1424CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mahony J, van Sinderen D (2015) Gram-positive phage–host interactions. Front Microbiol 6:61CrossRefPubMedPubMedCentralGoogle Scholar
  22. Mahony J, Stockdale SR, Collins B, Spinelli S, Douillard FP, Cambillau C, van Sinderen D (2016) Lactococcus lactis phage TP901-1 as a model for Siphoviridae virion assembly. Bacteriophage 6:e1123795CrossRefPubMedPubMedCentralGoogle Scholar
  23. Quiberoni A, Stiefel JI, Reinheimer JA (2000) Characterization of phage receptors in Streptococcus thermophilus using purified cell walls obtained by a simple protocol. J Appl Microbiol 89:1059–1065CrossRefPubMedGoogle Scholar
  24. Rakhuba DV, Kolomiets EI, Dey ES, Novik GI (2010) Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol J Microbiol 59:145–155PubMedGoogle Scholar
  25. Ricagno S, Campanacci V, Blangy S, Spinelli S, Tremblay D, Moineau S, Tegoni M, Cambillau C (2006) Crystal structure of the receptor-binding protein head domain from Lactococcus lactis phage bIL170. J Virol 80:9331–9335CrossRefPubMedPubMedCentralGoogle Scholar
  26. São-José C, Baptista C, Santos MA (2004) Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. J Bacteriol 186:8337–8346CrossRefPubMedPubMedCentralGoogle Scholar
  27. Sciara G, Blangy S, Siponen M, Mc Grath S, van Sinderen D, Tegoni M, Cambillau C, Campanacci V (2008) A topological model of the baseplate of lactococcal phage Tuc2009. J Biol Chem 283:2716–2723CrossRefPubMedGoogle Scholar
  28. Simpson DJ, Sacher JC, Szymanski CM (2016) Development of an assay for the identification of receptor binding proteins from bacteriophages. Viruses 8:17CrossRefPubMedCentralGoogle Scholar
  29. Sørensen MC, van Alphen LB, Harboe A, Li J, Christensen BB, Szymanski CM, Brøndsted L (2011) Bacteriophage F336 recognizes the capsular phosphoramidate modification of Campylobacter jejuni NCTC11168. J Bacteriol 193:6742–6749CrossRefPubMedPubMedCentralGoogle Scholar
  30. Spinelli S, Campanacci V, Blangy S, Moineau S, Tegoni M, Cambillau C (2006) Modular structure of the receptor binding proteins of Lactococcus lactis phages. The RBP structure of the temperate phage TP901-1. J Biol Chem 281:14256–14262CrossRefPubMedGoogle Scholar
  31. Spinelli S, Bebeacua C, Orlov I, Tremblay D, Klaholz BP, Moineau S, Cambillau C (2014a) Cryo-electron microscopy structure of lactococcal siphophage 1358 virion. J Virol 88:8900–8910CrossRefPubMedPubMedCentralGoogle Scholar
  32. Spinelli S, Veesler D, Bebeacua C, Cambillau C (2014b) Structures and host-adhesion mechanisms of lactococcal siphophages. Front Microbiol 5:3CrossRefPubMedPubMedCentralGoogle Scholar
  33. Stockdale SR, Mahony J, Courtin P, Chapot-Chartier MP, van Pijkeren JP, Britton RA, Neve H, Heller KJ, Aideh B, Vogensen FK, van Sinderen D (2013) The lactococcal phages Tuc2009 and TP901-1 incorporate two alternate forms of their tail fiber into their virions for infection specialization. J Biol Chem 288:5581–5590CrossRefPubMedPubMedCentralGoogle Scholar
  34. Tremblay DM, Tegoni M, Spinelli S, Campanacci V, Blangy S, Huyghe C, Desmyter A, Labrie S, Moineau S, Cambillau C (2006) Receptor-binding protein of Lactococcus lactis phages: identification and characterization of the saccharide receptor-binding site. J Bacteriol 188:2400–2410CrossRefPubMedPubMedCentralGoogle Scholar
  35. Veesler D, Robin G, Lichière J, Auzat I, Tavares P, Bron P, Campanacci V, Cambillau C (2010) Crystal structure of bacteriophage SPP1 distal tail protein (gp19.1). A baseplate hub paradigm in gram-positive infecting phages. J Biol Chem 285:36666–36673CrossRefPubMedPubMedCentralGoogle Scholar
  36. Veesler D, Spinelli S, Mahony J, Lichière J, Blangy S, Bricogne G, Legrand P, Ortiz-Lombardia M, Campanacci V, van Sinderen D, Cambillau C (2012) Structure of the phage TP901-1 1.8 MDa baseplate suggests an alternative host adhesion mechanism. Proc Natl Acad Sci U S A 109:8954–8958CrossRefPubMedPubMedCentralGoogle Scholar
  37. Vegge CS, Vogensen FK, Mc Grath S, Neve H, van Sinderen D, Brøndsted L (2006) Identification of the lower baseplate protein as the antireceptor of the temperate lactococcal bacteriophages TP901-1 and Tuc2009. J Bacteriol 188:55–63CrossRefPubMedPubMedCentralGoogle Scholar
  38. Vinga I, Baptista C, Auzat I, Petipas I, Lurz R, Tavares P, Santos MA, São-José C (2012) Role of bacteriophage SPP1 tail spike protein gp21 on host cell receptor binding and trigger of phage DNA ejection. Mol Microbiol 83:289–303CrossRefPubMedGoogle Scholar
  39. Waseh S, Hanifi-Moghaddam P, Coleman R, Masotti M, Ryan S, Foss M, MacKenzie R, Henry M, Szymanski CM, Tanha J (2010) Orally administered P22 phage tailspike protein reduces Salmonella colonization in chickens: prospects of a novel therapy against bacterial infections. PLoS One 5:e13904CrossRefPubMedPubMedCentralGoogle Scholar
  40. Xia G, Corrigan RM, Winstel V, Goerke C, Gründling A, Peschel A (2011) Wall teichoic acid-dependent adsorption of staphylococcal siphovirus and myovirus. J Bacteriol 193:4006–4009CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Infection, Immunity and InflammationUniversity of LeicesterLeicesterUK

Personalised recommendations