Septin structure and filament assembly

  • Napoleão Fonseca Valadares
  • Humberto d’ Muniz Pereira
  • Ana Paula Ulian Araujo
  • Richard Charles Garratt
Review

Abstract

Septins are able to polymerize into long apolar filaments and have long been considered to be a component of the cytoskeleton alongside intermediate filaments (which are also apolar in nature), microtubules and actin filaments (which are not). Their central guanosine triphosphate (GTP)-binding domain, which is essential for stabilizing the filament itself, is flanked by N- and C-terminal domains for which no direct structural information is yet available. In most cases, physiological filaments are built from a number of different septin monomers, and in the case of mammalian septins this is most commonly either three or four. Comprehending the structural basis for the spontaneous assembly of such filaments requires a deeper understanding of the interfaces between individual GTP-binding domains than is currently available. Nevertheless, in this review we will summarize the considerable progress which has been made over the course of the last 10 years. We will provide a brief description of each structure determined to date and comment on how it has added to the body of knowledge which is rapidly growing. Rather than simply repeat data which have already been described in the literature, as far as is possible we will try to take advantage of the full set of information now available (mostly derived from human septins) and draw the reader’s attention to some of the details of the structures themselves and the filaments they form which have not be commented on previously. An additional aim is to clarify some misconceptions.

Keywords

Septins Filament assembly GTP-binding domain N- and C-terminal domains Interfaces Crystal structures 

References

  1. Angelis D, Karasmanis EP, Bai X, Spiliotis ET (2014) In silico docking of forchlorfenuron (FCF) to septins suggests that FCF interferes with GTP binding. PLoS One 9(5):e96390. https://doi.org/10.1371/journal.pone.0096390 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bai X, Bowen JR, Knox TK, Zhou K, Pendziwiat M, Kuhlenbäumer G, Sindelar CV, Spiliotis ET (2013) Novel septin 9 repeat motifs altered in neuralgic amyotrophy bind and bundle microtubules. J Cell Biol 203:895–905CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bertin A, McMurray MA, Grob P, Park SS, Garcia G 3rd, Patanwala I, Ng HL, Alber T, Thorner J, Nogales E (2008) Saccharomyces cerevisiae septins: supramolecular organization of heterooligomers and the mechanism of filament assembly. Proc Natl Acad Sci USA 105:8274–8279. https://doi.org/10.1073/pnas.0803330105 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bourne HR (1997) The arginine finger strikes again. Nature 389:673–674CrossRefPubMedGoogle Scholar
  5. Brausemann A, Gerhardt S, Schott AK, Einsle O, Große-Berkenbusch A, Johnsson N, Gronemeyer T (2016) Crystal structure of Cdc11, a septin subunit from Saccharomyces cerevisiae. J Struct Biol 193:157–161. https://doi.org/10.1016/j.jsb.2016.01.004
  6. Bridges AA, Zhang H, Mehta SB, Occhipinti P, Tani T, Gladfelter AS (2014) Septin assemblies form by diffusion-driven annealing on membranes. Proc Natl Acad Sci USA 111(6):2146–2151. https://doi.org/10.1073/pnas.1314138111 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Bridges AA, Jentzsch MS, Oakes PW, Occhipinti P, Gladfelter AS (2016) Micron-scale plasma membrane curvature is recognized by the septin cytoskeleton. J Cell Biol 213(1):23–32. https://doi.org/10.1083/jcb.201512029 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Byers B, Goetsch L (1976) A highly ordered ring of membrane-associated filaments in budding yeast. J Cell Biol 69(3):717–721CrossRefPubMedGoogle Scholar
  9. Damalio JCP, Garcia W, Alves Macêdo JN, de Almeida MI, Andreu JM, Giraldo R, Garratt RC, Ulian Araújo AP (2012) Self assembly of human septin 2 into amyloid filaments. Biochimie 94:628–636CrossRefGoogle Scholar
  10. Fung KYY, Dai L, Trimble WS (2014) Cell and molecular biology of septins. Inl Rev Cell Mol Biol 310:289–339Google Scholar
  11. Garcia W, de Araújo APU, Oliveira Neto M, Ballestero MRM, Polikarpov I, Tanaka M, Tanaka T, Garratt RC (2006) Dissection of a human septin: definition and characterization of distinct domains within human SEPT4. Biochemistry 45(46):13918–13931CrossRefPubMedGoogle Scholar
  12. Garcia W, Ulian de Araújo AP, Lara F, Foguel D, Tanaka M, Tanaka T, Garratt RC (2007) An intermediate in the thermal unforlding of the GTPase domain of human septin 4 (SEPT4/Bradeion-β) forms amyloid filaments in vitro. Biochemistry 46:11101–11109CrossRefPubMedGoogle Scholar
  13. Garcia G 3rd, Finnigan GC, Heasley LR, Sterling SM, Aggarwal A, Pearson CG, Nogales E, McMurray MA, Thorner J (2016) Assembly, molecular organization, and membrane-binding properties of development-specific septins. J Cell Biol 212:515–529. https://doi.org/10.1083/jcb.201511029 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hartwell LH (1971) Genetic control of the cell division cycle in yeast. IV. Genes controlling bud emergence and cytokinesis. Exp Cell Res 69:265–276CrossRefPubMedGoogle Scholar
  15. Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV, Spiliotis ET, Nelson WJ (2010) A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science 329:436–439. https://doi.org/10.1126/science.1191054 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Huang YW, Surka MC, Reynaud D, Pace-Asciak C, Trimble WS (2006) GTP binding and hydrolysis kinetics of human septin 2. FEBS J 273:3248–3260CrossRefPubMedGoogle Scholar
  17. Kim MS, Froese CD, Estey MP, Trimble WS (2011) SEPT9 occupies the terminal positions in septin octamers and mediates polymerization-dependent functions in abscission. J Cell Biol 195:815–826. https://doi.org/10.1083/jcb.201106131 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kinoshita M (2003) Assembly of mammalian septins. J Biochem 134:491–496CrossRefPubMedGoogle Scholar
  19. Kinoshita N, Kimura K, Matsumoto N, Watanabe M, Fukaya M, Ide C (2004) Mammalian septin Sept2 modulates the activity of GLAST, a glutamate transporter in astrocytes. Genes Cells 9:1–14CrossRefPubMedGoogle Scholar
  20. Lee KI, Im W, Pastor RW (2014) Langevin dynamics simulations of charged model phosphatidylinositol lipids in the presence of diffusion barriers: toward an atomic level understanding of corralling of PIP2 by protein fences in biological membranes. BMC Biophys 7:13. https://doi.org/10.1186/s13628-014-0013-3 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Macara IG, Baldarelli R, Field CM, Glotzer M, Hayashi Y, Hsu SC, Kennedy MB, Kinoshita M, Longtine M, Low C, Maltais LJ, McKenzie L, Mitchison TJ, Nishikawa T, Noda M, Petty EM, Peifer M, Pringle JR, Robinson PJ, Roth D, Russell SE, Stuhlmann H, Tanaka M, Tanaka T, Trimble WS, Ware J, Zeleznik-Le NJ, Zieger B (2002) Mammalian septins nomenclature. Mol Biol Cell 13(12):4111–4113CrossRefPubMedPubMedCentralGoogle Scholar
  22. Macedo JN, Valadares NF, Marques IA, Ferreira FM, Damalio JC, Pereira HM, Garratt RC, Araujo AP (2013) The structure and properties of septin 3: a possible missing link in septin filament formation. Biochem J 450:95–105. https://doi.org/10.1042/BJ20120851 CrossRefPubMedGoogle Scholar
  23. Marques IA, Valadares NF, Garcia W, Damalio JC, Macedo JN, de Araújo AP, Botello CA, Andreu JM, Garratt RC (2012) Septin C-terminal domain interactions: implications for filament stability and assembly. Cell Biochem Biophys 62:317–328. https://doi.org/10.1007/s12013-011-9307-0 CrossRefGoogle Scholar
  24. McMurray M (2014) Lean forward: Genetic analysis of temperature-sensitive mutants unfolds the secrets of oligomeric protein complex assembly. Bioessays 36:836–846CrossRefPubMedPubMedCentralGoogle Scholar
  25. McMurray MA (2016) Assays for genetic dissection of septin filament assembly in yeast, from de novo folding through polymerization. Methods Cell Biol 136:99–116. https://doi.org/10.1016/bs.mcb.2016.03.012 CrossRefPubMedGoogle Scholar
  26. Merk A, Bartesaghi A, Banerjee S, Falconieri V, Rao P, Davis MI, Pragani R, Boxer MB, Earl LA, Milne JL, Subramaniam S (2016) Breaking cryo-EM resolution barriers to facilitate drug discovery. Cell 165(7):1698–1707. https://doi.org/10.1016/j.cell.2016.05.040 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Mostowy S, Cossart P (2012) Septins: the fourth component of the cytoskeleton. Nature Rev 13:183–194Google Scholar
  28. Mostowy S, Bonazzi M, Hamon MA, Tham TN, Mallet A, Lelek M, Gouin E, Demangel C, Brosch R, Zimmer C, Sartori A, Konoshita M, Lecuit M, Cossart P (2010) Entrapment of intracytosolic bacteria by septin cage-like structures. Cell Host Microbe 8:433–444CrossRefPubMedGoogle Scholar
  29. Nagata K, Asano T, Nozawa Y, Inagaki M (2004) Biochemical and c cell biological analyses of a mammalian septin complex, Sept7/9b/11. J Biol Chem 279:55895–55904CrossRefPubMedGoogle Scholar
  30. Nakahira M, Macedo JN, Seraphim TV, Cavalcante N, Souza TA, Damalio JC, Reyes LF, Assmann EM, Alboghetti MR, Garratt RC et al (2010) A draft of the human septin interactome. PLoS One 5:e13799CrossRefPubMedPubMedCentralGoogle Scholar
  31. Neubauer K, Zeiger B (2017a) The mammalian septin interactome. Front Cell Dev Biol 5:3. https://doi.org/10.3389/fcell.2017.00003
  32. Neubauer K, Zeiger B (2017b) The mammalian septin interactome. Front Cell Dev Biol 5:1–9CrossRefGoogle Scholar
  33. Pan F, Malmberg RL, Momany M (2007) Analysis of septins across kingdoms reveals orthology and new motifs. BMC Evol Biol 7:103CrossRefPubMedPubMedCentralGoogle Scholar
  34. Pinto APA, Pereira HM, Zeraik AE, Ciol H, Ferreira FM, Brandão-Neto J, DeMarco R, Navarro MVAS, Risi C, Galkin VE, Garratt RC, Araujo APU (2017) Filaments and fingers: Novel structural aspects of the single septin from Chlamydomonas reinhardtii. J Biol Chem 292(26):10899–10911. https://doi.org/10.1074/jbc.M116.762229
  35. Sadian Y, Gastogiannis C, Patasi C, Hofnagel O, Goody RS, Farkasovsky M, Rausner S (2013) The role of Cdc42 and Gic1 in the regulation of septin filament formation and dissociation. eLife 2:e01085CrossRefPubMedPubMedCentralGoogle Scholar
  36. Sala FA, Valadares NF, Macedo JN, Borges JC, Garratt RC (2016) Heterotypic coiled-coil formation is essential for the correct assembly of the septin heterofilament. Biophys J 111(12):2608–2619. https://doi.org/10.1016/j.bpj.2016.10.032 CrossRefPubMedGoogle Scholar
  37. Sandrock K, Bartsch I, Blaser S, Busse A, Busse E, Zieger B (2011) Characterization of human septin interactions. Biol Chem 392:751–761CrossRefPubMedGoogle Scholar
  38. Sellin ME, Sandblad L, Stenmark S, Gullberg M (2011) Deciphering the rules governing assembly order of mammalian septin complexes. Mol Biol Cell. 22:3152–3164. https://doi.org/10.1091/mbc.E11-03-0253 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Serrão VH, Alessandro F, Caldas VE, Marçal RL, Pereira HD, Thiemann OH, Garratt RC (2011) Promiscuous interactions of human septins: the GTP binding domain of SEPT7 forms filaments within the crystal. FEBS Lett 585:3868–3873. https://doi.org/10.1016/j.febslet.2011.10.043 CrossRefPubMedGoogle Scholar
  40. Sirajuddin M, Farkasovsky M, Hauer F, Kühlmann D, Macara IG, Weyand M, Stark H, Wittinghofer A (2007) Structural insight into filament formation by mammalian septins. Nature 449:311–315CrossRefPubMedGoogle Scholar
  41. Sirajuddin M, Farkasovsky M, Zent E, Wittinghofer A (2009) GTP-induced conformational changes in septins and implications for function. Proc Natl Acad Sci USA. 106:16592–16597. https://doi.org/10.1073/pnas.0902858106 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Smith C, Dolat L, Angelis D, Forgacs E, Spiliotis ET, Galkin VE (2015) Septin 9 exhibits polymorphic binding to F-actin and inhibits myosin and cofilin activity. J Mol Biol 427:3273–3284CrossRefPubMedPubMedCentralGoogle Scholar
  43. Souza TA, Barbosa JA (2010) Cloning, overexpression, purification and preliminary characterization of human septin 8. Protein J 29:328–335CrossRefPubMedGoogle Scholar
  44. Surka MC, Tsang CW, Trimble WS (2002) The mammalian septin MSF localizes with microtubules and is required for completion of cytokinesis. Mol Biol Cell 13:3532–3545CrossRefPubMedPubMedCentralGoogle Scholar
  45. Valadares NF, Garratt RC (2016) Septin crystallization for structural analysis. Methods Cell Biol 136:321–338. https://doi.org/10.1016/bs.mcb.2016.03.017 CrossRefPubMedGoogle Scholar
  46. Weems A, McMurray M (2017) The step-wise pathway of septin hetero-octamer assembly in budding yeast. Elife 25:6. https://doi.org/10.7554/eLife.23689 Google Scholar
  47. Weirich CS, Erzberger JP, Barral Y (2008) The septin family of GTPases: achitecture and dynamics. Nat Rev 9:478–489CrossRefGoogle Scholar
  48. Wittinghofer A, Pai EF (1991) The structure of Ras protein: a model for a universal molecular switch. Trends Biochem Sci 16:382–387CrossRefPubMedGoogle Scholar
  49. Zent E, Wittinghofer A (2014) Human septin isoforms and the GDP-GTP cycle. Biol Chem 395(2):169–180. https://doi.org/10.1515/hsz-2013-0268 CrossRefPubMedGoogle Scholar
  50. Zent E, Vetter I, Wittinghofer A (2011) Structural and biochemical properties of Sept7, a unique septin required for filament formation. Biol Chem 392:791–797. https://doi.org/10.1515/BC.2011.082 CrossRefPubMedGoogle Scholar
  51. Zeraik AE, Pereira HM, Santos YV, Brandão-Neto J, Spoerner M, Santos MS, Colnago LA, Garratt RC, Araújo AP, DeMarco R (2014) Crystal structure of a Schistosoma mansoni septin reveals the phenomenon of strand slippage in septins dependent on the nature of the bound nucleotide. J Biol Chem 289:7799–7811. https://doi.org/10.1074/jbc.M113.525352 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Zeraik AE, Staykova M, Fontes MG, Nemuraitė I, Quinlan R, Araújo AP, DeMarco R (2016) Biophysical dissection of schistosome septins: Insights into oligomerization and membrane binding. Biochimie 131:96–105. https://doi.org/10.1016/j.biochi.2016.09.014 CrossRefPubMedGoogle Scholar
  53. Zhang J, Kong C, Xie H, McPherson PS, Grinstein S, Trimble WS (1999a) Phosphatidylinositol polyphosphate binding to the mammalian septin H5 is modulated by GTP. Curr Biol 9:1458–1467CrossRefPubMedGoogle Scholar
  54. Zhang B, Zhang Y, Collins CC, Johnson DI, Zheng Y (1999b) A built-in arginine finger triggers the self-stimulatory GTPase-activating activity of rho family GTPases. J. Biol Chem 274:2609–2612CrossRefPubMedGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Napoleão Fonseca Valadares
    • 1
  • Humberto d’ Muniz Pereira
    • 2
  • Ana Paula Ulian Araujo
    • 2
  • Richard Charles Garratt
    • 2
  1. 1.Departamento de Biologia CelularUniversidade de BrasíliaBrasíliaBrazil
  2. 2.Instituto de Física de São CarlosUniversidade de São PauloSão CarlosBrazil

Personalised recommendations