Biophysical Reviews

, Volume 9, Issue 5, pp 847–856 | Cite as

Morphological and functional diversity of first-order somatosensory neurons

  • Eder Ricardo de Moraes
  • Christopher Kushmerick
  • Lígia Araujo Naves
Review

Abstract

First-order somatosensory neurons transduce and convey information about the external or internal environment of the body to the central nervous system. They are pseudo unipolar neurons with cell bodies residing in one of several ganglia located near the central nervous system, with the short branch of the axon connecting to the spinal cord or the brain stem and the long branch extending towards the peripheral organ they innervate. Besides their sensory transducer and conductive role, somatosensory neurons also have trophic functions in the tissue they innervate and participate in local reflexes in the periphery. The cell bodies of these neurons are remarkably diverse in terms of size, molecular constitution, and electrophysiological properties. These parameters have provided criteria for classification that have proved useful to establish and study their functions. In this review, we discuss ways to measure and classify populations of neurons based on their size and action potential firing pattern. We also discuss attempts to relate the different populations to specific sensory modalities.

Keywords

Somatosensory neurons Phasic neurons Tonic neurons Neuronal size Firing pattern 

References

  1. Abdulla FA, Smith PA (2001) Axotomy- and autotomy-induced changes in Ca2+ and K+ channel currents of rat dorsal root ganglion neurons. J Neurophysiol 85(2):644–658PubMedGoogle Scholar
  2. Abdulla FA, Stebbing MJ, Smith PA (2001) Effects of substance P on excitability and ionic currents of normal and axotomized rat dorsal root ganglion neurons. Eur J Neurosci 13(3):545–552PubMedCrossRefGoogle Scholar
  3. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723CrossRefGoogle Scholar
  4. Andres KH (1961) Untersuchungen über den Feinbau von Spinalganglien. Zeitschrift für Zellforschung und Mikroskopische Anatomie 55:1–48PubMedCrossRefGoogle Scholar
  5. Angel RW, Alston W (1964) Spindle afferent conduction velocity. Neurology 14:674–676PubMedCrossRefGoogle Scholar
  6. Appelberg B, Bessou P, Laporte Y (1966) Action of static and dynamic fusimotor fibres on secondary endings of cat’s spindles. J Physiol 185(1):160–171PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bailey JJ, Schirrmacher R, Farrell K, Bernard-Gauthier V (2017) Tropomyosin receptor kinase inhibitors: an updated patent review for 2010–2016—Part I. Expert Opin Ther Pat 27:733–751PubMedCrossRefGoogle Scholar
  8. Belmonte C, Gallego R (1983) Membrane properties of cat sensory neurones with chemoreceptor and baroreceptor endings. J Physiol 342:603–614PubMedPubMedCentralCrossRefGoogle Scholar
  9. Benson CJ, Eckert SP, McCleskey EW (1999) Acid-evoked currents in cardiac sensory neurons: a possible mediator of myocardial ischemic sensation. Circ Res 84(8):921–928PubMedCrossRefGoogle Scholar
  10. Birdsong WT, Fierro L, Williams FG, Spelta V, Naves LA, Knowles M, Marsh-Haffner J, Adelman JP, Almers W, Elde RP, McCleskey EW (2010) Sensing muscle ischemia: coincident detection of acid and ATP via interplay of two ion channels. Neuron 68(4):739–749PubMedPubMedCentralCrossRefGoogle Scholar
  11. Blair NT, Bean BP (2003) Role of tetrodotoxin-resistant Na+ current slow inactivation in adaptation of action potential firing in small-diameter dorsal root ganglion neurons. J Neurosci 23(32):10338–10350PubMedGoogle Scholar
  12. Bretag AH, Stämpfli R (1975) Differences in action potentials and accommodation of sensory and motor myelinated nerve fibres as computed on the basis of voltage clamp data. Pflügers Arch 354(3):257–271PubMedCrossRefGoogle Scholar
  13. Brown DA, Passmore GM (2009) Neural KCNQ (Kv7) channels. Br J Pharmacol 156(8):1185–1195PubMedPubMedCentralCrossRefGoogle Scholar
  14. Cao XH, Byun HS, Chen SR, Cai YQ, Pan HL (2010) Reduction in voltage-gated K+ channel activity in primary sensory neurons in painful diabetic neuropathy: role of brain-derived neurotrophic factor. J Neurochem 114(5):1460–1475PubMedPubMedCentralGoogle Scholar
  15. Carlton SM (2014) Nociceptive primary afferents: they have a mind of their own. J Physiol 592(16):3403–3411PubMedPubMedCentralCrossRefGoogle Scholar
  16. Carr PA, Nagy JI (1993) Emerging relationships between cytochemical properties and sensory modality transmission in primary sensory neurons. Brain Res Bull 30(3–4):209–219PubMedCrossRefGoogle Scholar
  17. Carrasquillo Y, Nerbonne JM (2014) IA channels: diverse regulatory mechanisms. Neuroscientist 20(2):104–111PubMedCrossRefGoogle Scholar
  18. Cassell JF, Clark AL, McLachlan EM (1986) Characteristics of phasic and tonic sympathetic ganglion cells of the guinea-pig. J Physiol 372:457–483PubMedPubMedCentralCrossRefGoogle Scholar
  19. Catacuzzeno L, Fioretti B, Pietrobon D, Franciolini F (2008) The differential expression of low-threshold K+ currents generates distinct firing patterns in different subtypes of adult mouse trigeminal ganglion neurones. J Physiol 586(21):5101–5118PubMedPubMedCentralCrossRefGoogle Scholar
  20. Chen GG, Cole AE, MacDermott AB, Lange GD, Barker JL (1987) The influence of skeletal muscle on the electrical excitability of dorsal root ganglion neurons in culture. J Neurosci 7(8):2412–2422PubMedGoogle Scholar
  21. Clark SL (1926) Nissl granules of primary afferent neurones. J Comp Neurol 41:423–451CrossRefGoogle Scholar
  22. Cody FW, Lee RW, Taylor A (1972) A functional analysis of the components of the mesencephalic nucleus of the fifth nerve in the cat. J Physiol 226(1):249–261PubMedPubMedCentralCrossRefGoogle Scholar
  23. Connor JA, Stevens CF (1971) Voltage clamp studies of a transient outward membrane current in gastropod neural somata. J Physiol 213(1):21–30PubMedPubMedCentralCrossRefGoogle Scholar
  24. Connor M, Naves LA, McCleskey EW (2005) Contrasting phenotypes of putative proprioceptive and nociceptive trigeminal neurons innervating jaw muscle in rat. Mol Pain 1:31PubMedPubMedCentralCrossRefGoogle Scholar
  25. Cummins TR, Dib-Hajj SD, Herzog RI, Waxman SG (2005) Nav1.6 channels generate resurgent sodium currents in spinal sensory neurons. FEBS Lett 579(10):2166–2170PubMedCrossRefGoogle Scholar
  26. Cummins TR, Rush AM, Estacion M, Dib-Hajj SD, Waxman SG (2009) Voltage-clamp and current-clamp recordings from mammalian DRG neurons. Nat Protoc 4(8):1103–1112PubMedCrossRefGoogle Scholar
  27. Darian-Smith I, Johnson KO, LaMotte C, Shigenaga Y, Kenins P, Champness P (1979) Warm fibers innervating palmar and digital skin of the monkey: responses to thermal stimuli. J Neurophysiol 42(5):1297–1315PubMedGoogle Scholar
  28. Ditting T, Tiegs G, Rodionova K, Reeh PW, Neuhuber W, Freisinger W, Veelken R (2009) Do distinct populations of dorsal root ganglion neurons account for the sensory peptidergic innervation of the kidney? Am J Physiol Renal Physiol 297(5):F1427–F1434PubMedCrossRefGoogle Scholar
  29. Djouhri L (2016) Aδ-fiber low threshold mechanoreceptors innervating mammalian hairy skin: a review of their receptive, electrophysiological and cytochemical properties in relation to Aδ-fiber high threshold mechanoreceptors. Neurosci Biobehav Rev 61:225–238PubMedCrossRefGoogle Scholar
  30. Djouhri L, Lawson SN (2004) Aβ-fiber nociceptive primary afferent neurons: a review of incidence and properties in relation to other afferent A-fiber neurons in mammals. Brain Res Brain Res Rev 46(2):131–145PubMedCrossRefGoogle Scholar
  31. Djouhri L, Bleazard L, Lawson SN (1998) Association of somatic action potential shape with sensory receptive properties in guinea-pig dorsal root ganglion neurones. J Physiol 513(3):857–872PubMedPubMedCentralCrossRefGoogle Scholar
  32. Do MT, Bean BP (2004) Sodium currents in subthalamic nucleus neurons from Nav1.6-null mice. J Neurophysiol 92(2):726–733PubMedCrossRefGoogle Scholar
  33. Duran C, Thompson CH, Xiao Q, Hartzell HC (2010) Chloride channels: often enigmatic, rarely predictable. Annu Rev Physiol 72:95–121PubMedPubMedCentralCrossRefGoogle Scholar
  34. Dussor G, Zylka MJ, Anderson DJ, McCleskey EW (2008) Cutaneous sensory neurons expressing the Mrgprd receptor sense extracellular ATP and are putative nociceptors. J Neurophysiol 99(4):1581–1589PubMedPubMedCentralCrossRefGoogle Scholar
  35. Freisinger W, Schatz J, Ditting T, Lampert A, Heinlein S, Lale N, Schmieder R, Veelken R (2013) Sensory renal innervation: a kidney-specific firing activity due to a unique expression pattern of voltage-gated sodium channels? Am J Physiol Renal Physiol 304(5):F491–F497PubMedCrossRefGoogle Scholar
  36. Ganmor E, Katz Y, Lampl I (2010) Intensity-dependent adaptation of cortical and thalamic neurons is controlled by brainstem circuits of the sensory pathway. Neuron 66(2):273–286PubMedCrossRefGoogle Scholar
  37. Gee MD, Lynn B, Basile S, Pierau FK, Cotsell B (1999) The relationship between axonal spike shape and functional modality in cutaneous C-fibres in the pig and rat. Neuroscience 90(2):509–518PubMedCrossRefGoogle Scholar
  38. Glazebrook PA, Ramirez AN, Schild JH, Shieh CC, Doan T, Wible BA, Kunze DL (2002) Potassium channels Kv1.1, Kv1.2 and Kv1.6 influence excitability of rat visceral sensory neurons. J Physiol 541(2):467–482PubMedPubMedCentralCrossRefGoogle Scholar
  39. Greffrath W, Schwarz ST, Büsselberg D, Treede RD (2009) Heat-induced action potential discharges in nociceptive primary sensory neurons of rats. J Neurophysiol 102(1):424–436PubMedCrossRefGoogle Scholar
  40. Grieco TM, Malhotra JD, Chen C, Isom LL, Raman IM (2005) Open-channel block by the cytoplasmic tail of sodium channel β4 as a mechanism for resurgent sodium current. Neuron 45(2):233–244PubMedCrossRefGoogle Scholar
  41. Han C, Huang J, Waxman SG (2016) Sodium channel Nav1.8: emerging links to human disease. Neurology 86(5):473–483PubMedCrossRefGoogle Scholar
  42. Harper AA (1991) Similarities between some properties of the soma and sensory receptors of primary afferent neurones. Exp Physiol 76:369–377PubMedCrossRefGoogle Scholar
  43. Harvey AL (2001) Twenty years of dendrotoxins. Toxicon 39(1):15–26PubMedCrossRefGoogle Scholar
  44. Hatai S (1901) The finer structure of the spinal ganglion cells in the white rat. J Comp Neurol 11(1):1–24CrossRefGoogle Scholar
  45. Hodgkin AL, Huxley AF (1952) Movement of sodium and potassium ions during nervous activity. Cold Spring Harb Symp Quant Biol 17:43–52PubMedCrossRefGoogle Scholar
  46. Immke DC, McCleskey EW (2001) Lactate enhances the acid-sensing Na+ channel on ischemia-sensing neurons. Nat Neurosci 4(9):869–870PubMedCrossRefGoogle Scholar
  47. Kanda H, Clodfelder-Miller BJ, Gu JG, Ness TJ, DeBerry JJ (2016) Electrophysiological properties of lumbosacral primary afferent neurons innervating urothelial and non-urothelial layers of mouse urinary bladder. Brain Res 1648(Pt A):81–89PubMedPubMedCentralCrossRefGoogle Scholar
  48. Kitao Y, Robertson B, Kudo M, Grant G (1996) Neurogenesis of subpopulations of rat lumbar dorsal root ganglion neurons including neurons projecting to the dorsal column nuclei. J Comp Neurol 371(2):249–257PubMedCrossRefGoogle Scholar
  49. Knibestöl M (1973) Stimulus–response functions of rapidly adapting mechanoreceptors in the human glabrous skin area. J Physiol 232(3):427–452PubMedPubMedCentralCrossRefGoogle Scholar
  50. Koerber HR, Druzinsky RE, Mendell LM (1988) Properties of somata of spinal dorsal root ganglion cells differ according to peripheral receptor innervated. J Neurophysiol 60(5):1584–1596PubMedGoogle Scholar
  51. Kuo YL, Cheng JK, Hou WH, Chang YC, Du PH, Jian JJ, Rau RH, Yang JH, Lien CC, Tsaur ML (2017) K+ channel modulatory subunits KChIP and DPP participate in Kv4-mediated mechanical pain control. J Neurosci 37(16):4391–4404PubMedCrossRefGoogle Scholar
  52. Lang PM, Fleckenstein J, Passmore GM, Brown DA, Grafe P (2008) Retigabine reduces the excitability of unmyelinated peripheral human axons. Neuropharmacology 54(8):1271–1278PubMedCrossRefGoogle Scholar
  53. Lawson SN (1979) The postnatal development of large light and small dark neurons in mouse dorsal root ganglia: a statistical analysis of cell numbers and size. J Neurocytol 8:275–294PubMedCrossRefGoogle Scholar
  54. Lawson SN (2002) Phenotype and function of somatic primary afferent nociceptive neurones with C-, Aδ- or Aα/β-fibres. Exp Physiol 87(2):239–244PubMedCrossRefGoogle Scholar
  55. Lawson SN, Waddell PJ (1991) Soma neurofilament immunoreactivity is related to cell size and fibre conduction velocity in rat primary sensory neurons. J Physiol 435:41–63PubMedPubMedCentralCrossRefGoogle Scholar
  56. Lawson SN, Caddy KW, Biscoe TJ (1974) Development of rat dorsal root ganglion neurones. Studies of cell birthdays and changes in mean cell diameter. Cell Tissue Res 153(3):399–413PubMedCrossRefGoogle Scholar
  57. Lawson SN, Harper AA, Harper EI, Garson JA, Anderton BH (1984) A monoclonal antibody against neurofilament protein specifically labels a subpopulation of rat sensory neurones. J Comp Neurol 228(2):263–272PubMedCrossRefGoogle Scholar
  58. Le Pichon CE, Chesler AT (2014) The functional and anatomical dissection of somatosensory subpopulations using mouse genetics. Front Neuroanat 8:21PubMedPubMedCentralCrossRefGoogle Scholar
  59. Light AR, Hughen RW, Zhang J, Rainier J, Liu Z, Lee J (2008) Dorsal root ganglion neurons innervating skeletal muscle respond to physiological combinations of protons, ATP, and lactate mediated by ASIC, P2X, and TRPV1. J Neurophysiol 100(3):1184–1201PubMedCrossRefGoogle Scholar
  60. Liu Y, Ma Q (2011) Generation of somatic sensory neuron diversity and implications on sensory coding. Curr Opin Neurobiol 21(1):52–60PubMedCrossRefGoogle Scholar
  61. Loewenstein WR, Mendelson M (1965) Components of receptor adaptation in a Pacinian corpuscle. J Physiol 177:377–397PubMedPubMedCentralCrossRefGoogle Scholar
  62. Margas W, Ferron L, Nieto-Rostro M, Schwartz A, Dolphin AC (2016) Effect of knockout of α2δ-1 on action potentials in mouse sensory neurons. Philos Trans R Soc Lond Ser B Biol Sci 371(1700):1–11CrossRefGoogle Scholar
  63. Marmigère F, Ernfors P (2007) Specification and connectivity of neuronal subtypes in the sensory lineage. Nat Rev Neurosci 8(2):114–127PubMedCrossRefGoogle Scholar
  64. Mayer ML (1985) A calcium-activated chloride current generates the after-depolarization of rat sensory neurones in culture. J Physiol 364:217–239PubMedPubMedCentralCrossRefGoogle Scholar
  65. McCleskey EW, Gold MS (1999) Ion channels of nociception. Annu Rev Physiol 61:835–856PubMedCrossRefGoogle Scholar
  66. Moldovan M, Alvarez S, Romer Rosberg M, Krarup C (2013) Axonal voltage-gated ion channels as pharmacological targets for pain. Eur J Pharmacol 708(1–3):105–112PubMedCrossRefGoogle Scholar
  67. Molliver DC, Immke DC, Fierro L, Paré M, Rice FL, McCleskey EW (2005) ASIC3, an acid-sensing ion channel, is expressed in metaboreceptive sensory neurons. Mol Pain 1:35PubMedPubMedCentralCrossRefGoogle Scholar
  68. Moraes ER, Kalapothakis E, Naves LA, Kushmerick C (2011) Differential effects of Tityus bahiensis scorpion venom on tetrodotoxin-sensitive and tetrodotoxin-resistant sodium currents. Neurotox Res 19(1):102–114PubMedCrossRefGoogle Scholar
  69. Moraes ER, Kushmerick C, Naves LA (2014) Characteristics of dorsal root ganglia neurons sensitive to substance P. Mol Pain 10:73PubMedPubMedCentralCrossRefGoogle Scholar
  70. Moreira TH, Cruz JS, Weinreich D (2009) Angiotensin II increases excitability and inhibits a transient potassium current in vagal primary sensory neurons. Neuropeptides 43(3):193–199PubMedCrossRefGoogle Scholar
  71. Naves LA, McCleskey EW (2005) An acid-sensing ion channel that detects ischemic pain. Braz J Med Biol Res 38(11):1561–1569PubMedCrossRefGoogle Scholar
  72. Payne CE, Brown AR, Theile JW, Loucif AJ, Alexandrou AJ, Fuller MD, Mahoney JH, Antonio BM, Gerlach AC, Printzenhoff DM, Prime RL, Stockbridge G, Kirkup AJ, Bannon AW, England S, Chapman ML, Bagal S, Roeloffs R, Anand U, Anand P, Bungay PJ, Kemp M, Butt RP, Stevens EB (2015) A novel selective and orally bioavailable Nav1.8 channel blocker, PF-01247324, attenuates nociception and sensory neuron excitability. Br J Pharmacol 172(10):2654–2670PubMedPubMedCentralCrossRefGoogle Scholar
  73. Petruska JC, Napaporn J, Johnson RD, Gu JG, Cooper BY (2000) Subclassified acutely dissociated cells of rat DRG: histochemistry and patterns of capsaicin-, proton-, and ATP-activated currents. J Neurophysiol 84(5):2365–2379PubMedGoogle Scholar
  74. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes in C, 2nd edn. Cambridge University Press, New YorkGoogle Scholar
  75. Rasband MN, Park EW, Vanderah TW, Lai J, Porreca F, Trimmer JS (2001) Distinct potassium channels on pain-sensing neurons. Proc Natl Acad Sci U S A 98(23):13373–13378PubMedPubMedCentralCrossRefGoogle Scholar
  76. Ritter DM, Zemel BM, Lepore AC, Covarrubias M (2015) Kv3.4 channel function and dysfunction in nociceptors. Channels (Austin) 9(4):209–217CrossRefGoogle Scholar
  77. Rivera-Arconada I, Lopez-Garcia JA (2006) Retigabine-induced population primary afferent hyperpolarisation in vitro. Neuropharmacology 51(4):756–763PubMedCrossRefGoogle Scholar
  78. Rush AM, Cummins TR, Waxman SG (2007) Multiple sodium channels and their roles in electrogenesis within dorsal root ganglion neurons. J Physiol 579(1):1–14PubMedCrossRefGoogle Scholar
  79. Salzer I, Gantumur E, Yousuf A, Boehm S (2016) Control of sensory neuron excitability by serotonin involves 5HT2C receptors and Ca2+-activated chloride channels. Neuropharmacology 110(Pt A):277–286PubMedCrossRefGoogle Scholar
  80. Schild JH, Kunze DL (1997) Experimental and modeling study of Na+ current heterogeneity in rat nodose neurons and its impact on neuronal discharge. J Neurophysiol 78(6):3198–3209PubMedGoogle Scholar
  81. Scott SA (1987) The development of skin sensory innervation patterns. Trends Neurosci 10(11):468–473CrossRefGoogle Scholar
  82. Scott SA (1992) Sensory neurons: diversity, development, and plasticity, 1st edn. Oxford University Press, New YorkGoogle Scholar
  83. Sculptoreanu A, de Groat WC (2007) Neurokinins enhance excitability in capsaicin-responsive DRG neurons. Exp Neurol 205(1):92–100PubMedPubMedCentralCrossRefGoogle Scholar
  84. Sculptoreanu A, Artim DE, de Groat WC (2009) Neurokinins inhibit low threshold inactivating K+ currents in capsaicin responsive DRG neurons. Exp Neurol 219(2):562–573PubMedPubMedCentralCrossRefGoogle Scholar
  85. Sherrington CS (1920) The integrative action of the nervous system, 6th edn. Yale University Press, New HavenGoogle Scholar
  86. Silbert SC, Beacham DW, McCleskey EW (2003) Quantitative single-cell differences in μ-opioid receptor mRNA distinguish myelinated and unmyelinated nociceptors. J Neurosci 23(1):34–42PubMedGoogle Scholar
  87. Simms BA, Zamponi GW (2014) Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 82(1):24–45PubMedCrossRefGoogle Scholar
  88. Song Y, Li HM, Xie RG, Yue ZF, Song XJ, Hu SJ, Xing JL (2012) Evoked bursting in injured Aβ dorsal root ganglion neurons: a mechanism underlying tactile allodynia. Pain 153(3):657–665PubMedCrossRefGoogle Scholar
  89. Study RE, Kral MG (1996) Spontaneous action potential activity in isolated dorsal root ganglion neurons from rats with a painful neuropathy. Pain 65(2–3):235–242PubMedCrossRefGoogle Scholar
  90. Sugiura Y, Hosoya Y, Ito R, Kohno K (1988) Ultrastructural features of functionally identified primary afferent neurons with C (unmyelinated) fibers of the guinea pig: classification of dorsal root ganglion cell type with reference to sensory modality. J Comp Neurol 276(2):265–278PubMedCrossRefGoogle Scholar
  91. Sun W, Yang F, Wang Y, Fu H, Yang Y, Li CL, Wang XL, Lin Q, Chen J (2017) Contribution of large-sized primary sensory neuronal sensitization to mechanical allodynia by upregulation of hyperpolarization-activated cyclic nucleotide gated channels via cyclooxygenase 1 cascade. Neuropharmacology 113(Pt A):217–230PubMedCrossRefGoogle Scholar
  92. Takahashi R, Yoshizawa T, Yunoki T, Tyagi P, Naito S, de Groat WC, Yoshimura N (2013) Hyperexcitability of bladder afferent neurons associated with reduction of Kv1.4 α-subunit in rats with spinal cord injury. J Urol 190(6):2296–2304PubMedPubMedCentralCrossRefGoogle Scholar
  93. Tandrup T (2004) Unbiased estimates of number and size of rat dorsal root ganglion cells in studies of structure and cell survival. J Neurocytol 33(2):173–192PubMedCrossRefGoogle Scholar
  94. Tang M, Wu G, Wang Z, Yang N, Shi H, He Q, Zhu C, Yang Y, Yu G, Wang C, Yuan X, Liu Q, Guan Y, Dong X, Tang Z (2016) Voltage-gated potassium channels involved in regulation of physiological function in MrgprA3-specific itch neurons. Brain Res 1636:161–171PubMedCrossRefGoogle Scholar
  95. Viatchenko-Karpinski V, Gu JG (2016) Mechanical sensitivity and electrophysiological properties of acutely dissociated dorsal root ganglion neurons of rats. Neurosci Lett 634:70–75PubMedPubMedCentralCrossRefGoogle Scholar
  96. Vydyanathan A, Wu ZZ, Chen SR, Pan HL (2005) A-type voltage-gated K+ currents influence firing properties of isolectin B4-positive but not isolectin B4-negative primary sensory neurons. J Neurophysiol 93(6):3401–3409PubMedCrossRefGoogle Scholar
  97. Werner G, Mountcastle VB (1965) Neural activity in mechanoreceptive cutaneous afferents: stimulus-response relations, weber functions, and information transmission. J Neurophysiol 28:359–397PubMedGoogle Scholar
  98. Yagi J, Wenk HN, Naves LA, McCleskey EW (2006) Sustained currents through ASIC3 ion channels at the modest pH changes that occur during myocardial ischemia. Circ Res 99(5):501–509PubMedCrossRefGoogle Scholar
  99. Yu YQ, Chen XF, Yang Y, Yang F, Chen J (2014) Electrophysiological identification of tonic and phasic neurons in sensory dorsal root ganglion and their distinct implications in inflammatory pain. Physiol Res 63(6):793–799PubMedGoogle Scholar
  100. Yu H, Pan B, Weyer A, Wu HE, Meng J, Fischer G, Vilceanu D, Light AR, Stucky C, Rice FL, Hudmon A, Hogan Q (2015) CaMKII controls whether touch is painful. J Neurosci 35(42):14086–14102PubMedPubMedCentralCrossRefGoogle Scholar
  101. Yunoki T, Takimoto K, Kita K, Funahashi Y, Takahashi R, Matsuyoshi H, Naito S, Yoshimura N (2014) Differential contribution of Kv4-containing channels to A-type, voltage-gated potassium currents in somatic and visceral dorsal root ganglion neurons. J Neurophysiol 112(10):2492–2504PubMedPubMedCentralCrossRefGoogle Scholar
  102. Zhang FX, Liu XJ, Gong LQ, Yao JR, Li KC, Li ZY, Lin LB, Lu YJ, Xiao HS, Bao L, Zhang XH, Zhang X (2010) Inhibition of inflammatory pain by activating B-type natriuretic peptide signal pathway in nociceptive sensory neurons. J Neurosci 30(32):10927–10938PubMedCrossRefGoogle Scholar
  103. Zhao FY, Saito K, Yoshioka K, Guo JZ, Murakoshi T, Konishi S, Otsuka M (1995) Subtypes of tachykinin receptors on tonic and phasic neurones in coeliac ganglion of the guinea-pig. Br J Pharmacol 115(1):25–30PubMedPubMedCentralCrossRefGoogle Scholar
  104. Zhao X, Zhang Y, Qin W, Cao J, Zhang Y, Ni J, Sun Y, Jiang X, Tao J (2016) Serotonin type-1D receptor stimulation of A-type K+ channel decreases membrane excitability through the protein kinase A- and B-Raf-dependent p38 MAPK pathways in mouse trigeminal ganglion neurons. Cell Signal 28(8):979–988PubMedCrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Departamento de Fisiologia, Centro de Ciências Biológicas e da SaúdeUniversidade Federal de SergipeSão CristóvãoBrazil
  2. 2.Departamento de Fisiologia e Biofísica, Instituto de Ciências BiológicasUniversidade Federal de Minas GeraisBelo HorizonteBrazil

Personalised recommendations