Biophysical Reviews

, Volume 9, Issue 5, pp 501–515 | Cite as

Lessons learned from protein aggregation: toward technological and biomedical applications

  • César L. Avila
  • Silvina Chaves
  • Sergio B. Socias
  • Esteban Vera-Pingitore
  • Florencia González-Lizárraga
  • Cecilia Vera
  • Diego Ploper
  • Rosana Chehín
Review

Abstract

The close relationship between protein aggregation and neurodegenerative diseases has been the driving force behind the renewed interest in a field where biophysics, neurobiology and nanotechnology converge in the study of the aggregate state. On one hand, knowledge of the molecular principles that govern the processes of protein aggregation has a direct impact on the design of new drugs for high-incidence pathologies that currently can only be treated palliatively. On the other hand, exploiting the benefits of protein aggregation in the design of new nanomaterials could have a strong impact on biotechnology. Here we review the contributions of our research group on novel neuroprotective strategies developed using a purely biophysical approach. First, we examine how doxycycline, a well-known and innocuous antibiotic, can reshape α-synuclein oligomers into non-toxic high-molecular-weight species with decreased ability to destabilize biological membranes, affect cell viability and form additional toxic species. This mechanism can be exploited to diminish the toxicity of α-synuclein oligomers in Parkinson’s disease. Second, we discuss a novel function in proteostasis for extracellular glyceraldehyde 3-phosphate dehydrogenase (GAPDH) in combination with a specific glycosaminoglycan (GAG) present in the extracellular matrix. GAPDH, by changing its quaternary structure from a tetramer to protofibrillar assembly, can kidnap toxic species of α-synuclein, and thereby interfere with the spreading of the disease. Finally, we review a brighter side of protein aggregation, that of exploiting the physicochemical advantages of amyloid aggregates as nanomaterials. For this, we designed a new generation of insoluble biocatalysts based on the binding of photo-immobilized enzymes onto hybrid protein:GAG amyloid nanofibrils. These new nanomaterials can be easily functionalized by attaching different enzymes through dityrosine covalent bonds.

Keywords

Amyloid Amyloid functionalization Alzheimer’s disease Parkinson’s disease Protein aggregation Cross-beta structure Glycosaminoglycan 

References

  1. Aguzzi A, O'Connor T (2010) Protein aggregation diseases: pathogenicity and therapeutic perspectives. Nat Rev Drug Discov 9:237–248. https://doi.org/10.1038/nrd3050 PubMedCrossRefGoogle Scholar
  2. Allen M, Cox C, Belbin O, Ma L, Bisceglio GD, Wilcox SL, Howell CC et al (2012) Association and heterogeneity at the GAPDH locus in Alzheimer's disease. Neurobiol Aging 33(203):e225–e233. https://doi.org/10.1016/j.neurobiolaging.2010.08.002 Google Scholar
  3. An B, Wang X, Cui M, Gui X, Mao X, Liu Y, Li K et al (2017) Diverse supramolecular nanofiber networks assembled by functional low-complexity domains. ACS Nano. https://doi.org/10.1021/acsnano.7b02298
  4. Anderson JP, Walker DE, Goldstein JM, de Laat R, Banducci K, Caccavello RJ, Barbour R et al (2006) Phosphorylation of ser-129 is the dominant pathological modification of alpha-synuclein in familial and sporadic Lewy body disease. J Biol Chem 281:29739–29752. https://doi.org/10.1074/jbc.M600933200 PubMedCrossRefGoogle Scholar
  5. Arrondo JL, Castresana J, Valpuesta JM, Goni FM (1994) Structure and thermal denaturation of crystalline and noncrystalline cytochrome oxidase as studied by infrared spectroscopy. Biochemistry 33:11650–11655PubMedCrossRefGoogle Scholar
  6. Avila CL, Torres-Bugeau CM, Barbosa LR, Sales EM, Ouidja MO, Socias SB, Celej MS et al (2014) Structural characterization of heparin-induced glyceraldehyde-3-phosphate dehydrogenase protofibrils preventing alpha-synuclein oligomeric species toxicity. J Biol Chem 289:13838–13850. https://doi.org/10.1074/jbc.M113.544288 PubMedPubMedCentralCrossRefGoogle Scholar
  7. Baker KR, Rice L (2012) The amyloidoses: clinical features, diagnosis and treatment. Methodist Debakey Cardiovasc J 8:3–7PubMedPubMedCentralCrossRefGoogle Scholar
  8. Bennett MC (2005) The role of alpha-synuclein in neurodegenerative diseases. Pharmacol Ther 105:311–331. https://doi.org/10.1016/j.pharmthera.2004.10.010 PubMedCrossRefGoogle Scholar
  9. Biancalana M, Koide S (2010) Molecular mechanism of thioflavin-T binding to amyloid fibrils. Biochim Biophys Acta 1804:1405–1412. https://doi.org/10.1016/j.bbapap.2010.04.001
  10. Booth DR, Sunde M, Bellotti V, Robinson CV, Hutchinson WL, Fraser PE, Hawkins PN et al (1997) Instability, unfolding and aggregation of human lysozyme variants underlying amyloid fibrillogenesis. Nature 385:787–793. https://doi.org/10.1038/385787a0 PubMedCrossRefGoogle Scholar
  11. Brady D, Jordaan J (2009) Advances in enzyme immobilisation. Biotechnol Lett 31:1639–1650. https://doi.org/10.1007/s10529-009-0076-4 PubMedCrossRefGoogle Scholar
  12. Braido F, Scichilone N, Lavorini F, Usmani OS, Dubuske L, Boulet LP, Mosges R et al (2016) Manifesto on small airway involvement and management in asthma and chronic obstructive pulmonary disease: an interasma (global asthma association - GAA) and world allergy organization (WAO) document endorsed by allergic rhinitis and its impact on asthma (ARIA) and global allergy and asthma European network (GA2LEN). World Allergy Organ J 9:37. https://doi.org/10.1186/s40413-016-0123-2 PubMedPubMedCentralCrossRefGoogle Scholar
  13. Brena B, Gonzalez-Pombo P, Batista-Viera F (2013) Immobilization of enzymes: a literature survey. Methods Mol Biol 1051:15–31. https://doi.org/10.1007/978-1-62703-550-7_2 PubMedCrossRefGoogle Scholar
  14. Burke JR, Enghild JJ, Martin ME, Jou YS, Myers RM, Roses AD, Vance JM, Strittmatter WJ (1996) Huntingtin and DRPLA proteins selectively interact with the enzyme GAPDH. Nat Med 2:347–350PubMedCrossRefGoogle Scholar
  15. Carlile GW, Chalmers-Redman RM, Tatton NA, Pong A, Borden KE, Tatton WG (2000) Reduced apoptosis after nerve growth factor and serum withdrawal: conversion of tetrameric glyceraldehyde-3-phosphate dehydrogenase to a dimer. Mol Pharmacol 57:2–12PubMedGoogle Scholar
  16. Carrotta R, Bauer R, Waninge R, Rischel C (2001) Conformational characterization of oligomeric intermediates and aggregates in beta-lactoglobulin heat aggregation. Protein Sci 10:1312–1318. https://doi.org/10.1110/ps.42501 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Castillo GM, Ngo C, Cummings J, Wight TN, Snow AD (1997) Perlecan binds to the beta-amyloid proteins (a beta) of Alzheimer's disease, accelerates a beta fibril formation, and maintains a beta fibril stability. J Neurochem 69:2452–2465PubMedCrossRefGoogle Scholar
  18. Celej MS, Sarroukh R, Goormaghtigh E, Fidelio GD, Ruysschaert JM, Raussens V (2012) Toxic prefibrillar alpha-synuclein amyloid oligomers adopt a distinctive antiparallel beta-sheet structure. Biochem J 443:719–726. https://doi.org/10.1042/BJ20111924 PubMedCrossRefGoogle Scholar
  19. Chapman MR, Robinson LS, Pinkner JS, Roth R, Heuser J, Hammar M, Normark S, Hultgren SJ (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851–855. https://doi.org/10.1126/science.1067484
  20. Chauhan AS, Kumar M, Chaudhary S, Patidar A, Dhiman A, Sheokand N, Malhotra H, Raje CI, Raje M (2017) Moonlighting glycolytic protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH): an evolutionarily conserved plasminogen receptor on mammalian cells. FASEB J 31:2638–2648. https://doi.org/10.1096/fj.201600982R PubMedCrossRefGoogle Scholar
  21. Chaves S, Pera LM, Avila CL, Romero CM, Baigori M, Moran Vieyra FE, Borsarelli CD, Chehin RN (2016) Towards efficient biocatalysts: photo-immobilization of a lipase on novel lysozyme amyloid-like nanofibrils. RSC Adv 6:8528–8538. https://doi.org/10.1039/C5RA19590J CrossRefGoogle Scholar
  22. Chen YH, He RQ, Liu Y, Liu Y, Xue ZG (2000) Effect of human neuronal tau on denaturation and reactivation of rabbit muscle D-glyceraldehyde-3-phosphate dehydrogenase. Biochem J 351:233–240Google Scholar
  23. Cheng R, Chan WW-S, Barreto JRA, Convey EM, Smith RG (1989) The synergistic effects of His-D-Trp-Ala-Trp-D-Phe-Lys-NH2 on growth hormone (GH)-releasing factor-stimulated GH release and intracellular adenosine 3′, 5′-monophosphate accumulation in rat primary pituitary cell culture. Endocrinology 124:2791–2798Google Scholar
  24. Chiti F, Dobson CM (2009) Amyloid formation by globular proteins under native conditions. Nat Chem Biol 5:15–22PubMedCrossRefGoogle Scholar
  25. Chiti F, Dobson CM (2017) Protein misfolding, amyloid formation, and human disease: a summary of progress over the last decade. Annu Rev Biochem 86:27–68. https://doi.org/10.1146/annurev-biochem-061516-045115
  26. Cho Y, Son HJ, Kim EM, Choi JH, Kim ST, Ji IJ, Choi DH et al (2009) Doxycycline is neuroprotective against nigral dopaminergic degeneration by a dual mechanism involving MMP-3. Neurotox Res 16:361–371. https://doi.org/10.1007/s12640-009-9078-1 PubMedCrossRefGoogle Scholar
  27. Choo LP, Wetzel DL, Halliday WC, Jackson M, LeVine SM, Mantsch HH (1996) In situ characterization of beta-amyloid in Alzheimer's diseased tissue by synchrotron Fourier transform infrared microspectroscopy. Biophys J 71:1672–1679. https://doi.org/10.1016/s0006-3495(96)79411-0 PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cohen AS (1986) General introduction and a brief history of amyloidosis. In: Marrink J, Van Rijswijk MH (eds) Amyloidosis. Springer Netherlands, Dordrecht, pp 3–19. https://doi.org/10.1007/978-94-009-4309-4_1 CrossRefGoogle Scholar
  29. Cohlberg JA, Li J, Uversky VN, Fink AL (2002) Heparin and other glycosaminoglycans stimulate the formation of amyloid fibrils from alpha-synuclein in vitro. Biochemistry 41:1502–1511PubMedCrossRefGoogle Scholar
  30. Conway KA, Lee SJ, Rochet JC, Ding TT, Harper JD, Williamson RE, Lansbury PT Jr (2000) Accelerated oligomerization by Parkinson's disease linked alpha-synuclein mutants. Ann N Y Acad Sci 920:42–45PubMedCrossRefGoogle Scholar
  31. Cortez LM, Avila CL, Bugeau CM, Farias RN, Morero RD, Chehin RN (2010) Glyceraldehyde-3-phosphate dehydrogenase tetramer dissociation and amyloid fibril formation induced by negatively charged membranes. FEBS Lett 584:625–630. https://doi.org/10.1016/j.febslet.2009.12.012 PubMedCrossRefGoogle Scholar
  32. Costa R, Speretta E, Crowther DC, Cardoso I (2011) Testing the therapeutic potential of doxycycline in a Drosophila melanogaster model of Alzheimer disease. J Biol Chem 286:41647–41655. https://doi.org/10.1074/jbc.M111.274548
  33. Cremades N, Cohen Samuel IA, Deas E, Abramov Andrey Y, Chen Allen Y, Orte A, Sandal M et al (2012) Direct observation of the interconversion of normal and toxic forms of α-Synuclein. Cell 149:1048–1059. https://doi.org/10.1016/j.cell.2012.03.037 PubMedPubMedCentralCrossRefGoogle Scholar
  34. Cumming RC, Schubert D (2005) Amyloid-beta induces disulfide bonding and aggregation of GAPDH in Alzheimer's disease. FASEB J 19:2060–2062PubMedGoogle Scholar
  35. Diaz-Nido J, Wandosell F, Avila J (2002) Glycosaminoglycans and beta-amyloid, prion and tau peptides in neurodegenerative diseases. Peptides 23:1323–1332PubMedCrossRefGoogle Scholar
  36. Dobson CM (2003) Protein folding and misfolding. Nature 426:884–890. https://doi.org/10.1038/nature02261 PubMedCrossRefGoogle Scholar
  37. Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradovic Z (2002) Intrinsic disorder and protein function. Biochemistry 41:6573–6582PubMedCrossRefGoogle Scholar
  38. Eakin CM, Attenello FJ, Morgan CJ, Miranker AD (2004) Oligomeric assembly of native-like precursors precedes amyloid formation by beta-2 microglobulin. Biochemistry 43:7808–7815. https://doi.org/10.1021/bi049792q PubMedCrossRefGoogle Scholar
  39. Eanes ED, Glenner GG (1968) X-ray diffraction studies on amyloid filaments. J Histochem Cytochem 16:673–677. https://doi.org/10.1177/16.11.673 PubMedCrossRefGoogle Scholar
  40. Fancy DA, Denisson C, Kim K, Xie Y, Holdeman T, Amini F, Kodadek T (2000) Scope, limitations and mechanistic aspects of the photo-induced cross-linking of proteins by water-soluble metal complexes. Chem Biol 7:697–708PubMedCrossRefGoogle Scholar
  41. Fandrich M (2007) On the structural definition of amyloid fibrils and other polypeptide aggregates. Cell Mol Life Sci 64:2066–2078. https://doi.org/10.1007/s00018-007-7110-2 PubMedCrossRefGoogle Scholar
  42. Fichman G, Gazit E (2014) Self-assembly of short peptides to form hydrogels: design of building blocks, physical properties and technological applications. Acta Biomater 10:1671–1682. https://doi.org/10.1016/j.actbio.2013.08.013 PubMedCrossRefGoogle Scholar
  43. Fink AL (1998) Protein aggregation: folding aggregates, inclusion bodies and amyloid. Fold Des 3:R9–23. https://doi.org/10.1016/S1359-0278(98)00002-9 PubMedCrossRefGoogle Scholar
  44. Finkel T, Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408:239–247. https://doi.org/10.1038/35041687 PubMedCrossRefGoogle Scholar
  45. Fitzpatrick AW, Debelouchina GT, Bayro MJ, Clare DK, Caporini MA, Bajaj VS, Jaroniec CP et al (2013) Atomic structure and hierarchical assembly of a cross-beta amyloid fibril. Proc Natl Acad Sci USA 110:5468–5473. https://doi.org/10.1073/pnas.1219476110 PubMedPubMedCentralCrossRefGoogle Scholar
  46. Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid—from bacteria to humans. Trends Biochem Sci 32:217–224. https://doi.org/10.1016/j.tibs.2007.03.003 PubMedCrossRefGoogle Scholar
  47. Friedreich N, Kekulé A (1859) Zur amyloidfrage. Virchows Arch 16:50–65CrossRefGoogle Scholar
  48. Giorgetti S, Raimondi S, Pagano K, Relini A, Bucciantini M, Corazza A, Fogolari F et al (2011) Effect of tetracyclines on the dynamics of formation and destructuration of β2-microglobulin amyloid fibrils. J Biol Chem 286:2121–2131. https://doi.org/10.1074/jbc.M110.178376 PubMedCrossRefGoogle Scholar
  49. Giurleo JT, He X, Talaga DS (2008) Beta-lactoglobulin assembles into amyloid through sequential aggregated intermediates. J Mol Biol 381:1332–1348. https://doi.org/10.1016/j.jmb.2008.06.043 PubMedCrossRefGoogle Scholar
  50. Goedert M, Jakes R, Spillantini MG, Hasegawa M, Smith MJ, Crowther RA (1996) Assembly of microtubule-associated protein tau into Alzheimer-like filaments induced by sulphated glycosaminoglycans. Nature 383:550–553. https://doi.org/10.1038/383550a0 PubMedCrossRefGoogle Scholar
  51. Gonzalez-Lizarraga F, Socias SB, Avila CL, Torres-Bugeau CM, Barbosa LR, Binolfi A, Sepulveda-Diaz JE et al (2017) Repurposing doxycycline for synucleinopathies: remodelling of alpha-synuclein oligomers towards non-toxic parallel beta-sheet structured species. Sci Rep 7:41755. https://doi.org/10.1038/srep41755 PubMedPubMedCentralCrossRefGoogle Scholar
  52. Gorbenko GP, Kinnunen PK (2006) The role of lipid-protein interactions in amyloid-type protein fibril formation. Chem Phys Lipids 141:72–82. https://doi.org/10.1016/j.chemphyslip.2006.02.006 PubMedCrossRefGoogle Scholar
  53. Gras SL (2007) Amyloid fibrils: from disease to design. New biomaterial applications for self-assembling cross- fibrils. Aust J Chem 60:333–342. https://doi.org/10.1071/CH06485 CrossRefGoogle Scholar
  54. Gras SL, Tickler AK, Squires AM, Devlin GL, Horton MA, Dobson CM, MacPhee CE (2008) Functionalised amyloid fibrils for roles in cell adhesion. Biomaterials 29:1553–1562. https://doi.org/10.1016/j.biomaterials.2007.11.028 PubMedCrossRefGoogle Scholar
  55. Gupta-Bansal R, Frederickson RC, Brunden KR (1995) Proteoglycan-mediated inhibition of a beta proteolysis. A potential cause of senile plaque accumulation. J Biol Chem 270:18666–18671PubMedCrossRefGoogle Scholar
  56. Haass C, Selkoe DJ (2007) Soluble protein oligomers in neurodegeneration: lessons from the Alzheimer’s amyloid beta-peptide. Nat Rev Mol Cell Biol 8:101–112. https://doi.org/10.1038/nrm2101 PubMedCrossRefGoogle Scholar
  57. Hara MR, Cascio MB, Sawa A (2006) GAPDH as a sensor of NO stress. Biochim Biophys Acta 1762:502–509. https://doi.org/10.1016/j.bbadis.2006.01.012 PubMedCrossRefGoogle Scholar
  58. Hartgerink JD (2004) Covalent capture: a natural complement to self-assembly. Curr Opin Chem Biol 8:604–609. https://doi.org/10.1016/j.cbpa.2004.10.001 PubMedCrossRefGoogle Scholar
  59. Huang J, Hao L, Xiong N, Cao X, Liang Z, Sun S, Wang T (2009) Involvement of glyceraldehyde-3-phosphate dehydrogenase in rotenone-induced cell apoptosis: relevance to protein misfolding and aggregation. Brain Res 1279:1–8. https://doi.org/10.1016/j.brainres.2009.05.011 PubMedCrossRefGoogle Scholar
  60. Huang J, Xiong N, Chen C, Xiong J, Jia M, Zhang Z, Cao X et al (2011) Glyceraldehyde-3-phosphate dehydrogenase: activity inhibition and protein overexpression in rotenone models for Parkinson's disease. Neuroscience 192:598–608. https://doi.org/10.1016/j.neuroscience.2011.06.050 PubMedCrossRefGoogle Scholar
  61. Huang L, Liu X, Cheng B, Huang K (2015) How our bodies fight amyloidosis: effects of physiological factors on pathogenic aggregation of amyloidogenic proteins. Arch Biochem Biophys 568:46–55. https://doi.org/10.1016/j.abb.2015.01.007 PubMedCrossRefGoogle Scholar
  62. Huberts DH, van der Klei IJ (2010) Moonlighting proteins: an intriguing mode of multitasking. Biochim Biophys Acta 1803:520–525. https://doi.org/10.1016/j.bbamcr.2010.01.022 PubMedCrossRefGoogle Scholar
  63. Huitorel P, Pantaloni D (1985) Bundling of microtubules by glyceraldehyde-3-phosphate dehydrogenase and its modulation by ATP. Eur J Biochem 150:265–269PubMedCrossRefGoogle Scholar
  64. Iconomidou VA, Vriend G, Hamodrakas SJ (2000) Amyloids protect the silkmoth oocyte and embryo. FEBS Lett 479:141–145PubMedCrossRefGoogle Scholar
  65. Itakura M, Nakajima H, Kubo T, Semi Y, Kume S, Higashida S, Kaneshige A et al (2015a) glyceraldehyde-3-phosphate dehydrogenase aggregates accelerate amyloid-beta amyloidogenesis in Alzheimer disease. J Biol Chem 290:26072–26087. https://doi.org/10.1074/jbc.M115.669291 PubMedPubMedCentralCrossRefGoogle Scholar
  66. Itakura M, Nakajima H, Semi Y, Higashida S, Azuma YT, Takeuchi T (2015b) Glyceraldehyde-3-phosphate dehydrogenase aggregation inhibitor peptide: a potential therapeutic strategy against oxidative stress-induced cell death. Biochem Biophys Res Commun 467:373–376. https://doi.org/10.1016/j.bbrc.2015.09.150 PubMedCrossRefGoogle Scholar
  67. Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, Gitler AD (2009) TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 284:25459. https://doi.org/10.1074/jbc.A109.010264 PubMedCentralGoogle Scholar
  68. Kazarian SG, Chan KLA (2006) Applications of ATR-FTIR spectroscopic imaging to biomedical samples. Biochim Biophys Acta Biomembr 1758:858–867. https://doi.org/10.1016/j.bbamem.2006.02.011 CrossRefGoogle Scholar
  69. Khurana R, Uversky VN, Nielsen L, Fink AL (2001) Is Congo red an amyloid-specific dye? J Biol Chem 276:22715–22721. https://doi.org/10.1074/jbc.M011499200 PubMedCrossRefGoogle Scholar
  70. Klunk WE, Jacob RF, Mason RP (1999) Quantifying amyloid by congo red spectral shift assay. Methods Enzymol 309:285–305PubMedCrossRefGoogle Scholar
  71. Knowles TPJ, Vendruscolo M, Dobson CM (2014) The amyloid state and its association with protein misfolding diseases. Nat Rev Mol Cell Biol 15:384–396. https://doi.org/10.1038/nrm3810 PubMedCrossRefGoogle Scholar
  72. Kodali R, Wetzel R (2007) Polymorphism in the intermediates and products of amyloid assembly. Curr Opin Struct Biol 17:48–57. https://doi.org/10.1016/j.sbi.2007.01.007 PubMedCrossRefGoogle Scholar
  73. Kunjithapatham R, Geschwind JF, Devine L, Boronina TN, O'Meally RN, Cole RN, Torbenson MS, Ganapathy-Kanniappan S (2015) Occurrence of a multimeric high-molecular-weight glyceraldehyde-3-phosphate dehydrogenase in human serum. J Proteome Res 14:1645–1656. https://doi.org/10.1021/acs.jproteome.5b00089 PubMedPubMedCentralCrossRefGoogle Scholar
  74. Kwong LK, Uryu K, Trojanowski JQ, Lee VM (2008) TDP-43 proteinopathies: neurodegenerative protein misfolding diseases without amyloidosis. Neurosignals 16:41–51. https://doi.org/10.1159/000109758 PubMedCrossRefGoogle Scholar
  75. Lazzarini M, Martin S, Mitkovski M, Vozari RR, Stuhmer W, Bel ED (2013) Doxycycline restrains glia and confers neuroprotection in a 6-OHDA Parkinson model. Glia 61:1084–1100. https://doi.org/10.1002/glia.22496 PubMedCrossRefGoogle Scholar
  76. Lee JH, Cheng R, Rogaeva E, Meng Y, Stern Y, Santana V, Lantigua R et al (2008) Further examination of the candidate genes in chromosome 12p13 locus for late-onset Alzheimer disease. Neurogenetics 9:127–138. https://doi.org/10.1007/s10048-008-0122-8 PubMedPubMedCentralCrossRefGoogle Scholar
  77. LeVine H III (1999) Quantification of beta-sheet amyloid fibril structures with thioflavin T. Methods Enzymol 309:274–284PubMedCrossRefGoogle Scholar
  78. Levine ZA, Larini L, LaPointe NE, Feinstein SC, Shea J-E (2015) Regulation and aggregation of intrinsically disordered peptides. Proc Natl Acad Sci USA 112(9):2758–2763. https://doi.org/10.1073/pnas.1418155112 PubMedPubMedCentralCrossRefGoogle Scholar
  79. Li Y, Nowotny P, Holmans P, Smemo S, Kauwe JS, Hinrichs AL, Tacey K et al (2004) Association of late-onset Alzheimer’s disease with genetic variation in multiple members of the GAPD gene family. Proc Natl Acad Sci USA 101:15688–15693. https://doi.org/10.1073/pnas.0403535101 PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lin PI, Martin ER, Bronson PG, Browning-Large C, Small GW, Schmechel DE, Welsh-Bohmer KA et al (2006) Exploring the association of glyceraldehyde-3-phosphate dehydrogenase gene and Alzheimer disease. Neurology 67:64–68. https://doi.org/10.1212/01.wnl.0000223438.90113.4e PubMedCrossRefGoogle Scholar
  81. Lin Y, Qiao Y, Tang P, Li Z, Huang J (2011) Controllable self-assembled laminated nanoribbons from dipeptide-amphiphile bearing azobenzene moiety. Soft Matter 7:2762–2769CrossRefGoogle Scholar
  82. Lindberg DJ, Wranne MS, Gilbert Gatty M, Westerlund F, Esbjorner EK (2015) Steady-state and time-resolved Thioflavin-T fluorescence can report on morphological differences in amyloid fibrils formed by Abeta(1-40) and Abeta(1-42). Biochem Biophys Res Commun 458:418–423. https://doi.org/10.1016/j.bbrc.2015.01.132 PubMedCrossRefGoogle Scholar
  83. Liu W, Prausnitz JM, Blanch HW (2004) Amyloid fibril formation by peptide LYS (11-36) in aqueous trifluoroethanol. Biomacromolecules 5:1818–1823. https://doi.org/10.1021/bm049841e PubMedCrossRefGoogle Scholar
  84. Liu L, Xiong N, Zhang P, Chen C, Huang J, Zhang G, Xu X et al (2015) Genetic variants in GAPDH confer susceptibility to sporadic Parkinson's disease in a Chinese Han population. PLoS One 10:e0135425. https://doi.org/10.1371/journal.pone.0135425 PubMedPubMedCentralCrossRefGoogle Scholar
  85. Lopez-Gallego F, Fernandez-Lorente G, Rocha-Martin J, Bolivar JM, Mateo C, Guisan JM (2013) Stabilization of enzymes by multipoint covalent immobilization on supports activated with glyoxyl groups. Methods Mol Biol 1051:59–71. https://doi.org/10.1007/978-1-62703-550-7_5 PubMedCrossRefGoogle Scholar
  86. Makin OS, Atkins E, Sikorski P, Johansson J, Serpell LC (2005) Molecular basis for amyloid fibril formation and stability. Proc Natl Acad Sci USA 102:315–320. https://doi.org/10.1073/pnas.0406847102 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Mankar S, Anoop A, Sen S, Maji SK (2011) Nanomaterials: amyloids reflect their brighter side. Nano Rev 2:6032. https://doi.org/10.3402/nano.v2i0.6032 CrossRefGoogle Scholar
  88. Manthripragada AD, Schernhammer ES, Qiu J, Friis S, Wermuth L, Olsen JH, Ritz B (2011) Non-steroidal anti-inflammatory drug use and the risk of Parkinson’s disease. Neuroepidemiology 36:155–161PubMedPubMedCentralCrossRefGoogle Scholar
  89. Matsuura K, Mizuguchi Y, Kimizuka N (2016) Peptide nanospheres self-assembled from a modified β-annulus peptide of Sesbania mosaic virus. Pept Sci 106:470–475. https://doi.org/10.1002/bip.22774 CrossRefGoogle Scholar
  90. Mazzola JL, Sirover MA (2005) Aging of human glyceraldehyde-3-phosphate dehydrogenase is dependent on its subcellular localization. Biochim Biophys Acta 1722:168–174. https://doi.org/10.1016/j.bbagen.2004.12.010 PubMedCrossRefGoogle Scholar
  91. Meersman F, Dobson CM (2006) Probing the pressure-temperature stability of amyloid fibrils provides new insights into their molecular properties. Biochim Biophys Acta 1764:452–460. https://doi.org/10.1016/j.bbapap.2005.10.021 PubMedCrossRefGoogle Scholar
  92. Meinhardt J, Sachse C, Hortschansky P, Grigorieff N, Fändrich M (2009) Aβ(1-40) fibril polymorphism implies diverse interaction patterns in amyloid fibrils. J Mol Biol 386:869–877. https://doi.org/10.1016/j.jmb.2008.11.005 PubMedCrossRefGoogle Scholar
  93. Miravet JF, Escuder B, Segarra-Maset MD, Tena-Solsona M, Hamley IW, Dehsorkhi A, Castelletto V (2013) Self-assembly of a peptide amphiphile: transition from nanotape fibrils to micelles. Soft Matter 9:3558–3564. https://doi.org/10.1039/C3SM27899A CrossRefGoogle Scholar
  94. Mishra A, Loo Y, Deng R, Chuah YJ, Hee HT, Ying JY, Hauser CA (2011) Ultrasmall natural peptides self-assemble to strong temperature-resistant helical fibers in scaffolds suitable for tissue engineering. Nano Today 6:232–239CrossRefGoogle Scholar
  95. Moreira PI, Smith MA, Zhu X, Nunomura A, Castellani RJ, Perry G (2005) Oxidative stress and neurodegeneration. Ann N Y Acad Sci 1043:545–552. https://doi.org/10.1196/annals.1333.062 PubMedCrossRefGoogle Scholar
  96. Morero RD, Vinals AL, Bloj B, Farias RN (1985) Fusion of phospholipid vesicles induced by muscle glyceraldehyde-3-phosphate dehydrogenase in the absence of calcium. Biochemistry 24:1904–1909PubMedCrossRefGoogle Scholar
  97. Mossuto MF, Dhulesia A, Devlin G, Frare E, Kumita JR, de Laureto PP, Dumoulin M et al (2010) The non-core regions of human lysozyme amyloid fibrils influence cytotoxicity. J Mol Biol 402:783–796. https://doi.org/10.1016/j.jmb.2010.07.005 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Motamedi-Shad N, Monsellier E, Torrassa S, Relini A, Chiti F (2009) Kinetic analysis of amyloid formation in the presence of heparan sulfate: faster unfolding and change of pathway. J Biol Chem 284:29921–29934. https://doi.org/10.1074/jbc.M109.018747 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Nakajima H, Amano W, Fujita A, Fukuhara A, Azuma YT, Hata F, Inui T, Takeuchi T (2007) The active site cysteine of the proapoptotic protein glyceraldehyde-3-phosphate dehydrogenase is essential in oxidative stress-induced aggregation and cell death. J Biol Chem 282:26562–26574. https://doi.org/10.1074/jbc.M704199200 PubMedCrossRefGoogle Scholar
  100. Nakajima H, Amano W, Fukuhara A, Kubo T, Misaki S, Azuma YT, Inui T, Takeuchi T (2009) An aggregate-prone mutant of human glyceraldehyde-3-phosphate dehydrogenase augments oxidative stress-induced cell death in SH-SY5Y cells. Biochem Biophys Res Commun 390:1066–1071. https://doi.org/10.1016/j.bbrc.2009.10.118 PubMedCrossRefGoogle Scholar
  101. Nakajima H, Itakura M, Kubo T, Kaneshige A, Harada N, Izawa T, Azuma YT et al (2017) Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) aggregation causes mitochondrial dysfunction during oxidative stress-induced cell death. J Biol Chem 292:4727–4742. https://doi.org/10.1074/jbc.M116.759084 PubMedPubMedCentralCrossRefGoogle Scholar
  102. Naletova I, Schmalhausen E, Kharitonov A, Katrukha A, Saso L, Caprioli A, Muronetz V (2008) Non-native glyceraldehyde-3-phosphate dehydrogenase can be an intrinsic component of amyloid structures. Biochim Biophys Acta 1784:2052–2058. https://doi.org/10.1016/j.bbapap.2008.07.013 PubMedCrossRefGoogle Scholar
  103. Nelson R, Eisenberg D (2006) Recent atomic models of amyloid fibril structure. Curr Opin Struct Biol 16:260–265. https://doi.org/10.1016/j.sbi.2006.03.007 PubMedCrossRefGoogle Scholar
  104. Nilsson MR (2004) Techniques to study amyloid fibril formation in vitro. Methods 34:151–160. https://doi.org/10.1016/j.ymeth.2004.03.012 PubMedCrossRefGoogle Scholar
  105. Nuallain BO, Mayhew SG (2002) A comparison of the urea-induced unfolding of apoflavodoxin and flavodoxin from Desulfovibrio vulgaris. Eur J Biochem 269:212–223PubMedCrossRefGoogle Scholar
  106. Oberg K, Chrunyk BA, Wetzel R, Fink AL (1994) Nativelike secondary structure in interleukin-1 beta inclusion bodies by attenuated total reflectance. FTIR Biochemistry 33:2628–2634PubMedCrossRefGoogle Scholar
  107. Oyama R, Yamamoto H, Titani K (2000) Glutamine synthetase, hemoglobin alpha-chain, and macrophage migration inhibitory factor binding to amyloid beta-protein: their identification in rat brain by a novel affinity chromatography and in Alzheimer's disease brain by immunoprecipitation. Biochim Biophys Acta 1479:91–102PubMedCrossRefGoogle Scholar
  108. Phillips AJ, Littlejohn J, Yewdall NA, Zhu T, Valery C, Pearce FG, Mitra AK, Radjainia M, Gerrard JA (2014) Peroxiredoxin is a versatile self-assembling tecton for protein nanotechnology. Biomacromolecules 15:1871–1881. https://doi.org/10.1021/bm500261u PubMedCrossRefGoogle Scholar
  109. Picken MM (2010) Fibrinogen amyloidosis: the clot thickens! Blood 115:2985–2986. https://doi.org/10.1182/blood-2009-12-236810 PubMedCrossRefGoogle Scholar
  110. Przedborski S, Jackson-Lewis V (1998) Experimental developments in movement disorders: update on proposed free radical mechanisms. Curr Opin Neurol 11:335–339PubMedCrossRefGoogle Scholar
  111. Rochet JC, Lansbury PT Jr (2000) Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 10:60–68PubMedCrossRefGoogle Scholar
  112. Samson AL, Knaupp AS, Kass I, Kleifeld O, Marijanovic EM, Hughes VA, Lupton CJ et al (2014) Oxidation of an exposed methionine instigates the aggregation of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 289:26922–26936. https://doi.org/10.1074/jbc.M114.570275 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Santana H, Avila CL, Cabrera I, Páez R, Falcón V, Pessoa A, Ventosa N et al (2014) How does growth hormone releasing hexapeptide self-assemble in nanotubes? Soft Matter 10:9260–9269PubMedCrossRefGoogle Scholar
  114. Sasso L, Suei S, Domigan L, Healy J, Nock V, Williams MA, Gerrard JA (2014) Versatile multi-functionalization of protein nanofibrils for biosensor applications. Nano 6:1629–1634. https://doi.org/10.1039/c3nr05752f Google Scholar
  115. Sawaya MR, Sambashivan S, Nelson R, Ivanova MI, Sievers SA, Apostol MI, Thompson MJ et al (2007) Atomic structures of amyloid cross-[bgr] spines reveal varied steric zippers. Nature 447:453–457. https://doi.org/10.1038/nature05695 PubMedCrossRefGoogle Scholar
  116. Sayed RH, Hawkins PN, Lachmann HJ (2015) Emerging treatments for amyloidosis. Kidney Int 87:516–526. https://doi.org/10.1038/ki.2014.368 PubMedCrossRefGoogle Scholar
  117. Scheinberg DA, Grimm J, Heller DA, Stater EP, Bradbury M, McDevitt MR (2017) Advances in the clinical translation of nanotechnology. Curr Opin Biotechnol 46:66–73. https://doi.org/10.1016/j.copbio.2017.01.002 PubMedCrossRefGoogle Scholar
  118. Schmalhausen EV, Pleten AP, Muronetz VI (2003) Ascorbate-induced oxidation of glyceraldehyde-3-phosphate dehydrogenase. Biochem Biophys Res Commun 308:492–496PubMedCrossRefGoogle Scholar
  119. Sipe JD, Cohen AS (2000) History of the amyloid fibril. J Struct Biol 130:88–98PubMedCrossRefGoogle Scholar
  120. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M (1997) Alpha-synuclein in Lewy bodies. Nature 388:839–840. https://doi.org/10.1038/42166 PubMedCrossRefGoogle Scholar
  121. Stefani M (2006) Biological surfaces as catalysts of amyloid aggregate nucleation and primary sites of amyloid toxicity. Ital J Biochem 55:194–204PubMedGoogle Scholar
  122. Stefani M (2007) Generic cell dysfunction in neurodegenerative disorders: role of surfaces in early protein misfolding, aggregation, and aggregate cytotoxicity. Neuroscientist 13:519–531. https://doi.org/10.1177/1073858407303428 PubMedCrossRefGoogle Scholar
  123. Stsiapura VI, Maskevich AA, Kuzmitsky VA, Uversky VN, Kuznetsova IM, Turoverov KK (2008) Thioflavin T as a molecular rotor: fluorescent properties of thioflavin T in solvents with different viscosity. J Phys Chem B 112:15893–15902. https://doi.org/10.1021/jp805822c PubMedCrossRefGoogle Scholar
  124. Sulatskaya AI, Maskevich AA, Kuznetsova IM, Uversky VN, Turoverov KK (2010) Fluorescence quantum yield of thioflavin T in rigid isotropic solution and incorporated into the amyloid fibrils. PLoS One 5:e15385. https://doi.org/10.1371/journal.pone.0015385 PubMedPubMedCentralCrossRefGoogle Scholar
  125. Sunaga K, Takahashi H, Chuang DM, Ishitani R (1995) Glyceraldehyde-3-phosphate dehydrogenase is over-expressed during apoptotic death of neuronal cultures and is recognized by a monoclonal antibody against amyloid plaques from Alzheimer's brain. Neurosci Lett 200:133–136PubMedCrossRefGoogle Scholar
  126. Suzuki YJ, Edmondson JD, Ford GD (1992) Inactivation of rabbit muscle creatine kinase by hydrogen peroxide. Free Radic Res Commun 16:131–136PubMedCrossRefGoogle Scholar
  127. Tatton WG, Chalmers-Redman RM, Elstner M, Leesch W, Jagodzinski FB, Stupak DP, Sugrue MM, Tatton NA (2000) Glyceraldehyde-3-phosphate dehydrogenase in neurodegeneration and apoptosis signaling. J Neural Transm Suppl 60:77-100Google Scholar
  128. Torres-Bugeau CM, Avila CL, Raisman-Vozari R, Papy-Garcia D, Itri R, Barbosa LR, Cortez LM, Sim VL, Chehin RN (2012) Characterization of heparin-induced glyceraldehyde-3-phosphate dehydrogenase early amyloid-like oligomers and their implication in alpha-synuclein aggregation. J Biol Chem 287:2398–2409. https://doi.org/10.1074/jbc.M111.303503 PubMedCrossRefGoogle Scholar
  129. Tsuchiya K, Tajima H, Yamada M, Takahashi H, Kuwae T, Sunaga K, Katsube N, Ishitani R (2004) Disclosure of a pro-apoptotic glyceraldehyde-3-phosphate dehydrogenase promoter: anti-dementia drugs depress its activation in apoptosis. Life Sci 74:3245–3258. https://doi.org/10.1016/j.lfs.2003.11.029 PubMedCrossRefGoogle Scholar
  130. Tsuchiya K, Tajima H, Kuwae T, Takeshima T, Nakano T, Tanaka M, Sunaga K et al (2005) Pro-apoptotic protein glyceraldehyde-3-phosphate dehydrogenase promotes the formation of Lewy body-like inclusions. Eur J Neurosci 21:317–326. https://doi.org/10.1111/j.1460-9568.2005.03870.x PubMedCrossRefGoogle Scholar
  131. Uversky VN (2010) Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: another illustration of the D2 concept. Expert Rev Proteomics 7:543–564PubMedPubMedCentralCrossRefGoogle Scholar
  132. Verma ML, Barrow CJ, Puri M (2013) Nanobiotechnology as a novel paradigm for enzyme immobilisation and stabilisation with potential applications in biodiesel production. Appl Microbiol Biotechnol 97:23–39. https://doi.org/10.1007/s00253-012-4535-9 PubMedCrossRefGoogle Scholar
  133. Vernaglia BA, Huang J, Clark ED (2004) Guanidine hydrochloride can induce amyloid fibril formation from hen egg-white lysozyme. Biomacromolecules 5:1362–1370. https://doi.org/10.1021/bm0498979 PubMedCrossRefGoogle Scholar
  134. Vieira TC, Cordeiro Y, Caughey B, Silva JL (2014) Heparin binding confers prion stability and impairs its aggregation. FASEB J 28:2667–2676. https://doi.org/10.1096/fj.13-246777 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Virchow R (1854) Zur cellulose—frage Archiv für pathologische. Anat Physiol Klin Med 6:416–426Google Scholar
  136. Wang Q, Woltjer RL, Cimino PJ, Pan C, Montine KS, Zhang J, Montine TJ (2005) Proteomic analysis of neurofibrillary tangles in Alzheimer disease identifies GAPDH as a detergent-insoluble paired helical filament tau binding protein. FASEB J 19:869–871. https://doi.org/10.1096/fj.04-3210fje PubMedCrossRefGoogle Scholar
  137. Widmer R, Ziaja I, Grune T (2006) Protein oxidation and degradation during aging: role in skin aging and neurodegeneration. Free Radic Res 40:1259–1268. https://doi.org/10.1080/10715760600911154 PubMedCrossRefGoogle Scholar
  138. Williams TL, Serpell LC, Urbanc B (2016) Stabilization of native amyloid beta-protein oligomers by copper and hydrogen peroxide induced cross-linking of unmodified proteins (CHICUP). Biochim Biophys Acta 1864:249–259. https://doi.org/10.1016/j.bbapap.2015.12.001 PubMedCrossRefGoogle Scholar
  139. Wong C, Xiong LW, Horiuchi M, Raymond L, Wehrly K, Chesebro B, Caughey B (2001) Sulfated glycans and elevated temperature stimulate PrP(Sc)-dependent cell-free formation of protease-resistant prion protein. EMBO J 20:377–386. https://doi.org/10.1093/emboj/20.3.377 PubMedPubMedCentralCrossRefGoogle Scholar
  140. Yonezawa Y, Tanaka S, Kubota T, Wakabayashi K, Yutani K, Fujiwara S (2002) An insight into the pathway of the amyloid fibril formation of hen egg white lysozyme obtained from a small-angle X-ray and neutron scattering study. J Mol Biol 323:237–251. https://doi.org/10.1016/S0022-2836(02)00941-5 PubMedCrossRefGoogle Scholar
  141. Yoshimura Y, Lin Y, Yagi H, Lee YH, Kitayama H, Sakurai K, So M et al (2012) Distinguishing crystal-like amyloid fibrils and glass-like amorphous aggregates from their kinetics of formation. Proc Natl Acad Sci USA 109:14446–14451. https://doi.org/10.1073/pnas.1208228109 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Yu Z, Cai Z, Chen Q, Liu M, Ye L, Ren J, Liao W, Liu S (2016) Engineering beta-sheet peptide assemblies for biomedical applications. Biomater Sci 4:365–374. https://doi.org/10.1039/c5bm00472a PubMedCrossRefGoogle Scholar
  143. Zandomeneghi G, Krebs MR, McCammon MG, Fandrich M (2004) FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. Protein Sci 13:3314–3321. https://doi.org/10.1110/ps.041024904 PubMedPubMedCentralCrossRefGoogle Scholar
  144. Zhang GL, Zhang X, Wang XM, Li JP (2014) Towards understanding the roles of heparan sulfate proteoglycans in Alzheimer's disease. Biomed Res Int 2014:516028. https://doi.org/10.1155/2014/516028 PubMedPubMedCentralGoogle Scholar
  145. Zhao H, Tuominen EK, Kinnunen PK (2004) Formation of amyloid fibers triggered by phosphatidylserine-containing membranes. Biochemistry 43:10302–10307. https://doi.org/10.1021/bi049002c PubMedCrossRefGoogle Scholar
  146. Zheng L, Roeder RG, Luo Y (2003) S phase activation of the histone H2B promoter by OCA-S, a coactivator complex that contains GAPDH as a key component. Cell 114:255–266PubMedCrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • César L. Avila
    • 1
    • 2
  • Silvina Chaves
    • 1
    • 2
  • Sergio B. Socias
    • 1
    • 2
  • Esteban Vera-Pingitore
    • 1
    • 2
  • Florencia González-Lizárraga
    • 1
    • 2
  • Cecilia Vera
    • 1
    • 2
  • Diego Ploper
    • 1
    • 2
  • Rosana Chehín
    • 1
    • 2
  1. 1.Instituto Superior de Investigaciones Biológicas (INSIBIO), Centro Científico Tecnológico (CCT) TucumánCONICET–Universidad Nacional de Tucumán (CONICET-UNT)TucumánArgentina
  2. 2.Instituto de Química Biológica Dr. Bernabé Bloj, Facultad de Bioquímica, Química y FarmaciaUniversidad Nacional de TucumánTucumánArgentina

Personalised recommendations