Skip to main content

Advertisement

Log in

Conversion of microbial rhodopsins: insights into functionally essential elements and rational protein engineering

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Technological progress has enabled the successful application of functional conversion to a variety of biological molecules, such as nucleotides and proteins. Such studies have revealed the functionally essential elements of these engineered molecules, which are difficult to characterize at the level of an individual molecule. The functional conversion of biological molecules has also provided a strategy for their rational and atomistic design. The engineered molecules can be used in studies to improve our understanding of their biological functions and to develop protein-based tools. In this review, we introduce the functional conversion of membrane-embedded photoreceptive retinylidene proteins (also called rhodopsins) and discuss these proteins mainly on the basis of results obtained from our own studies. This information provides insights into the molecular mechanism of light-induced protein functions and their use in optogenetics, a technology which involves the use of light to control biological activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Airan RD, Thompson KR, Fenno LE, Bernstein H, Deisseroth K (2009) Temporally precise in vivo control of intracellular signalling. Nature 458:1025–1029

    CAS  PubMed  Google Scholar 

  • Avelar GM, Schumacher RI, Zaini PA, Leonard G, Richards TA, Gomes SL (2014) A rhodopsin-guanylyl cyclase gene fusion functions in visual perception in a fungus. Curr Biol 24:1234–1240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Béjà O, Aravind L, Koonin EV, Suzuki MT, Hadd A, Nguyen LP, Jovanovich SB, Gates CM, Feldman RA, Spudich JL, Spudich EN, DeLong EF (2000) Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906

    PubMed  Google Scholar 

  • Béjà O, Lanyi JK (2014) Nature's toolkit for microbial rhodopsin ion pumps. Proc Natl Acad Sci USA 111:6538–6539

    PubMed  Google Scholar 

  • Balashov SP, Lanyi JK (2007) Xanthorhodopsin: proton pump with a carotenoid antenna. Cell Mol Life Sci 64:2323–2328

    CAS  PubMed  Google Scholar 

  • Berndt A, Lee SY, Ramakrishnan C, Deisseroth K (2014) Structure-guided transformation of channelrhodopsin into a light-activated chloride channel. Science 344:420–424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berndt A, Lee SY, Wietek J, Ramakrishnan C, Steinberg EE, Rashid AJ, Kim H, Park S, Santoro A, Frankland PW, Iyer SM, Pak S, Ahrlund-Richter S, Delp SL, Malenka RC, Josselyn SA, Carlen M, Hegemann P, Deisseroth K (2016) Structural foundations of optogenetics: determinants of channelrhodopsin ion selectivity. Proc Natl Acad Sci USA 113:822–829

    CAS  PubMed  Google Scholar 

  • Bogomolni RA, Spudich JL (1982) Identification of a third rhodopsin-like pigment in phototactic Halobacterium halobium. Proc Natl Acad Sci USA 79:6250–6254

    CAS  PubMed  Google Scholar 

  • Bogomolni RA, Stoeckenius W, Szundi I, Perozo E, Olson KD, Spudich JL (1994) Removal of transducer HtrI allows electrogenic proton translocation by sensory rhodopsin I. Proc Natl Acad Sci USA 91:10188–10192

    CAS  PubMed  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    CAS  PubMed  Google Scholar 

  • Braiman MS, Mogi T, Marti T, Stern LJ, Khorana HG, Rothschild KJ (1988) Vibrational spectroscopy of bacteriorhodopsin mutants: light-driven proton transport involves protonation changes of aspartic acid residues 85, 96, and 212. Biochemistry 27:8516–8520

    CAS  PubMed  Google Scholar 

  • Brown LS, Ernst OP (2017) Recent advances in biophysical studies of rhodopsins—oligomerization, folding, and structure. Biochim Biophys Acta 1865:1512–1521

    CAS  Google Scholar 

  • Choe HW, Kim YJ, Park JH, Morizumi T, Pai EF, Krauss N, Hofmann KP, Scheerer P, Ernst OP (2011) Crystal structure of metarhodopsin II. Nature 471:651–655

    CAS  PubMed  Google Scholar 

  • Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 18:1213–1225

    CAS  PubMed  PubMed Central  Google Scholar 

  • Doi S, Tsukamoto T, Yoshizawa S, Sudo Y (2017) An inhibitory role of Arg-84 in anion channelrhodopsin-2 expressed in Escherichia coli. Sci Rep 7:41879

  • Drew D, Boudker O (2016) Shared molecular mechanisms of membrane transporters. Annu Rev Biochem 85:543–572

    CAS  PubMed  Google Scholar 

  • Eisenhauer K, Kuhne J, Ritter E, Berndt A, Wolf S, Freier E, Bartl F, Hegemann P, Gerwert K (2012) In channelrhodopsin-2 Glu-90 is crucial for ion selectivity and is deprotonated during the photocycle. J Biol Chem 287:6904–6911

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst OP, Sanchez Murcia PA, Daldrop P, Tsunoda SP, Kateriya S, Hegemann P (2008) Photoactivation of channelrhodopsin. J Biol Chem 283:1637–1643

    CAS  PubMed  Google Scholar 

  • Ernst OP, Lodowski DT, Elstner M, Hegemann P, Brown LS, Kandori H (2014) Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem Rev 114:126–163

    CAS  PubMed  Google Scholar 

  • Farrens DL, Altenbach C, Yang K, Hubbell WL, Khorana HG (1996) Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin. Science 274:768–770

    CAS  PubMed  Google Scholar 

  • Geiser AH, Sievert MK, Guo LW, Grant JE, Krebs MP, Fotiadis D, Engel A, Ruoho AE (2006) Bacteriorhodopsin chimeras containing the third cytoplasmic loop of bovine rhodopsin activate transducin for GTP/GDP exchange. Protein Sci 15:1679–1690

    CAS  PubMed  PubMed Central  Google Scholar 

  • Govorunova EG, Spudich EN, Lane CE, Sineshchekov OA, Spudich JL (2011) New channelrhodopsin with a red-shifted spectrum and rapid kinetics from Mesostigma viride. MBio 2:e00115–e00111

    PubMed  PubMed Central  Google Scholar 

  • Govorunova EG, Sineshchekov OA, Janz R, Liu X, Spudich JL (2015) Natural light-gated anion channels: a family of microbial rhodopsins for advanced optogenetics. Science 349:647–650

    CAS  PubMed  PubMed Central  Google Scholar 

  • Govorunova EG, Sineshchekov OA, Li H, Spudich JL (2017) Microbial rhodopsins: diversity, mechanisms, and Optogenetic applications. Annu Rev Biochem 86:845–872

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grote M, Engelhard M, Hegemann P (2014) Of ion pumps, sensors and channels - perspectives on microbial rhodopsins between science and history. Biochim Biophys Acta 1837:533–545

    CAS  PubMed  Google Scholar 

  • Gushchin I, Shevchenko V, Polovinkin V, Kovalev K, Alekseev A, Round E, Borshchevskiy V, Balandin T, Popov A, Gensch T, Fahlke C, Bamann C, Willbold D, Buldt G, Bamberg E, Gordeliy V (2015) Crystal structure of a light-driven sodium pump. Nat Struct Mol Biol 22:390–395

    CAS  PubMed  Google Scholar 

  • Hasemi T, Kikukawa T, Kamo N, Demura M (2016) Characterization of a cyanobacterial chloride-pumping rhodopsin and its conversion into a proton pump. J Biol Chem 291:355–362

    CAS  PubMed  Google Scholar 

  • Havelka WA, Henderson R, Oesterhelt D (1995) Three-dimensional structure of halorhodopsin at 7 Å resolution. J Mol Biol 247:726–738

    CAS  PubMed  Google Scholar 

  • Hegemann P (2008) Algal sensory photoreceptors. Annu Rev Plant Biol 59:167–189

    CAS  PubMed  Google Scholar 

  • Hoff WD, Jung KH, Spudich JL (1997) Molecular mechanism of photosignaling by archaeal sensory rhodopsins. Annu Rev Biophys Biomol Struct 26:223–258

    CAS  PubMed  Google Scholar 

  • Honda N, Tsukamoto T, Sudo Y (2017) Comparative evaluation of the stability of seven-transmembrane microbial rhodopsins to various physicochemical stimuli. Chem Phys Lett 682:6–14

    CAS  Google Scholar 

  • Hosaka T, Yoshizawa S, Nakajima Y, Ohsawa N, Hato M, DeLong EF, Kogure K, Yokoyama S, Kimura-Someya T, Iwasaki W, Shirouzu M (2016) Structural mechanism for light-driven transport by a new type of chloride ion pump, Nonlabens marinus rhodopsin-3. J Biol Chem 291:17488–17495

    CAS  PubMed  Google Scholar 

  • Hou SY, Govorunova EG, Ntefidou M, Lane CE, Spudich EN, Sineshchekov OA, Spudich JL (2012) Diversity of Chlamydomonas channelrhodopsins. Photochem Photobiol 88:119–128

    CAS  PubMed  Google Scholar 

  • Huang PS, Boyken SE, Baker D (2016) The coming of age of de novo protein design. Nature 537:320–327

    CAS  PubMed  Google Scholar 

  • Imamoto Y, Shichida Y, Hirayama J, Tomioka H, Kamo N, Yoshizawa S (1992) Nanosecond laser photolysis of phoborhodopsin: from Natronobacterium pharaonis appearance of KL and L intermediates in the photocycle at room temperature. Photochem Photobiol 56:1129–1134

    CAS  Google Scholar 

  • Inoue K, Ono H, Abe-Yoshizumi R, Yoshizawa S, Ito H, Kogure K, Kandori H (2013a) A light-driven sodium ion pump in marine bacteria. Nat Commun 4:1678

    PubMed  Google Scholar 

  • Inoue K, Tsukamoto T, Sudo Y (2013b) Molecular and evolutionary aspects of microbial sensory rhodopsins. Biochim Biophys Acta 1837:562–577

    PubMed  Google Scholar 

  • Inoue K, Kato Y, Kandori H (2014a) Light-driven ion-translocating rhodopsins in marine bacteria. Trends Microbiol 23:91–98

    Google Scholar 

  • Inoue K, Koua FH, Kato Y, Abe-Yoshizumi R, Kandori H (2014b) Spectroscopic study of a light-driven chloride ion pump from marine bacteria. J Phys Chem B 118:11190–11199

    CAS  PubMed  Google Scholar 

  • Inoue K, Tsukamoto T, Shimono K, Suzuki Y, Miyauchi S, Hayashi S, Kandori H, Sudo Y (2015) Converting a light-driven proton pump into a light-gated proton channel. J Am Chem Soc 137:3291–3299

    CAS  PubMed  Google Scholar 

  • Inoue K, Ito S, Kato Y, Nomura Y, Shibata M, Uchihashi T, Tsunoda SP, Kandori H (2016a) A natural light-driven inward proton pump. Nat Commun 7:13415

    PubMed  PubMed Central  Google Scholar 

  • Inoue K, Nomura Y, Kandori H (2016b) Asymmetric functional conversion of eubacterial light-driven ion pumps. J Biol Chem 291:9883–9893

    CAS  PubMed  PubMed Central  Google Scholar 

  • Irieda H, Morita T, Maki K, Homma M, Aiba H, Sudo Y (2012) Photo-induced regulation of the chromatic adaptive gene expression by anabaena sensory rhodopsin. J Biol Chem 287:32485–32493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ito S, Kato HE, Taniguchi R, Iwata T, Nureki O, Kandori H (2014) Water-containing hydrogen-bonding network in the active center of channelrhodopsin. J Am Chem Soc 136:3475–3482

    CAS  PubMed  Google Scholar 

  • Jung KH, Trivedi VD, Spudich JL (2003) Demonstration of a sensory rhodopsin in eubacteria. Mol Microbiol 47:1513–1522

    CAS  PubMed  Google Scholar 

  • Kanehara K, Yoshizawa S, Tsukamoto T, Sudo Y (2017) A phylogenetically distinctive and extremely heat stable light-driven proton pump from the eubacterium Rubrobacter xylanophilus DSM 9941T. Sci Rep 7:44427

  • Katayama K, Sekharan S, Sudo Y (2015) Color tuning in retinylidene proteins. In: Yawo H, Kandori H, Koizumi A (eds) Optogenetics: light-sensing proteins and their applications. Springer Japan, Tokyo, 89–107

    Google Scholar 

  • Kato HE, Zhang F, Yizhar O, Ramakrishnan C, Nishizawa T, Hirata K, Ito J, Aita Y, Tsukazaki T, Hayashi S, Hegemann P, Maturana AD, Ishitani R, Deisseroth K, Nureki O (2012) Crystal structure of the channelrhodopsin light-gated cation channel. Nature 482:369–374

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kato HE, Inoue K, Abe-Yoshizumi R, Kato Y, Ono H, Konno M, Ishizuka T, Hoque MR, Hososhima S, Kunitomo H, Ito J, Yoshizawa S, Yamashita K, Takemoto M, Nishizawa T, Taniguchi RK, Maturana AD, Iino Y, Yawo H, Ishitani R, Kandori H, Nureki O (2015a) Structural basis for Na+ transport mechanism by a light-driven Na+ pump. Nature 521:48–53

    CAS  PubMed  Google Scholar 

  • Kato HE, Kamiya M, Sugo S, Ito J, Taniguchi R, Orito A, Hirata K, Inutsuka A, Yamanaka A, Maturana AD, Ishitani R, Sudo Y, Hayashi S, Nureki O (2015b) Atomistic design of microbial opsin-based blue-shifted optogenetics tools. Nat Commun 6:7177

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kitajima-Ihara T, Furutani Y, Suzuki D, Ihara K, Kandori H, Homma M, Sudo Y (2008) Salinibacter sensory rhodopsin: sensory rhodopsin I-like protein from a eubacterium. J Biol Chem 283:23533–23541

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klare JP, Bordignon E, Engelhard M, Steinhoff HJ (2004) Sensory rhodopsin II and bacteriorhodopsin: light activated helix F movement. Photochem Photobiol Sci 3:543–547

    CAS  PubMed  Google Scholar 

  • Konno M, Kato Y, Kato HE, Inoue K, Nureki O, Kandori H (2016) Mutant of a light-driven sodium ion pump can transport cesium ions. J Phys Chem Lett 7:51–55

    CAS  PubMed  Google Scholar 

  • Kouyama T, Kanada S, Takeguchi Y, Narusawa A, Murakami M, Ihara K (2010) Crystal structure of the light-driven chloride pump halorhodopsin from Natronomonas pharaonis. J Mol Biol 396:564–579

    CAS  PubMed  Google Scholar 

  • Koyanagi M, Terakita A (2008) Gq-coupled rhodopsin subfamily composed of invertebrate visual pigment and melanopsin. Photochem Photobiol 84:1024–1030

    CAS  PubMed  Google Scholar 

  • Kurihara M, Sudo Y (2015) Microbial rhodopsins: wide distribution, rich diversity and great potential. Biophys Physicobiol 12:121–129

    PubMed  PubMed Central  Google Scholar 

  • Lanyi JK (2004) Bacteriorhodopsin. Annu Rev Physiol 66:665–688

    CAS  PubMed  Google Scholar 

  • Lin JY, Knutsen PM, Muller A, Kleinfeld D, Tsien RY (2013) ReaChR: a red-shifted variant of channelrhodopsin enables deep transcranial optogenetic excitation. Nat Neurosci 16:1499–1508

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lórenz-Fonfría VA, Resler T, Krause N, Nack M, Gossing M, Fischer von Mollard G, Bamann C, Bamberg E, Schlesinger R, Heberle J (2013) Transient protonation changes in channelrhodopsin-2 and their relevance to channel gating. Proc Natl Acad Sci USA 110:E1273–E1281

    PubMed  Google Scholar 

  • Lórenz-Fonfría VA, Muders V, Schlesinger R, Heberle J (2014) Changes in the hydrogen-bonding strength of internal water molecules and cysteine residues in the conductive state of channelrhodopsin-1. J Chem Phys 141:22D507

    PubMed  Google Scholar 

  • Luck M, Mathes T, Bruun S, Fudim R, Hagedorn R, Tran Nguyen TM, Kateriya S, Kennis JT, Hildebrandt P, Hegemann P (2012) A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light. J Biol Chem 287:40083–40090

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luecke H, Schobert B, Richter HT, Cartailler JP, Lanyi JK (1999) Structure of bacteriorhodopsin at 1.55 Å resolution. J Mol Biol 291:899–911

    CAS  PubMed  Google Scholar 

  • Marti T, Rosselet SJ, Otto H, Heyn MP, Khorana HG (1991) The retinylidene Schiff base counterion in bacteriorhodopsin. J Biol Chem 266:18674–18683

    CAS  PubMed  Google Scholar 

  • Matsuno-Yagi A, Mukohata Y (1977) Two possible roles of bacteriorhodopsin; a comparative study of strains of Halobacterium halobium differing in pigmentation. Biochem Biophys Res Commun 78:237–243

    CAS  PubMed  Google Scholar 

  • Miranda MR, Choi AR, Shi L, Bezerra AG Jr, Jung KH, Brown LS (2009) The photocycle and proton translocation pathway in a cyanobacterial ion-pumping rhodopsin. Biophys J 96:1471–1481

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mogi T, Stern LJ, Marti T, Chao BH, Khorana HG (1988) Aspartic acid substitutions affect proton translocation by bacteriorhodopsin. Proc Natl Acad Sci USA 85:4148–4152

    CAS  PubMed  Google Scholar 

  • Moukhametzianov R, Klare JP, Efremov R, Baeken C, Goppner A, Labahn J, Engelhard M, Buldt G, Gordeliy VI (2006) Development of the signal in sensory rhodopsin and its transfer to the cognate transducer. Nature 440:115–119

    CAS  PubMed  Google Scholar 

  • Muders V, Kerruth S, Lorenz-Fonfria VA, Bamann C, Heberle J, Schlesinger R (2014) Resonance Raman and FTIR spectroscopic characterization of the closed and open states of channelrhodopsin-1. FEBS Lett 588:2301–2306

    CAS  PubMed  Google Scholar 

  • Muroda K, Nakashima K, Shibata M, Demura M, Kandori H (2012) Protein-bound water as the determinant of asymmetric functional conversion between light-driven proton and chloride pumps. Biochemistry 51:4677–4684

    CAS  PubMed  Google Scholar 

  • Nagel G, Ollig D, Fuhrmann M, Kateriya S, Musti AM, Bamberg E, Hegemann P (2002) Channelrhodopsin-1: a light-gated proton channel in green algae. Science 296:2395–2398

    CAS  PubMed  Google Scholar 

  • Nagel G, Szellas T, Huhn W, Kateriya S, Adeishvili N, Berthold P, Ollig D, Hegemann P, Bamberg E (2003) Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc Natl Acad Sci USA 100:13940–13945

    CAS  PubMed  Google Scholar 

  • Nakatsuma A, Yamashita T, Sasaki K, Kawanabe A, Inoue K, Furutani Y, Shichida Y, Kandori H (2011) Chimeric microbial rhodopsins containing the third cytoplasmic loop of bovine rhodopsin. Biophys J 100:1874–1882

    CAS  PubMed  PubMed Central  Google Scholar 

  • Niho A, Yoshizawa S, Tsukamoto T, Kurihara M, Tahara S, Nakajima Y, Mizuno M, Kuramochi H, Tahara T, Mizutani Y, Sudo Y (2017) Demonstration of a light-driven SO4 2– transporter and its spectroscopic characteristics. J Am Chem Soc 139(12):4376–4389

    CAS  PubMed  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1971) Rhodopsin-like protein from the purple membrane of Halobacterium halobium. Nat New Biol 233:149–152

    CAS  PubMed  Google Scholar 

  • Oesterhelt D, Stoeckenius W (1973) Functions of a new photoreceptor membrane. Proc Natl Acad Sci USA 70:2853–2857

    CAS  PubMed  Google Scholar 

  • Ogren JI, Mamaev S, Russano D, Li H, Spudich JL, Rothschild KJ (2014) Retinal chromophore structure and Schiff base interactions in red-shifted channelrhodopsin-1 from Chlamydomonas augustae. Biochemistry 53:3961–3970

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oka T, Yagi N, Fujisawa T, Kamikubo H, Tokunaga F, Kataoka M (2000) Time-resolved x-ray diffraction reveals multiple conformations in the M-N transition of the bacteriorhodopsin photocycle. Proc Natl Acad Sci USA 97:14278–14282

    CAS  PubMed  Google Scholar 

  • Olson KD, Zhang XN, Spudich JL (1995) Residue replacements of buried aspartyl and related residues in sensory rhodopsin I: D201N produces inverted phototaxis signals. Proc Natl Acad Sci USA 92:3185–3189

    CAS  PubMed  Google Scholar 

  • Prigge M, Schneider F, Tsunoda SP, Shilyansky C, Wietek J, Deisseroth K, Hegemann P (2012) Color-tuned channelrhodopsins for multiwavelength optogenetics. J Biol Chem 287:31804–31812

    CAS  PubMed  PubMed Central  Google Scholar 

  • Racker E, Stoeckenius W (1974) Reconstitution of purple membrane vesicles catalyzing light-driven proton uptake and adenosine triphosphate formation. J Biol Chem 249:662–663

    CAS  PubMed  Google Scholar 

  • Radu I, Bamann C, Nack M, Nagel G, Bamberg E, Heberle J (2009) Conformational changes of channelrhodopsin-2. J Am Chem Soc 131:7313–7319

    CAS  PubMed  Google Scholar 

  • Ritter E, Stehfest K, Berndt A, Hegemann P, Bartl FJ (2008) Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy. J Biol Chem 283:35033–35041

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki J, Brown LS, Chon YS, Kandori H, Maeda A, Needleman R, Lanyi JK (1995) Conversion of bacteriorhodopsin into a chloride ion pump. Science 269:73–75

    CAS  PubMed  Google Scholar 

  • Sasaki J, Spudich JL (1999) Proton circulation during the photocycle of sensory rhodopsin II. Biophys J 77:2145–2152

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sasaki K, Yamashita T, Yoshida K, Inoue K, Shichida Y, Kandori H (2014) Chimeric proton-pumping rhodopsins containing the cytoplasmic loop of bovine rhodopsin. PLoS One 9:e91323

    PubMed  PubMed Central  Google Scholar 

  • Schneider F, Grimm C, Hegemann P (2015) Biophysics of channelrhodopsin. Annu Rev Biophys 44:167–186

    CAS  PubMed  Google Scholar 

  • Schobert B, Lanyi JK (1982) Halorhodopsin is a light-driven chloride pump. J Biol Chem 257:10306–10313

    CAS  PubMed  Google Scholar 

  • Shibata M, Yamashita H, Uchihashi T, Kandori H, Ando T (2010) High-speed atomic force microscopy shows dynamic molecular processes in photoactivated bacteriorhodopsin. Nat Nanotechnol 5:208–212

    CAS  PubMed  Google Scholar 

  • Shichida Y, Imai H (1998) Visual pigment: G-protein-coupled receptor for light signals. Cell Mol Life Sci 54:1299–1315

    CAS  PubMed  Google Scholar 

  • Shimono K, Ikeura Y, Sudo Y, Iwamoto M, Kamo N (2001) Environment around the chromophore in pharaonis phoborhodopsin: mutation analysis of the retinal binding site. Biochim Biophys Acta 1515:92–100

    CAS  PubMed  Google Scholar 

  • Shimono K, Hayashi T, Ikeura Y, Sudo Y, Iwamoto M, Kamo N (2003) Importance of the broad regional interaction for spectral tuning in Natronobacterium pharaonis phoborhodopsin (sensory rhodopsin II). J Biol Chem 278:23882–23889

    CAS  PubMed  Google Scholar 

  • Sineshchekov OA, Jung KH, Spudich JL (2002) Two rhodopsins mediate phototaxis to low- and high-intensity light in Chlamydomonas Reinhardtii. Proc Natl Acad Sci USA 99:8689–8694

    CAS  PubMed  Google Scholar 

  • Sineshchekov OA, Sasaki J, Phillips BJ, Spudich JL (2008) A Schiff base connectivity switch in sensory rhodopsin signaling. Proc Natl Acad Sci USA 105:16159–16164

    CAS  PubMed  Google Scholar 

  • Slotboom DJ (2014) Structural and mechanistic insights into prokaryotic energy-coupling factor transporters. Nat Rev Microbiol 12:79–87

    CAS  PubMed  Google Scholar 

  • Spudich JL, Bogomolni RA (1984) Mechanism of colour discrimination by a bacterial sensory rhodopsin. Nature 312:509–513

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spudich JL, Jung K-H (2005) Microbial rhodopsin: phylogenetic and functional diversity .Handbook of photosensory receptors. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

  • Subramaniam S, Gerstein M, Oesterhelt D, Henderson R (1993) Electron diffraction analysis of structural changes in the photocycle of bacteriorhodopsin. EMBO J 12:1–8

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sudo Y, Spudich JL (2006) Three strategically placed hydrogen-bonding residues convert a proton pump into a sensory receptor. Proc Natl Acad Sci USA 103:16129–16134

    CAS  PubMed  Google Scholar 

  • Sudo Y, Iwamoto M, Shimono K, Kamo N (2001a) Pharaonis phoborhodopsin binds to its cognate truncated transducer even in the presence of a detergent with a 1:1 stoichiometry. Photochem Photobiol 74:489–494

    CAS  PubMed  Google Scholar 

  • Sudo Y, Iwamoto M, Shimono K, Sumi M, Kamo N (2001b) Photo-induced proton transport of pharaonis phoborhodopsin (sensory rhodopsin II) is ceased by association with the transducer. Biophys J 80:916–922

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sudo Y, Furutani Y, Wada A, Ito M, Kamo N, Kandori H (2005a) Steric constraint in the primary photoproduct of an archaeal rhodopsin from regiospecific perturbation of C-D stretching vibration of the retinyl chromophore. J Am Chem Soc 127:16036–16037

    CAS  PubMed  Google Scholar 

  • Sudo Y, Okuda H, Yamabi M, Fukuzaki Y, Mishima M, Kamo N, Kojima C (2005b) Linker region of a halobacterial transducer protein interacts directly with its sensor retinal protein. Biochemistry 44:6144–6152

    CAS  PubMed  Google Scholar 

  • Sudo Y, Yamabi M, Kato S, Hasegawa C, Iwamoto M, Shimono K, Kamo N (2006) Importance of specific hydrogen bonds of archaeal rhodopsins for the binding to the transducer protein. J Mol Biol 357:1274–1282

    CAS  PubMed  Google Scholar 

  • Sudo Y, Furutani Y, Spudich JL, Kandori H (2007) Early photocycle structural changes in a bacteriorhodopsin mutant engineered to transmit photosensory signals. J Biol Chem 282:15550–15558

    CAS  PubMed  Google Scholar 

  • Sudo Y, Ihara K, Kobayashi S, Suzuki D, Irieda H, Kikukawa T, Kandori H, Homma M (2011a) A microbial rhodopsin with a unique retinal composition shows both sensory rhodopsin II and bacteriorhodopsin-like properties. J Biol Chem 286:5967–5976

    CAS  PubMed  Google Scholar 

  • Sudo Y, Yuasa Y, Shibata J, Suzuki D, Homma M (2011b) Spectral tuning in sensory rhodopsin I from Salinibacter ruber. J Biol Chem 286:11328–11336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sudo Y, Okazaki A, Ono H, Yagasaki J, Sugo S, Kamiya M, Reissig L, Inoue K, Ihara K, Kandori H, Takagi S, Hayashi S (2013) A blue-shifted light-driven proton pump for neural silencing. J Biol Chem 288:20624–20632

    CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki D, Furutani Y, Inoue K, Kikukawa T, Sakai M, Fujii M, Kandori H, Homma M, Sudo Y (2009) Effects of chloride ion binding on the photochemical properties of salinibacter sensory rhodopsin I. J Mol Biol 392:48–62

    CAS  PubMed  Google Scholar 

  • Suzuki D, Irieda H, Homma M, Kawagishi I, Sudo Y (2010) Phototactic and chemotactic signal transduction by transmembrane receptors and transducers in microorganisms. Sensors (Basel) 10:4010–4039

    CAS  Google Scholar 

  • Swartz TE, Szundi I, Spudich JL, Bogomolni RA (2000) New photointermediates in the two photon signaling pathway of sensory rhodopsin-I. Biochemistry 39:15101–15109

    CAS  PubMed  Google Scholar 

  • Takahashi T, Mochizuki Y, Kamo N, Kobatake Y (1985) Evidence that the long-lifetime photointermediate of s-rhodopsin is a receptor for negative phototaxis in Halobacterium halobium. Biochem Biophys Res Commun 127:99–105

    CAS  PubMed  Google Scholar 

  • Takahashi T, Yan B, Mazur P, Derguini F, Nakanishi K, Spudich JL (1990) Color regulation in the archaebacterial phototaxis receptor phoborhodopsin (sensory rhodopsin II). Biochemistry 29:8467–8474

    CAS  PubMed  Google Scholar 

  • Tittor J, Haupts U, Haupts C, Oesterhelt D, Becker A, Bamberg E (1997) Chloride and proton transport in bacteriorhodopsin mutant D85T: different modes of ion translocation in a retinal protein. J Mol Biol 271:405–416

    CAS  PubMed  Google Scholar 

  • Tsukamoto T, Inoue K, Kandori H, Sudo Y (2013) Thermal and spectroscopic characterization of a proton pumping rhodopsin from an extreme thermophile. J Biol Chem 288:21581–21592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tsukamoto T, Mizutani K, Hasegawa T, Takahashi M, Honda N, Hashimoto N, Shimono K, Yamashita K, Yamamoto M, Miyauchi S, Takagi S, Hayashi S, Murata T, Sudo Y (2016) X-ray crystallographic structure of Thermophilic Rhodopsin: implications for high thermal stability and optogenetic function. J Biol Chem 291:12223–12232

    CAS  PubMed  PubMed Central  Google Scholar 

  • Váró G (2000) Analogies between halorhodopsin and bacteriorhodopsin. Biochim Biophys Acta 1460:220–229

    PubMed  Google Scholar 

  • Váró G, Brown LS, Sasaki J, Kandori H, Maeda A, Needleman R, Lanyi JK (1995a) Light-driven chloride ion transport by halorhodopsin from Natronobacterium pharaonis. 1. The photochemical cycle. Biochemistry 34:14490–14499

    PubMed  Google Scholar 

  • Váró G, Zimányi L, Fan X, Sun L, Needleman R, Lanyi JK (1995b) Photocycle of halorhodopsin from Halobacterium salinarium. Biophys J 68:2062–2072

    PubMed  PubMed Central  Google Scholar 

  • Váró G, Brown LS, Needleman R, Lanyi JK (1996) Proton transport by halorhodopsin. Biochemistry 35:6604–6611

    PubMed  Google Scholar 

  • Wegener AA, Klare JP, Engelhard M, Steinhoff HJ (2001) Structural insights into the early steps of receptor-transducer signal transfer in archaeal phototaxis. EMBO J 20:5312–5319

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wietek J, Wiegert JS, Adeishvili N, Schneider F, Watanabe H, Tsunoda SP, Vogt A, Elstner M, Oertner TG, Hegemann P (2014) Conversion of channelrhodopsin into a light-gated chloride channel. Science 344:409–412

    CAS  PubMed  Google Scholar 

  • Yagasaki J, Suzuki D, Ihara K, Inoue K, Kikukawa T, Sakai M, Fujii M, Homma M, Kandori H, Sudo Y (2010) Spectroscopic studies of a sensory rhodopsin I homologue from the archaeon Haloarcula vallismortis. Biochemistry 49:1183–1190

    CAS  PubMed  Google Scholar 

  • Yamashita T, Terakita A, Shichida Y (2000) Distinct roles of the second and third cytoplasmic loops of bovine rhodopsin in G protein activation. J Biol Chem 275:34272–34279

    CAS  PubMed  Google Scholar 

  • Yan B, Takahashi T, Johnson R, Spudich JL (1991) Identification of signaling states of a sensory receptor by modulation of lifetimes of stimulus-induced conformations: the case of sensory rhodopsin II. Biochemistry 30:10686–10692

    CAS  PubMed  Google Scholar 

  • Ye S, Zaitseva E, Caltabiano G, Schertler GF, Sakmar TP, Deupi X, Vogel R (2010) Tracking G-protein-coupled receptor activation using genetically encoded infrared probes. Nature 464:1386–1389

    CAS  PubMed  Google Scholar 

  • Yoshizawa S, Kumagai Y, Kim H, Ogura Y, Hayashi T, Iwasaki W, DeLong EF, Kogure K (2014) Functional characterization of flavobacteria rhodopsins reveals a unique class of light-driven chloride pump in bacteria. Proc Natl Acad Sci USA 111:6732–6737

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Our original publications were supported by a Grant-in-Aid from the Japanese Ministry of Education, Science, Technology, Sports and Cultures (KAKENHI) to KI, HK and YS. This work was also supported by JST-CREST and AMED to YS. We thank “DASS Manuscript” (http://www.dass-ms.com/home.html) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Sudo.

Ethics declarations

Conflict of interest

Akimasa Kaneko declares that he has no conflict of interest. Keiichi Inoue declares that he has no conflict of interest. Keiichi Kojima declares that he has no conflict of interest. Hideki Kandori declares that he has no conflict of interest. Yuki Sudo declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaneko, A., Inoue, K., Kojima, K. et al. Conversion of microbial rhodopsins: insights into functionally essential elements and rational protein engineering. Biophys Rev 9, 861–876 (2017). https://doi.org/10.1007/s12551-017-0335-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0335-x

Keywords

Navigation