Skip to main content
Log in

Mitochondrial outer membrane permeabilization: a focus on the role of mitochondrial membrane structural organization

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Apoptosis is important in regulating cell death turnover and is mediated by the intrinsic and death receptor-based extrinsic pathways which converge at the mitochondrial outer membrane (MOM) leading to mitochondrial outer membrane permeabilization (MOMP). MOMP results in the release of apoptotic proteins that further activate the downstream pathway of apoptosis. Thus, tight regulation of MOMP is crucial in controlling apoptosis, and a lack of control may lead to tissue and organ malformation and the development of cancers. Despite a growing number of studies focusing on the structure and activity of the proteins involved in mediating MOMP, such as the Bcl-2 family proteins, the mechanism of MOMP is not well understood. In particular, the crucial role of the various structural properties and changes in lipid components of the MOM in mediating the recruitment and activation of different Bcl-2 proteins remains poorly understood. Furthermore, the factors that control the changes in mitochondrial membrane integrity from the initiation to the final disruption of MOM have yet to be clearly defined. In this review, we provide an overview of studies that focus on the mitochondrial membrane with a biophysical analysis of the interactions of the Bcl-2 proteins with the mitochondrial membrane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adams J (2004) The development of proteasome inhibitors as anticancer drugs. Cancer Cell 5:417–421

    Article  CAS  PubMed  Google Scholar 

  • Andreu-Fernández V, Genoves A, Lee T-H, Stellato M, Lucantoni F, Orzáez M, Mingarro I, Aguilar M-I, Pérez-Payá E (2014) Peptides derived from the transmembrane domain of bcl-2 proteins as potential mitochondrial priming tools. ACS Chem Biol 9:1799–1811

    Article  PubMed  CAS  Google Scholar 

  • Andreu-Fernandez V, Sancho M, Genoves A, Lucendo E, Todt F, Lauterwasser J, Funk K, Jahreis G, Perez-Paya E, Mingarro I, Edlich F, Orzaez M (2017) Bax transmembrane domain interacts with prosurvival Bcl-2 proteins in biological membranes. Proc Natl Acad of Sci U S A 114:310–315

    Article  CAS  Google Scholar 

  • Annis MG, Soucie EL, Dlugosz PJ, Cruz-Aguado JA, Penn LZ, Leber B, Andrews DW (2005) Bax forms multispanning monomers that oligomerize to permeabilize membranes during apoptosis. EMBO J 24:2096–2103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardail D, Privat J, Egret-Charlier M, Levrat C, Lerme F, Louisot P (1990) Mitochondrial contact sites. Lipid composition and dynamics. J Biol Chem 265:18797–18802

    CAS  PubMed  Google Scholar 

  • Ausili A, Torrecillas A, Martínez-Senac MM, Corbalán-García S, Gómez-Fernández JC (2008) The interaction of the Bax C-terminal domain with negatively charged lipids modifies the secondary structure and changes its way of insertion into membranes. J Struct Biol 164:146–152

    Article  CAS  PubMed  Google Scholar 

  • Ausili A, de Godos A, Torrecillas A, Corbalán-García S, Gómez-Fernández JC (2009) The interaction of the Bax C-terminal domain with membranes is influenced by the presence of negatively charged phospholipids. Biochim Biophysica Acta-Biomembr 1788:1924–1932

    Article  CAS  Google Scholar 

  • Baines CP, Kaiser RA, Sheiko T, Craigen WJ, Molkentin JD (2007) Voltage-dependent anion channels are dispensable for mitochondrial-dependent cell death. Nat Cell Biol 9:550–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basanez G, Nechushtan A, Drozhinin O, Chanturiya A, Choe E, Tutt S, Wood K, Hsu Y-T, Zimmerberg J, Youle R (1999) Bax, but not Bcl-xL, decreases the lifetime of planar phospholipid bilayer membranes at subnanomolar concentrations. Proc Natl Acad of Sci U S A 96:5492–5497

    Article  CAS  Google Scholar 

  • Bergelson L, Dyatlovitskaya E, Torkhovskaya T, Sorokina I, Gorkova N (1970) Phospholipid composition of membranes in the tumor cell. Biochim Biophys Acta-lipids and lipid. Metabolism 210:287–298

    CAS  Google Scholar 

  • Bernabeu A, Guillén J, Pérez-Berná AJ, Moreno MR, Villalaín J (2007) Structure of the C-terminal domain of the pro-apoptotic protein Hrk and its interaction with model membranes. Biochim Biophys Acta-Biomembr 1768:1659–1670

    Article  CAS  Google Scholar 

  • Billen LP, Kokoski CL, Lovell JF, Leber B, Andrews DW (2008) Bcl-XL inhibits membrane permeabilization by competing with Bax. PLoS Biol 6:e147

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bleicken S, Hofhaus G, Ugarte-Uribe B, Schröder R, García-Sáez A (2016) cBid, Bax and Bcl-xL exhibit opposite membrane remodeling activities. Cell Death Dis 7:e2121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breckenridge DG, Xue D (2004) Regulation of mitochondrial membrane permeabilization by BCL-2 family proteins and caspases. Curr Opin Cell Biol 16:647–652

    Article  CAS  PubMed  Google Scholar 

  • Brown JM, Attardi LD (2005) The role of apoptosis in cancer development and treatment response. Nat Rev Cancer 5:231–237

    CAS  PubMed  Google Scholar 

  • Bürgermeister M, Birner-Grünberger R, Nebauer R, Daum G (2004) Contribution of different pathways to the supply of phosphatidylethanolamine and phosphatidylcholine to mitochondrial membranes of the yeast Saccharomyces Cerevisiae. Biochim Biophys Acta-Mol Cell Biol Lipids 1686:161–168

    Article  CAS  Google Scholar 

  • Certo M, Del Gaizo MV, Nishino M, Wei G, Korsmeyer S, Armstrong SA, Letai A (2006) Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell 9:351–365

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Willis SN, Wei A, Smith BJ, Fletcher JI, Hinds MG, Colman PM, Day CL, Adams JM, Huang DC (2005) Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol Cell 17:393–403

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Feldstein AE, McIntyre TM (2009) Suppression of mitochondrial function by oxidatively truncated phospholipids is reversible, aided by bid, and suppressed by Bcl-XL. J Biol Chem 284:26297–26308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen HC, Kanai M, Inoue-Yamauchi A, Tu HC, Huang Y, Ren D, Kim H, Takeda S, Reyna DE, Chan PM, Ganesan YT, Liao CP, Gavathiotis E, Hsieh JJ, Cheng EH (2015) An interconnected hierarchical model of cell death regulation by the BCL-2 family. Nat Cell Biol 17:1270–1281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng EH-Y, Sheiko TV, Fisher JK, Craigen WJ, Korsmeyer SJ (2003) VDAC2 inhibits BAK activation and mitochondrial apoptosis. Science 301:513–517

    Article  CAS  PubMed  Google Scholar 

  • Chi X, Kale J, Leber B, Andrews DW (2014) Regulating cell death at, on, and in membranes. Biochim Biophys Acta-Mol Cell Res 1843:2100–2113

    Article  CAS  Google Scholar 

  • Chipuk JE, Fisher JC, Dillon CP, Kriwacki RW, Kuwana T, Green DR (2008) Mechanism of apoptosis induction by inhibition of the anti-apoptotic BCL-2 proteins. Proc Natl Acad of Sci U S A 105:20327–20332

    Article  CAS  Google Scholar 

  • Chipuk JE, Moldoveanu T, Llambi F, Parsons MJ, Green DR (2010) The BCL-2 family reunion. Mol Cell 37:299–310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chipuk JE, McStay GP, Bharti A, Kuwana T, Clarke CJ, Siskind LJ, Obeid LM, Green DR (2012) Sphingolipid metabolism cooperates with BAK and BAX to promote the mitochondrial pathway of apoptosis. Cell 148:988–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chou JJ, Li H, Salvesen GS, Yuan J, Wagner G (1999) Solution structure of BID, an intracellular amplifier of apoptotic signaling. Cell 96:615–624

    Article  CAS  PubMed  Google Scholar 

  • Christenson E, Merlin S, Saito M, Schlesinger P (2008) Cholesterol effects on BAX pore activation. J Mol Biol 381:1168–1183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colbeau A, Nachbaur J, Vignais P (1971) Enzymac characterization and lipid composition of rat liver subcellular membranes. Biochim Biophys Acta-Biomembr 249:462–492

    Article  CAS  Google Scholar 

  • Cosentino K, García-Sáez AJ (2014) Mitochondrial alterations in apoptosis. Chem Phys Lipids 181:62–75

    Article  CAS  PubMed  Google Scholar 

  • Cosentino K, Garcia-Saez AJ (2017) Bax and Bak pores: are we closing the circle? Trends Cell Biol 27:266–275

    Article  CAS  PubMed  Google Scholar 

  • Crimi M, Degli Esposti M (2011) Apoptosis-induced changes in mitochondrial lipids. Biochim Biophys Acta-Mol Cell Res 1813:551–557

    Article  CAS  Google Scholar 

  • Czabotar PE, Lee EF, Thompson GV, Wardak AZ, Fairlie WD, Colman PM (2011) Mutation to Bax beyond the BH3 domain disrupts interactions with pro-survival proteins and promotes apoptosis. J Biol Chem 286:7123–7131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Czabotar PE, Lessene G, Strasser A, Adams JM (2014) Control of apoptosis by the BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol Cell Biol 15:49–63

    Article  CAS  PubMed  Google Scholar 

  • Das KK, Unsay JD, Garcia-Saez AJ (2015) Microscopy of model membranes: understanding how Bcl-2 proteins mediate apoptosis. Adv Planar Lipid Bilayers Liposomes 21:63–97

    Article  CAS  Google Scholar 

  • Degli Esposti M, Cristea I, Gaskell S, Nakao Y, Dive C (2003) Proapoptotic bid binds to monolysocardiolipin, a new molecular connection between mitochondrial membranes and cell death. Cell Death Differ 10:1300–1309

    Article  PubMed  CAS  Google Scholar 

  • Dejean LM, Martinez-Caballero S, Guo L, Hughes C, Teijido O, Ducret T, Ichas F, Korsmeyer SJ, Antonsson B, Jonas EA (2005) Oligomeric Bax is a component of the putative cytochrome c release channel MAC, mitochondrial apoptosis-induced channel. Mol Biol Cell 16:2424–2432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dingeldein APG, Pokorná Š, Lidman M, Sparrman T, Šachl R, Hof M, Gröbner G (2017) Apoptotic Bax at Oxidatively stressed mitochondrial membranes: lipid dynamics and Permeabilization. Biophys J 112:2147–2158

    Article  CAS  PubMed  Google Scholar 

  • Edlich F, Banerjee S, Suzuki M, Cleland MM, Arnoult D, Wang C, Neutzner A, Tjandra N, Youle RJ (2011) Bcl-x L retrotranslocates Bax from the mitochondria into the cytosol. Cell 145:104–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eskes R, Desagher S, Antonsson B, Martinou JC (2000) Bid induces the oligomerization and insertion of Bax into the outer mitochondrial membrane. Mol Cell Biol 20:929–935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulda S, Debatin K (2006) Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene 25:4798–4811

    Article  CAS  PubMed  Google Scholar 

  • Garcea R, Canuto R, Gautero B, Biocca M, Feo F (1980) Phospholipid composition of inner and outer mitochondrial membranes isolated from Yoshida hepatoma AH-130. Cancer Lett 11:133–139

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Saez A (2012) The secrets of the Bcl-2 family. Cell Death Differ 19:1733–1740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • García-Sáez AJ, Buschhorn SB, Keller H, Anderluh G, Simons K, Schwille P (2011) Oligomerization and pore formation by equinatoxin II inhibit endocytosis and lead to plasma membrane reorganization. J Biol Chem 286:37768–37777

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gavathiotis E, Suzuki M, Davis ML, Pitter K, Bird GH, Katz SG, Tu H-C, Kim H, Cheng EH-Y, Tjandra N (2008) BAX activation is initiated at a novel interaction site. Nature 455:1076–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillies LA, Du H, Peters B, Knudson CM, Newmeyer DD, Kuwana T (2015) Visual and functional demonstration of growing Bax-induced pores in mitochondrial outer membranes. Mol Biol Cell 26:339–349

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gloster J, Harris P (1970) The lipid composition of mitochondrial and microsomal fractions from human ventricular myocardium. J Mol Cell Cardiol 1:459–465

    Article  CAS  PubMed  Google Scholar 

  • Gross A, Yin X-M, Wang K, Wei MC, Jockel J, Milliman C, Erdjument-Bromage H, Tempst P, Korsmeyer SJ (1999) Caspase cleaved BID targets mitochondria and is required for cytochrome c release, while BCL-XL prevents this release but not tumor necrosis factor-R1/Fas death. J Biol Chem 274:1156–1163

    Article  CAS  PubMed  Google Scholar 

  • Große L, Wurm CA, Brüser C, Neumann D, Jans DC, Jakobs S (2016) Bax assembles into large ring-like structures remodeling the mitochondrial outer membrane in apoptosis. EMBO J 35:402–413

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    Article  CAS  PubMed  Google Scholar 

  • Horvath SE, Daum G (2013) Lipids of mitochondria. Prog Lipid Res 52:590–614

    Article  CAS  PubMed  Google Scholar 

  • Hovius R, Lambrechts H, Nicolay K, de Kruijff B (1990) Improved methods to isolate and subfractionate rat liver mitochondria. Lipid composition of the inner and outer membrane. Biochim Biophys Acta-Biomembr 1021:217–226

    Article  CAS  Google Scholar 

  • Ichim G, Tait SW (2016) A fate worse than death: apoptosis as an oncogenic process. Nat Rev Cancer 16:539–548

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Zheng X, Lytle RA, Higashikubo R, Rich KM (2004) Lovastatin-induced up-regulation of the BH3-only protein, Bim, and cell death in glioblastoma cells. J Neurochem 89:168–178

    Article  CAS  PubMed  Google Scholar 

  • Jourdain A, Martinou J-C (2009) Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. Int J Biochem Cell Biol 41:1884–1889

    Article  CAS  PubMed  Google Scholar 

  • Kagan VE, Tyurin VA, Jiang J, Tyurina YY, Ritov VB, Amoscato AA, Osipov AN, Belikova NA, Kapralov AA, Kini V (2005) Cytochrome c acts as a cardiolipin oxygenase required for release of proapoptotic factors. Nat Chem Biol 1:223–232

    Article  CAS  PubMed  Google Scholar 

  • Kantari C, Walczak H (2011) Caspase-8 and bid: caught in the act between death receptors and mitochondria. Biochim Biophys Acta-Mol Cell Res 1813:558–563

    Article  CAS  Google Scholar 

  • Karch J, Molkentin JD (2014) Identifying the components of the elusive mitochondrial permeability transition pore. Proc Natl Acad of Sci U S A 111:10396–10397

    Article  CAS  Google Scholar 

  • Kaufmann SH, Hengartner MO (2001) Programmed cell death: alive and well in the new millennium. Trends Cell Biol 11:526–534

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Tu H-C, Ren D, Takeuchi O, Jeffers JR, Zambetti GP, Hsieh JJ-D, Cheng EH-Y (2009) Stepwise activation of BAX and BAK by tBID, BIM, and PUMA initiates mitochondrial apoptosis. Mol Cell 36:487–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkland RA, Adibhatla RM, Hatcher JF, Franklin JL (2002) Loss of cardiolipin and mitochondria during programmed neuronal death: evidence of a role for lipid peroxidation and autophagy. Neuroscience 115:587–602

    Article  CAS  PubMed  Google Scholar 

  • Kushnareva Y, Andreyev AY, Kuwana T, Newmeyer DD (2012) Bax activation initiates the assembly of a multimeric catalyst that facilitates Bax pore formation in mitochondrial outer membranes. PLoS Biol 10:e1001394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuwana T, Bouchier-Hayes L, Chipuk JE, Bonzon C, Sullivan BA, Green DR, Newmeyer DD (2005) BH3 domains of BH3-only proteins differentially regulate Bax-mediated mitochondrial membrane permeabilization both directly and indirectly. Mol Cell 17:525–535

    Article  CAS  PubMed  Google Scholar 

  • Leber B, Lin J, Andrews DW (2007) Embedded together: the life and death consequences of interaction of the Bcl-2 family with membranes. Apoptosis 12:897–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leber B, Lin J, Andrews D (2010) Still embedded together binding to membranes regulates Bcl-2 protein interactions. Oncogene 29:5221–5230

    Article  CAS  PubMed  Google Scholar 

  • Lee EF, Grabow S, Chappaz S, Dewson G, Hockings C, Kluck RM, Debrincat MA, Gray DH, Witkowski MT, Evangelista M (2016) Physiological restraint of Bak by Bcl-xL is essential for cell survival. Genes Dev 30:1240–1250

    CAS  PubMed  PubMed Central  Google Scholar 

  • Letai A, Bassik MC, Walensky LD, Sorcinelli MD, Weiler S, Korsmeyer SJ (2002) Distinct BH3 domains either sensitize or activate mitochondrial apoptosis, serving as prototype cancer therapeutics. Cancer Cell 2:183–192

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yuan J (2008) Caspases in apoptosis and beyond. Oncogene 27:6194–6206

    Article  CAS  PubMed  Google Scholar 

  • Lindsay J, Degli Esposti M, Gilmore AP (2011) Bcl-2 proteins and mitochondria—specificity in membrane targeting for death. Biochim Biophys Acta-Mol Cell Res 1813:532–539

    Article  CAS  Google Scholar 

  • Llambi F, Moldoveanu T, Tait SW, Bouchier-Hayes L, Temirov J, McCormick LL, Dillon CP, Green DR (2011) A unified model of mammalian BCL-2 protein family interactions at the mitochondria. Mol Cell 44:517–531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lomonosova E, Chinnadurai G (2008) BH3-only proteins in apoptosis and beyond: an overview. Oncogene 27:S2–S19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lucken-Ardjomande S, Montessuit S, Martinou J-C (2008a) Bax activation and stress-induced apoptosis delayed by the accumulation of cholesterol in mitochondrial membranes. Cell Death Differ 15:484–493

    Article  CAS  PubMed  Google Scholar 

  • Lucken-Ardjomande S, Montessuit S, Martinou J-C (2008b) Contributions to Bax insertion and oligomerization of lipids of the mitochondrial outer membrane. Cell Death Differ 15:929–937

    Article  CAS  PubMed  Google Scholar 

  • Lutter M, Fang M, Luo X, Nishijima M, Xie X-s, Wang X (2000) Cardiolipin provides specificity for targeting of tBid to mitochondria. Nat Cell Biol 2:754–761

    Article  CAS  PubMed  Google Scholar 

  • Martinou J-C, Youle RJ (2011) Mitochondria in apoptosis: Bcl-2 family members and mitochondrial dynamics. Dev Cell 21:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsko CM, Hunter OC, Rabinowich H, Lotze MT, Amoscato AA (2001) Mitochondrial lipid alterations during Fas-and radiation-induced apoptosis. Biochem Biophys Res Comm 287:1112–1120

    Article  CAS  PubMed  Google Scholar 

  • Montero J, Morales A, Llacuna L, Lluis JM, Terrones O, Basañez G, Antonsson B, Prieto J, García-Ruiz C, Colell A (2008) Mitochondrial cholesterol contributes to chemotherapy resistance in hepatocellular carcinoma. Cancer Res 68:5246–5256

    Article  CAS  PubMed  Google Scholar 

  • Muchmore SW, Sattler M, Liang H, Meadows RP, Harlan JE, Yoon HS, Nettesheim DG, Chang BS, Thompson CB, Wong S-L (1996) X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature 381:335–341

    Article  CAS  PubMed  Google Scholar 

  • Oh KJ, Barbuto S, Meyer N, Kim R-S, Collier RJ, Korsmeyer SJ (2005) Conformational changes in BID, a pro-apoptotic BCL-2 family member, upon membrane binding a SITE-DIRECTED SPIN LABELING STUDY. J Biol Chem 280:753–767

    Article  CAS  PubMed  Google Scholar 

  • Qin S, Yang C, Li S, Xu C, Zhao Y, Ren H (2012) Smac: its role in apoptosis induction and use in lung cancer diagnosis and treatment. Cancer Lett 318:9–13

    Article  CAS  PubMed  Google Scholar 

  • Ros U, García-Sáez AJ (2015) More than a pore: the interplay of pore-forming proteins and lipid membranes. J Membr Biol 248:545–561

    Article  CAS  PubMed  Google Scholar 

  • Rytömaa M, Mustonen P, Kinnunen P (1992) Reversible, nonionic, and pH-dependent association of cytochrome c with cardiolipin-phosphatidylcholine liposomes. J Biol Chem 267:22243–22248

    PubMed  Google Scholar 

  • Salvador-Gallego R, Mund M, Cosentino K, Schneider J, Unsay J, Schraermeyer U, Engelhardt J, Ries J, García-Sáez AJ (2016) Bax assembly into rings and arcs in apoptotic mitochondria is linked to membrane pores. EMBO J 35:389–401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satsoura D, Kučerka N, Shivakumar S, Pencer J, Griffiths C, Leber B, Andrews DW, Katsaras J, Fradin C (2012) Interaction of the full-length Bax protein with biomimetic mitochondrial liposomes: a small-angle neutron scattering and fluorescence study. Biochim Biophys Acta-Biomembr 1818:384–401

    Article  CAS  Google Scholar 

  • Sattler M, Liang H, Nettesheim D, Meadows RP, Harlan JE, Eberstadt M, Yoon HS, Shuker SB, Chang BS, Minn AJ (1997) Structure of Bcl-xL-Bak peptide complex: recognition between regulators of apoptosis. Science 275:983–986

    Article  CAS  PubMed  Google Scholar 

  • Schafer B, Quispe J, Choudhary V, Chipuk JE, Ajero TG, Du H, Schneiter R, Kuwana T (2009) Mitochondrial outer membrane proteins assist bid in Bax-mediated lipidic pore formation. Mol Biol Cell 20:2276–2285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlame M, Rua D, Greenberg ML (2000) The biosynthesis and functional role of cardiolipin. Prog Lipid Res 39:257–288

    Article  CAS  PubMed  Google Scholar 

  • Shamas-Din A, Brahmbhatt H, Leber B, Andrews DW (2011) BH3-only proteins: orchestrators of apoptosis. Biochim Biophys Acta-Mol Cell Res 1813:508–520

    Article  CAS  Google Scholar 

  • Shamas-Din A, Bindner S, Chi X, Leber B, Andrews DW, Fradin C (2015) Distinct lipid effects on tBid and Bim activation of membrane permeabilization by pro-apoptotic Bax. Biochem J 467:495–505

    Article  CAS  PubMed  Google Scholar 

  • Shivakumar S, Kurylowicz M, Hirmiz N, Manan Y, Friaa O, Shamas-Din A, Masoudian P, Leber B, Andrews DW, Fradin C (2014) The proapoptotic protein tBid forms both superficially bound and membrane-inserted oligomers. Biophys J 106:2085–2095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki M, Youle RJ, Tjandra N (2000) Structure of Bax: coregulation of dimer formation and intracellular localization. Cell 103:645–654

    Article  CAS  PubMed  Google Scholar 

  • Tait SW, Green DR (2010) Mitochondria and cell death: outer membrane permeabilization and beyond. Nat Rev Mol Cell Biol 11:621–632

    Article  CAS  PubMed  Google Scholar 

  • Terrones O, Antonsson B, Yamaguchi H, Wang H-G, Liu J, Lee RM, Herrmann A, Basañez G (2004) Lipidic pore formation by the concerted action of proapoptotic BAX and tBID. J Biol Chem 279:30081–30091

    Article  CAS  PubMed  Google Scholar 

  • Torrecillas A, Martínez-Senac MM, Ausili A, Corbalán-García S, Gómez-Fernández JC (2007) Interaction of the C-terminal domain of Bcl-2 family proteins with model membranes. Biochim Biophys Acta-Biomembr 1768:2931–2939

    Article  CAS  Google Scholar 

  • Tyurin VA, Tyurina YY, Kochanek PM, Hamilton R, DeKosky ST, Greenberger JS, Bayir H, Kagan VE (2008) Chapter nineteen oxidative lipidomics of programmed cell death. Methods Enzymol 442:375–393

    Article  CAS  PubMed  Google Scholar 

  • Uren RT, Dewson G, Chen L, Coyne SC, Huang DC, Adams JM, Kluck RM (2007) Mitochondrial permeabilization relies on BH3 ligands engaging multiple prosurvival Bcl-2 relatives, not Bak. J Cell Biol 177:277–287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei MC, Lindsten T, Mootha VK, Weiler S, Gross A, Ashiya M, Thompson CB, Korsmeyer SJ (2000) tBID, a membrane-targeted death ligand, oligomerizes BAK to release cytochrome c. Genes Dev 14:2060–2071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Westphal D, Dewson G, Czabotar PE, Kluck RM (2011) Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta-Mol Cell Res 1813:521–531

    Article  CAS  Google Scholar 

  • Westphal D, Kluck R, Dewson G (2014) Building blocks of the apoptotic pore: how Bax and Bak are activated and oligomerize during apoptosis. Cell Death Differ 21:196–205

    Article  CAS  PubMed  Google Scholar 

  • Wong RS (2011) Apoptosis in cancer: from pathogenesis to treatment. J Exp Clin Cancer Res 30:87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yethon JA, Epand RF, Leber B, Epand RM, Andrews DW (2003) Interaction with a membrane surface triggers a reversible conformational change in Bax normally associated with induction of apoptosis. J Biol Chem 278:48935–48941

    Article  CAS  PubMed  Google Scholar 

  • Youle RJ, Strasser A (2008) The BCL-2 protein family: opposing activities that mediate cell death. Nat Rev Mol Cell Biol 9:47–59

    Article  CAS  PubMed  Google Scholar 

  • Zaltsman Y, Shachnai L, Yivgi-Ohana N, Schwarz M, Maryanovich M, Houtkooper RH, Vaz FM, De Leonardis F, Fiermonte G, Palmieri F (2010) MTCH2/MIMP is a major facilitator of tBID recruitment to mitochondria. Nat Cell Biol 12:553–562

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Z, Subramaniam S, Kale J, Liao C, Huang B, Brahmbhatt H, Condon SG, Lapolla SM, Hays FA, Ding J (2015) BH3-in-groove dimerization initiates and helix 9 dimerization expands Bax pore assembly in membranes. EMBO J 35:208–236

  • Zong W-X, Lindsten T, Ross AJ, MacGregor GR, Thompson CB (2001) BH3-only proteins that bind pro-survival Bcl-2 family members fail to induce apoptosis in the absence of Bax and Bak. Genes Dev 15:1481–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The financial support of the National Health & Medical Research Council (#1084648) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie-Isabel Aguilar.

Ethics declarations

Conflicts of interest

Siti Haji Suhaili declares that she has no conflicts of interest. Hamed Karimian declares that he has no conflicts of interest. Matthew Stellato declares that he has no conflicts of interest. Tzong-Hsien Lee declares that he has no conflicts of interest. Marie-Isabel Aguilar declares that she has no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

This article is part of a Special Issue on ‘IUPAB Edinburgh Congress’ edited by Damien Hall.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suhaili, S.H., Karimian, H., Stellato, M. et al. Mitochondrial outer membrane permeabilization: a focus on the role of mitochondrial membrane structural organization. Biophys Rev 9, 443–457 (2017). https://doi.org/10.1007/s12551-017-0308-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0308-0

Keywords

Navigation