Skip to main content
Log in

Septin structure and filament assembly

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Septins are able to polymerize into long apolar filaments and have long been considered to be a component of the cytoskeleton alongside intermediate filaments (which are also apolar in nature), microtubules and actin filaments (which are not). Their central guanosine triphosphate (GTP)-binding domain, which is essential for stabilizing the filament itself, is flanked by N- and C-terminal domains for which no direct structural information is yet available. In most cases, physiological filaments are built from a number of different septin monomers, and in the case of mammalian septins this is most commonly either three or four. Comprehending the structural basis for the spontaneous assembly of such filaments requires a deeper understanding of the interfaces between individual GTP-binding domains than is currently available. Nevertheless, in this review we will summarize the considerable progress which has been made over the course of the last 10 years. We will provide a brief description of each structure determined to date and comment on how it has added to the body of knowledge which is rapidly growing. Rather than simply repeat data which have already been described in the literature, as far as is possible we will try to take advantage of the full set of information now available (mostly derived from human septins) and draw the reader’s attention to some of the details of the structures themselves and the filaments they form which have not be commented on previously. An additional aim is to clarify some misconceptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Angelis D, Karasmanis EP, Bai X, Spiliotis ET (2014) In silico docking of forchlorfenuron (FCF) to septins suggests that FCF interferes with GTP binding. PLoS One 9(5):e96390. https://doi.org/10.1371/journal.pone.0096390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai X, Bowen JR, Knox TK, Zhou K, Pendziwiat M, Kuhlenbäumer G, Sindelar CV, Spiliotis ET (2013) Novel septin 9 repeat motifs altered in neuralgic amyotrophy bind and bundle microtubules. J Cell Biol 203:895–905

    Article  CAS  Google Scholar 

  • Bertin A, McMurray MA, Grob P, Park SS, Garcia G 3rd, Patanwala I, Ng HL, Alber T, Thorner J, Nogales E (2008) Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. Proc Natl Acad Sci USA 105:8274–8279. https://doi.org/10.1073/pnas.0803330105

    Article  CAS  PubMed  Google Scholar 

  • Bourne HR (1997) The arginine finger strikes again. Nature 389:673–674

    Article  CAS  Google Scholar 

  • Brausemann A, Gerhardt S, Schott AK, Einsle O, Große-Berkenbusch A, Johnsson N, Gronemeyer T (2016) Crystal structure of Cdc11, a septin subunit from Saccharomyces cerevisiae. J Struct Biol 193:157–161. https://doi.org/10.1016/j.jsb.2016.01.004

  • Bridges AA, Zhang H, Mehta SB, Occhipinti P, Tani T, Gladfelter AS (2014) Septin assemblies form by diffusion-driven annealing on membranes. Proc Natl Acad Sci USA 111(6):2146–2151. https://doi.org/10.1073/pnas.1314138111

    Article  CAS  PubMed  Google Scholar 

  • Bridges AA, Jentzsch MS, Oakes PW, Occhipinti P, Gladfelter AS (2016) Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton. J Cell Biol 213(1):23–32. https://doi.org/10.1083/jcb.201512029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Byers B, Goetsch L (1976) A highly ordered ring of membrane-associated filaments in budding yeast. J Cell Biol 69(3):717–721

    Article  CAS  Google Scholar 

  • Damalio JCP, Garcia W, Alves Macêdo JN, de Almeida MI, Andreu JM, Giraldo R, Garratt RC, Ulian Araújo AP (2012) Self assembly of human septin 2 into amyloid filaments. Biochimie 94:628–636

    Article  CAS  Google Scholar 

  • Fung KYY, Dai L, Trimble WS (2014) Cell and molecular biology of septins. Inl Rev Cell Mol Biol 310:289–339

  • Garcia W, de Araújo APU, Oliveira Neto M, Ballestero MRM, Polikarpov I, Tanaka M, Tanaka T, Garratt RC (2006) Dissection of a human septin: definition and characterization of distinct domains within human SEPT4. Biochemistry 45(46):13918–13931

    Article  CAS  Google Scholar 

  • Garcia W, Ulian de Araújo AP, Lara F, Foguel D, Tanaka M, Tanaka T, Garratt RC (2007) An intermediate in the thermal unforlding of the GTPase domain of human septin 4 (SEPT4/Bradeion-β) forms amyloid filaments in vitro. Biochemistry 46:11101–11109

    Article  CAS  Google Scholar 

  • Garcia G 3rd, Finnigan GC, Heasley LR, Sterling SM, Aggarwal A, Pearson CG, Nogales E, McMurray MA, Thorner J (2016) Assembly, molecular organization, and membrane-binding properties of development-specific septins. J Cell Biol 212:515–529. https://doi.org/10.1083/jcb.201511029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartwell LH (1971) Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res 69:265–276

    Article  CAS  Google Scholar 

  • Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV, Spiliotis ET, Nelson WJ (2010) A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329:436–439. https://doi.org/10.1126/science.1191054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YW, Surka MC, Reynaud D, Pace-Asciak C, Trimble WS (2006) GTP binding and hydrolysis kinetics of human septin 2. FEBS J 273:3248–3260

    Article  CAS  Google Scholar 

  • Kim MS, Froese CD, Estey MP, Trimble WS (2011) SEPT9 occupies the terminal positions in septin octamers and mediates polymerization-dependent functions in abscission. J Cell Biol 195:815–826. https://doi.org/10.1083/jcb.201106131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kinoshita M (2003) Assembly of mammalian septins. J Biochem 134:491–496

    Article  CAS  Google Scholar 

  • Kinoshita N, Kimura K, Matsumoto N, Watanabe M, Fukaya M, Ide C (2004) Mammalian septin Sept2 modulates the activity of GLAST, a glutamate transporter in astrocytes. Genes Cells 9:1–14

    Article  CAS  Google Scholar 

  • Lee KI, Im W, Pastor RW (2014) Langevin dynamics simulations of charged model phosphatidylinositol lipids in the presence of diffusion barriers: toward an atomic level understanding of corralling of PIP2 by protein fences in biological membranes. BMC Biophys 7:13. https://doi.org/10.1186/s13628-014-0013-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macara IG, Baldarelli R, Field CM, Glotzer M, Hayashi Y, Hsu SC, Kennedy MB, Kinoshita M, Longtine M, Low C, Maltais LJ, McKenzie L, Mitchison TJ, Nishikawa T, Noda M, Petty EM, Peifer M, Pringle JR, Robinson PJ, Roth D, Russell SE, Stuhlmann H, Tanaka M, Tanaka T, Trimble WS, Ware J, Zeleznik-Le NJ, Zieger B (2002) Mammalian septins nomenclature. Mol Biol Cell 13(12):4111–4113

    Article  CAS  Google Scholar 

  • Macedo JN, Valadares NF, Marques IA, Ferreira FM, Damalio JC, Pereira HM, Garratt RC, Araujo AP (2013) The structure and properties of septin 3: a possible missing link in septin filament formation. Biochem J 450:95–105. https://doi.org/10.1042/BJ20120851

    Article  CAS  PubMed  Google Scholar 

  • Marques IA, Valadares NF, Garcia W, Damalio JC, Macedo JN, de Araújo AP, Botello CA, Andreu JM, Garratt RC (2012) Septin C-terminal domain interactions: implications for filament stability and assembly. Cell Biochem Biophys 62:317–328. https://doi.org/10.1007/s12013-011-9307-0

    Article  CAS  Google Scholar 

  • McMurray M (2014) Lean forward: Genetic analysis of temperature-sensitive mutants unfolds the secrets of oligomeric protein complex assembly. Bioessays 36:836–846

    Article  CAS  Google Scholar 

  • McMurray MA (2016) Assays for genetic dissection of septin filament assembly in yeast, from de novo folding through polymerization. Methods Cell Biol 136:99–116. https://doi.org/10.1016/bs.mcb.2016.03.012

    Article  CAS  PubMed  Google Scholar 

  • Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JL, Subramaniam S (2016) Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165(7):1698–1707. https://doi.org/10.1016/j.cell.2016.05.040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostowy S, Cossart P (2012) Septins: the fourth component of the cytoskeleton. Nature Rev 13:183–194

    Article  CAS  Google Scholar 

  • Mostowy S, Bonazzi M, Hamon MA, Tham TN, Mallet A, Lelek M, Gouin E, Demangel C, Brosch R, Zimmer C, Sartori A, Konoshita M, Lecuit M, Cossart P (2010) Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 8:433–444

    Article  CAS  Google Scholar 

  • Nagata K, Asano T, Nozawa Y, Inagaki M (2004) Biochemical and c cell biological analyses of a mammalian septin complex, Sept7/9b/11. J Biol Chem 279:55895–55904

    Article  CAS  Google Scholar 

  • Nakahira M, Macedo JN, Seraphim TV, Cavalcante N, Souza TA, Damalio JC, Reyes LF, Assmann EM, Alboghetti MR, Garratt RC et al (2010) A draft of the human septin interactome. PLoS One 5:e13799

    Article  Google Scholar 

  • Neubauer K, Zeiger B (2017a) The mammalian septin interactome. Front Cell Dev Biol 5:3. https://doi.org/10.3389/fcell.2017.00003

  • Neubauer K, Zeiger B (2017b) The mammalian septin interactome. Front Cell Dev Biol 5:1–9

    Article  Google Scholar 

  • Pan F, Malmberg RL, Momany M (2007) Analysis of septins across kingdoms reveals orthology and new motifs. BMC Evol Biol 7:103

    Article  CAS  Google Scholar 

  • Pinto APA, Pereira HM, Zeraik AE, Ciol H, Ferreira FM, Brandão-Neto J, DeMarco R, Navarro MVAS, Risi C, Galkin VE, Garratt RC, Araujo APU (2017) Filaments and fingers: Novel structural aspects of the single septin from Chlamydomonas reinhardtii. J Biol Chem 292(26):10899–10911. https://doi.org/10.1074/jbc.M116.762229

  • Sadian Y, Gastogiannis C, Patasi C, Hofnagel O, Goody RS, Farkasovsky M, Rausner S (2013) The role of Cdc42 and Gic1 in the regulation of septin filament formation and dissociation. eLife 2:e01085

    Article  Google Scholar 

  • Sala FA, Valadares NF, Macedo JN, Borges JC, Garratt RC (2016) Heterotypic coiled-coil formation is essential for the correct assembly of the septin heterofilament. Biophys J 111(12):2608–2619. https://doi.org/10.1016/j.bpj.2016.10.032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandrock K, Bartsch I, Blaser S, Busse A, Busse E, Zieger B (2011) Characterization of human septin interactions. Biol Chem 392:751–761

    Article  CAS  Google Scholar 

  • Sellin ME, Sandblad L, Stenmark S, Gullberg M (2011) Deciphering the rules governing assembly order of mammalian septin complexes. Mol Biol Cell. 22:3152–3164. https://doi.org/10.1091/mbc.E11-03-0253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrão VH, Alessandro F, Caldas VE, Marçal RL, Pereira HD, Thiemann OH, Garratt RC (2011) Promiscuous interactions of human septins: the GTP binding domain of SEPT7 forms filaments within the crystal. FEBS Lett 585:3868–3873. https://doi.org/10.1016/j.febslet.2011.10.043

    Article  CAS  PubMed  Google Scholar 

  • Sirajuddin M, Farkasovsky M, Hauer F, Kühlmann D, Macara IG, Weyand M, Stark H, Wittinghofer A (2007) Structural insight into filament formation by mammalian septins. Nature 449:311–315

    Article  CAS  Google Scholar 

  • Sirajuddin M, Farkasovsky M, Zent E, Wittinghofer A (2009) GTP-induced conformational changes in septins and implications for function. Proc Natl Acad Sci USA. 106:16592–16597. https://doi.org/10.1073/pnas.0902858106

    Article  PubMed  Google Scholar 

  • Smith C, Dolat L, Angelis D, Forgacs E, Spiliotis ET, Galkin VE (2015) Septin 9 exhibits polymorphic binding to F-actin and inhibits myosin and cofilin activity. J Mol Biol 427:3273–3284

    Article  CAS  Google Scholar 

  • Souza TA, Barbosa JA (2010) Cloning, overexpression, purification and preliminary characterization of human septin 8. Protein J 29:328–335

    Article  CAS  Google Scholar 

  • Surka MC, Tsang CW, Trimble WS (2002) The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol Biol Cell 13:3532–3545

    Article  CAS  Google Scholar 

  • Valadares NF, Garratt RC (2016) Septin crystallization for structural analysis. Methods Cell Biol 136:321–338. https://doi.org/10.1016/bs.mcb.2016.03.017

    Article  CAS  PubMed  Google Scholar 

  • Weems A, McMurray M (2017) The step-wise pathway of septin hetero-octamer assembly in budding yeast. Elife 25:6. https://doi.org/10.7554/eLife.23689

    Article  Google Scholar 

  • Weirich CS, Erzberger JP, Barral Y (2008) The septin family of GTPases: achitecture and dynamics. Nat Rev 9:478–489

    Article  CAS  Google Scholar 

  • Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16:382–387

    Article  CAS  Google Scholar 

  • Zent E, Wittinghofer A (2014) Human septin isoforms and the GDP-GTP cycle. Biol Chem 395(2):169–180. https://doi.org/10.1515/hsz-2013-0268

    Article  CAS  PubMed  Google Scholar 

  • Zent E, Vetter I, Wittinghofer A (2011) Structural and biochemical properties of Sept7, a unique septin required for filament formation. Biol Chem 392:791–797. https://doi.org/10.1515/BC.2011.082

    Article  CAS  PubMed  Google Scholar 

  • Zeraik AE, Pereira HM, Santos YV, Brandão-Neto J, Spoerner M, Santos MS, Colnago LA, Garratt RC, Araújo AP, DeMarco R (2014) Crystal structure of a Schistosoma mansoni septin reveals the phenomenon of strand slippage in septins dependent on the nature of the bound nucleotide. J Biol Chem 289:7799–7811. https://doi.org/10.1074/jbc.M113.525352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeraik AE, Staykova M, Fontes MG, Nemuraitė I, Quinlan R, Araújo AP, DeMarco R (2016) Biophysical dissection of schistosome septins: Insights into oligomerization and membrane binding. Biochimie 131:96–105. https://doi.org/10.1016/j.biochi.2016.09.014

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Kong C, Xie H, McPherson PS, Grinstein S, Trimble WS (1999a) Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Curr Biol 9:1458–1467

    Article  CAS  Google Scholar 

  • Zhang B, Zhang Y, Collins CC, Johnson DI, Zheng Y (1999b) A built-in arginine finger triggers the self-stimulatory GTPase-activating activity of rho family GTPases. J. Biol Chem 274:2609–2612

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge the financial support of the Brazilian funding agencies CNPq, FAPESP and FAPDF. We would also like to specifically mention the dedication of students and post-docs over the last 10 years (too many to mention by name, but they know who they are) who have contributed significantly to the structural biology of septins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Charles Garratt.

Ethics declarations

Conflicts of interest

Napoleão Fonseca Valadares declares that he has no conflicts of interest. Humberto d´Muniz Pereira declares that he has no conflicts of interest. Ana Paula Ulian de Araujo declares that she has no conflicts of interest. Richard Charles Garratt declares that he has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by the author.

Additional information

This article is part of a Special Issue on ‘Latin America’ edited by Pietro Ciancaglini and Rosangela Itri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Valadares, N.F., d’ Muniz Pereira, H., Ulian Araujo, A.P. et al. Septin structure and filament assembly. Biophys Rev 9, 481–500 (2017). https://doi.org/10.1007/s12551-017-0320-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0320-4

Keywords

Navigation