Skip to main content

Advertisement

Log in

Nanomedicine associated with photodynamic therapy for glioblastoma treatment

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Glioblastoma, also known as glioblastoma multiforme (GBM), is the most recurrent and malignant astrocytic glioma found in adults. Biologically, GBMs are highly aggressive tumors that often show diffuse infiltration of the brain parenchyma, making complete surgical resection difficult. GBM is not curable with surgery alone because tumor cells typically invade the surrounding brain, rendering complete resection unsafe. Consequently, present-day therapy for malignant glioma remains a great challenge. The location of the invasive tumor cells presents several barriers to therapeutic delivery. The blood–brain barrier regulates the trafficking of molecules to and from the brain. While high-grade brain tumors contain some “leakiness” in their neovasculature, the mechanisms of GBM onset and progression remain largely unknown. Recent advances in the understanding of the signaling pathways that underlie GBM pathogenesis have led to the development of new therapeutic approaches targeting multiple oncogenic signaling aberrations associated with the GBM. Among these, drug delivery nanosystems have been produced to target therapeutic agents and improve their biodistribution and therapeutic index in the tumor. These systems mainly include polymer or lipid-based carriers such as liposomes, metal nanoparticles, polymeric nanospheres and nanocapsules, micelles, dendrimers, nanocrystals, and nanogold. Photodynamic therapy (PDT) is a promising treatment for a variety of oncological diseases. PDT is an efficient, simple, and versatile method that is based on a combination of a photosensitive drug and light (generally laser-diode or laser); these factors are separately relatively harmless but when used together in the presence of oxygen molecules, free radicals are produced that initiate a sequence of biological events, including phototoxicity, vascular damage, and immune responses. Photodynamic pathways activate a cascade of activities, including apoptotic and necrotic cell death in both the tumor and the neovasculature, leading to a permanent lesion and destruction of GBM cells that remain in the healthy tissue. Glioblastoma tumors differ at the molecular level. For example, gene amplification epidermal growth factor receptor and its receptor are more highly expressed in primary GBM than in secondary GBM. Despite these distinguishing features, both types of tumors (primary and secondary) arise as a result dysregulation of numerous intracellular signaling pathways and have standard features, such as increased cell proliferation, survival and resistance to apoptosis, and loss of adhesion and migration, and may show a high degree of invasiveness. PDT may promote significant tumor regression and extend the lifetime of patients who experience glioma progression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Abdallah HM, Al-Abd AM, El-Dine RS, El-Halawany AM (2015) P-glycoprotein inhibitors of natural origin as potential tumor chemo-sensitizers: a review. J Adv Res 6:45–62

    CAS  PubMed  Google Scholar 

  • Almeida JP, Chaichana KL, Rincon-Torroella J, Quinones-Hinojosa A (2015) The value of extent of resection of glioblastomas: clinical evidence and current approach. Curr Neurol Neurosci Rep 15:1–13

    Google Scholar 

  • Almeida JPM, Figueroa ER, Drezek RA (2014) Gold nanoparticle mediated cancer immunotherapy. Nanomedicine 10:503–514

    CAS  PubMed  Google Scholar 

  • Atkins RJ, Ng W, Stylli SS, Hovens CM, Kaye AH (2015) Repair mechanisms help glioblastoma resist treatment. J Clin Neurosci 22:14–20

    PubMed  Google Scholar 

  • Bae KH, Chung HJ, Park TG (2011) Nanomaterials for cancer therapy and imaging. Mol Cells 31:295–302

  • Bolfarini GC, Siqueira-Moura MP, Demets GJ, Morais PC, Tedesco AC (2012) In vitro evaluation of combined hyperthermia and photodynamic effects using magnetoliposomes loaded with cucurbituril zinc phthalocyanine complex on melanoma. J Photochem Photobiol B Biol 115:1–4

    CAS  Google Scholar 

  • Bolfarini GC, Siqueira-Moura MP, Demets GJ, Tedesco AC (2014) Preparation, characterization, and in vitro phototoxic effect of zinc phthalocyanine cucurbit [7] uril complex encapsulated into liposomes. Dyes Pigments 100:162–167

    CAS  Google Scholar 

  • Brat DJ, Scheithauer BW, Fuller GN, Tihan T (2007) Newly codified glial neoplasms of the 2007 WHO classification of tumours of the central nervous system: angiocentric glioma, pilomyxoid astrocytoma and pituicytoma. Brain Pathol 17:319–324

    PubMed  Google Scholar 

  • Castano AP, Demidova TN, Hamblin MR (2004) Mechanisms in photodynamic therapy: part one—photosensitizers, photochemistry and cellular localization. Photodiagn Photodyn Ther 1:279–293

    CAS  Google Scholar 

  • Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60:1627–1637

    CAS  PubMed  Google Scholar 

  • Chen J, Shao R, Zhang XD, Chen C (2013) Applications of nanotechnology for melanoma treatment, diagnosis, and theranostics. Int J Nanomedicine 8:2677

    PubMed  PubMed Central  Google Scholar 

  • Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumorigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    CAS  PubMed  Google Scholar 

  • Dang L, White DW, Gross S et al (2009) Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature 462:739–744

  • de Oliveira AG, Scarpa MV, Correa MA, Cera LFR, Formariz TP (2004) Microemulsões: estrutura e aplicações como sistema de liberação de fármacos. Química Nova 27:131–138

    Google Scholar 

  • de Paula LB, Primo FL, Jardim DR, Morais PC, Tedesco AC (2012) Development, characterization, and in vitro trials of chloroaluminum phthalocyanine-magnetic nanoemulsion to hyperthermia and photodynamic therapies on glioblastoma as a biological model. J Appl Phys 111:07B307

    Google Scholar 

  • de Paula CS, Tedesco AC, Primo FL, Vilela JMC, Andrade MS, Mosqueira VCF (2013) Chloroaluminium phthalocyanine polymeric nanoparticles as photosensitisers: photophysical and physicochemical characterisation, release and phototoxicity in vitro. Eur J Pharm Sci 49:371–381

    PubMed  Google Scholar 

  • de Paula LB, Primo FL, Pinto MR, Morais PC, Tedesco AC (2015) Combination of hyperthermia and photodynamic therapy on mesenchymal stem cell line treated with chloroaluminum phthalocyanine magnetic-nanoemulsion. J Magn Magn Mater 380:372–376

    Google Scholar 

  • del Burgo LS, Pedraz J, Orive G (2014) Advanced nanovehicles for cancer management. Drug Discov Today 19:1659–1670

    Google Scholar 

  • Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF, Collins VP (1991) Genes for epidermal growth factor receptor, transforming growth factor α, and epidermal growth factor and their expression in human gliomas in vivo. Cancer Res 51:2164–2172

    CAS  PubMed  Google Scholar 

  • Fan Z, Fu PP, Yu H, Ray PC (2014) Theranostic nanomedicine for cancer detection and treatment. J Food Drug Anal 22:3–17

    CAS  PubMed  Google Scholar 

  • Ficheux H (2009) Photodynamic therapy: principles and therapeutic indications. Ann Pharmaceut Fr 1:32–40

  • Fuller GN, Scheithauer BW (2007) The 2007 revised World Health Organization (WHO) classification of tumours of the central nervous system: newly codified entities. Brain Pathol 17:304–307

    PubMed  Google Scholar 

  • Furnari FB, Fenton T, Bachoo RM et al (2007) Malignant astrocytic glioma: genetics, biology, and paths to treatment. Genes Dev 21:2683–2710

  • Huang PH, Xu AM, White FM (2009) Oncogenic EGFR signaling networks in glioma. Sci Signal 2:re6. doi: 10.1126/scisignal.287re6

  • Idowu M, Nyokong T (2007) Photophysical and photochemical properties of zinc and aluminum phthalocyanines in the presence of magnetic fluid. J Photochem Photobiol A Chem 188:200–206

    CAS  Google Scholar 

  • Jabr-Milane L, van Vlerken L, Devalapally H, Shenoy D, Komareddy S, Bhavsar M, Amiji M (2008) Multi-functional nanocarriers for targeted delivery of drugs and genes. J Control Release 130:121–128

    CAS  PubMed  Google Scholar 

  • James CD, Carlbom E, Nordenskjold M, Collins VP, Cavenee WK (1989) Mitotic recombination of chromosome 17 in astrocytomas. Proc Natl Acad Sci USA 86:2858–2862

    CAS  PubMed  Google Scholar 

  • Jansen M, Yip S, Louis DN (2010) Molecular pathology in adult gliomas: diagnostic, prognostic, and predictive markers. Lancet Neurol 9:717–726

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiguet Jiglaire C, Baeza-Kallee N, Denicolaï E et al (2014) Ex vivo cultures of glioblastoma in three-dimensional hydrogel maintain the original tumor growth behavior and are suitable for preclinical drug and radiation sensitivity screening. Exp Cell Res 321:99–108

  • Kanu OO, Hughes B, Di C, Lin N, Fu J, Bigner DD, Yan H et al (2009) Glioblastoma multiforme oncogenomics and signaling pathways. Clin Med Oncol 3:39–52

  • Karioti A, Bilia AR (2010) Hypericins as potential leads for new therapeutics. Int J Mol Sci 11:562–594

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaup B, Schindler I, Knüpfer H, Schlenzka A, Preiβ R, Knüpfer M (2001) Time-dependent inhibition of glioblastoma cell proliferation by dexamethasone. J Neuro-Oncol 51:105–110

    CAS  Google Scholar 

  • Kim JW, Kim SY, Park SY, Kim YM, Kim JM, Lee MH, Ryu HM (2004) Mesenchymal progenitor cells in the human umbilical cord. Ann Hematol 83:733–738

    CAS  PubMed  Google Scholar 

  • Kleihues P, Webster K, Cavenee WK (2000) Pathology and genetics of tumours of the nervous system. International Agency for Research on Cancer Press, Lyon

  • Konan YN, Gurny R, Allémann E (2002) State of the art in the delivery of photosensitizers for photodynamic therapy. J Photochem Photobiol B Biol 66:89–106

    CAS  Google Scholar 

  • Krakstad C, Chekenya M (2010) Survival signalling and apoptosis resistance in glioblastomas: opportunities for targeted therapeutics. Mol Cancer 9:135

    PubMed  PubMed Central  Google Scholar 

  • Krasnici S, Werner A, Eichhorn ME et al (2003) Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int J Cancer 105:561–567

  • Kübler A, Niziol C, Sidhu M, Dünne A, Werner J (2005) Analysis of cost effectiveness of photodynamic therapy with Foscan (Foscan-PDT) in comparison with palliative chemotherapy in patients with advanced head-neck tumors in Germany. Laryngo-Rhino-Otologie 84:725–732

    PubMed  Google Scholar 

  • Lakowicz JR, Masters BR (2008) Principles of fluorescence spectroscopy. J Biomed Opt 13:9901

    Google Scholar 

  • Libermann TA, Nusbaum HR, Razon N et al (1985) Amplification, enhanced expression and possible rearrangement of EGF receptor gene in primary human brain tumours of glial origin. Nature 313:144–147

  • Lim CK, Heo J, Shin S et al (2013) Nanophotosensitizers toward advanced photodynamic therapy of cancer. Cancer Lett 334:176–187

  • Lin L, Xiong L, Wen Y et al (2015) Active targeting of nano-photosensitizer delivery systems for photodynamic therapy of cancer stem cells. J Biomed Nanotechnol 11:531–554

  • Lo PC, Fong WP, Ng DK (2008) Effects of peripheral chloro substitution on the photophysical properties and in vitro photodynamic activities of galactose-conjugated silicon (IV) phthalocyanines. ChemMedChem 3:1110–1117

    CAS  PubMed  Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

  • Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115:1990–2042

    CAS  PubMed  Google Scholar 

  • Macaroff PP, Oliveira DM, Ribeiro KF, Lacava ZG, Lima EC, Morais PC, Tedesco AC (2005) Studies of cell toxicity of complexes of magnetic fluids and biological macromolecules. J Magn Magn Mater 293:293–297

    CAS  Google Scholar 

  • Maher EA, Furnari FB, Bachoo RM, Rowitch DH, Louis DN, Cavenee WK, DePinho RA (2001) Malignant glioma: genetics and biology of a grave matter. Genes Dev 15:1311–1333

    CAS  PubMed  Google Scholar 

  • McLendon R, Friedman A, Bigner D, et al (2008) Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature 455(7216):1061–1068

  • Mellinghoff IK et al (2005) Molecular determinants of the response of glioblastomas to EGFR kinase inhibitors. N Engl J Med 353:2012–2024

    CAS  PubMed  Google Scholar 

  • Merlo A (2003) Genes and pathways driving glioblastomas in humans and murine disease models. Neurosurg Rev 26:145–158

    PubMed  Google Scholar 

  • Missios S, Abbassy M, Vogelbaum MA, Recinos PF (2015) Use of image fluorescence in the resection of gliomas. Current Surgery Reports 3:1–6

    Google Scholar 

  • Molnar A, Dědic R, Svoboda A, Hala J (2007) Singlet oxygen production by lipophilic photosensitizers in liposomes studied by time and spectral resolved phosphorescence. J Mol Struct 834:488–491

    Google Scholar 

  • Muehlmann LA, Ma BC, Longo JPF, Santos MFMA, Azevedo RB (2014) Aluminum–phthalocyanine chloride associated to poly (methyl vinyl ether-co-maleic anhydride) nanoparticles as a new third-generation photosensitizer for anticancer photodynamic therapy. Int J Nanomed 9:1199

    Google Scholar 

  • Nakazato Y (2008) The 4th edition of WHO classification of tumours of the central nervous system published in 2007 no shinkei geka. Neurol Surg 36:473

    Google Scholar 

  • Natsume A, Wakabayashi T, Ishii D et al (2008) A combination of IFN-β and temozolomide in human glioma xenograft models: implication of p53-mediated MGMT downregulation. Cancer Chemother Pharmacol 61:653–659

  • Nicholas MK, Lukas RV, Jafri NF, Faoro L, Salgia R (2006) Epidermal growth factor receptor–mediated signal transduction in the development and therapy of gliomas. Clin Cancer Res 12:7261–7270

    CAS  PubMed  Google Scholar 

  • Nishiyama N, Morimoto Y, Jang W-D, Kataoka K (2009) Design and development of dendrimer photosensitizer-incorporated polymeric micelles for enhanced photodynamic therapy. Adv Drug Deliv Rev 61:327–338

    CAS  PubMed  Google Scholar 

  • Niziolek M, Korytowski W, Girotti AW (2003) Nitric oxide inhibition of free radical-mediated lipid peroxidation in photodynamically treated membranes and cells. Free Radic Biol Med 34:997–1005

    CAS  PubMed  Google Scholar 

  • Nonell S, Bou N, Borrell J, Teixidó J, Villanueva A, Juarranz A, Cañete M (1995) Synthesis of 2, 7, 12, 17-tetraphenylporphycene (TPPo). First aryl-substituted porphycene for the photodynamic therapy of tumors. Tetrahedron Lett 36:3405–3408

    CAS  Google Scholar 

  • Oh JM, Choi SJ, Lee GE, Han SH, Choy JH (2009) Inorganic drug delivery nanovehicle conjugated with cancer cell-specific ligand. Adv Funct Mater 19:1617–1624

    CAS  Google Scholar 

  • Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445–1453

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ormond AB, Freeman HS (2013) Dye sensitizers for photodynamic therapy. Materials 6:817–840

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pastwa E, Poplawski T, Lewandowska U, Somiari SB, Blasiak J, Somiari RI (2014) Wortmannin potentiates the combined effect of etoposide and cisplatin in human glioma cells. Int J Biochem Cell Biol 53:423–431

    CAS  PubMed  Google Scholar 

  • Persidis A (1999) Cancer multidrug resistance. Nat Biotechnol 17:94–95

    CAS  PubMed  Google Scholar 

  • Plaetzer K, Kiesslich T, Verwanger T, Krammer B (2003) The modes of cell death induced by PDT: an overview. Medical Laser Application 18:7–19

    Google Scholar 

  • Preston-Martin S (1996) Epidemiology of primary CNS neoplasms. Neurol Clin 14:273–290

    CAS  PubMed  Google Scholar 

  • Primo FL, Bentley MV, Tedesco AC (2008) Photophysical studies and in vitro skin permeation/retention of Foscan®/nanoemulsion (NE) applicable to photodynamic therapy skin cancer treatment. J Nanosci Nanotechnol 8:340–347

    CAS  PubMed  Google Scholar 

  • Primo FL, De Paula LB, de Siqueira-Moura MP, Tedesco AC (2012) Photobiostimulation on wound healing treatment by ClAlPc-nanoemulsion from a multiple-wavelength portable light source on a 3D-human stem cell dermal equivalent. Curr Med Chem 19:5157–5163

    CAS  PubMed  Google Scholar 

  • Pytel P, Lukas RV (2009) Update on diagnostic practice: tumors of the nervous system. Archives of Pathology & Laboratory Medicine 133:1062–1077

    CAS  Google Scholar 

  • Rao RD, James CD (2004) Altered molecular pathways in gliomas: an overview of clinically relevant issues. In: Seminars in Oncology, vol 5. Elsevier, New York Amsterdam, pp 595–604

  • Ren Y, Wang R, Liu Y et al (2014) A hematoporphyrin-based delivery system for drug resistance reversal and tumor ablation. Biomaterials 35:2462–2470

  • Retèl VP, Hummel MJ, van Harten WH (2009) Review on early technology assessments of nanotechnologies in oncology. Mol Oncol 3:394–401

    PubMed  PubMed Central  Google Scholar 

  • Rosenthal I (1991) Phthalocyanines as photodynamic sensitizers. Photochem Photobiol 53:859–870

    CAS  PubMed  Google Scholar 

  • Rosenthal I, Ben-Hur E (1995) Role of oxygen in the phototoxicity of phthalocyanines. Int J Radiat Biol 67:85–91

    CAS  PubMed  Google Scholar 

  • Rubenstein J, Rakic P (eds) (2013) Cellular migration and formation of neuronal connections. Comprehensive developmental neuroscience, vol 2. Academic Press, New York vol 2

  • Saavedra R, Rocha LB, Dąbrowski JM, Arnaut LG (2014) Modulation of biodistribution, pharmacokinetics, and photosensitivity with the delivery vehicle of a bacteriochlorin photosensitizer for photodynamic therapy. ChemMedChem 9:390–398

    CAS  PubMed  Google Scholar 

  • Sadzuka Y, Iwasaki F, Sugiyama I et al (2008) Phototoxicity of coproporphyrin as a novel photodynamic therapy was enhanced by liposomalization. Toxicol Lett 182:110–114

  • Sharman WM, Allen CM, Van Lier JE (1999) Photodynamic therapeutics: basic principles and clinical applications. Drug Discov Today 4:507–517

    CAS  PubMed  Google Scholar 

  • Singh SK, Hawkins C, Clarke ID et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401

  • Siqueira-Moura MP, Primo FL, Espreafico EM, Tedesco AC (2013) Development, characterization, and photocytotoxicity assessment on human melanoma of chloroaluminum phthalocyanine nanocapsules. Mater Sci Eng C 33:1744–1752

    CAS  Google Scholar 

  • Siqueira-Moura MP, Primo FL, Peti APF, Tedesco AC (2010) Validated spectrophotometric and spectrofluorimetric methods for determination of chloroaluminum phthalocyanine in nanocarriers. Pharmazie 65:9–14

    CAS  PubMed  Google Scholar 

  • Somani B, Moseley H, Eljamel M, Nabi G, Kata S (2010) Photodynamic diagnosis (PDD) for upper urinary tract transitional cell carcinoma (UT-TCC): evolution of a new technique. Photodiagn Photodyn Ther 7:39–43

    CAS  Google Scholar 

  • Spencer DS, Puranik AS, Peppas NA (2015) Intelligent nanoparticles for advanced drug delivery in cancer treatment. Curr Opin Chem Eng 7:84–92

    PubMed  PubMed Central  Google Scholar 

  • Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

  • Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466

  • Tada DB (2007) Desenvolvimento de nanopartículas fotossensibilizadoras. Universidade de São Paulo, São Paulo

  • Tapajós EC, Longo JP, Simioni AR et al (2008) In vitro photodynamic therapy on human oral keratinocytes using chloroaluminum-phthalocyanine. Oral Oncol 44:1073–1079

  • Torchilin VP (2005) Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov 4:145–160

    CAS  PubMed  Google Scholar 

  • Tran B, Rosenthal M (2010) Survival comparison between glioblastoma multiforme and other incurable cancers. J Clin Neurosci 17:417–421

    CAS  PubMed  Google Scholar 

  • Trylcova J, Busek P, Smetana Jr K, Balaziova E, Dvorankova B, Mifkova A, Sedo A (2015) Effect of cancer-associated fibroblasts on the migration of glioma cells in vitro. Tumor Biol 36(8):5873–5879

  • Van Meir EG, Hadjipanayis CG, Norden AD, Shu HK, Wen PY, Olson JJ (2010) Exciting new advances in neuro-oncology: the avenue to a cure for malignant glioma. CA Cancer J Clin 60:166–193

    PubMed  PubMed Central  Google Scholar 

  • Wachsberger PR, Lawrence YR, Liu Y, Daroczi B, Xu X, Dicker AP (2012) Epidermal growth factor receptor expression modulates antitumor efficacy of vandetanib or cediranib combined with radiotherapy in human glioblastoma xenografts. Int J Radiat Oncol Biol Phys 82:483–491

    CAS  PubMed  Google Scholar 

  • Wager TT, Villalobos A, Verhoest PR, Hou X, Shaffer CL (2011) Strategies to optimize the brain availability of central nervous system drug candidates. Expert Opin Drug Discovery 6:371–381

    CAS  Google Scholar 

  • Wong KK, deLeeuw RJ, Dosanjh NS et al (2007) A comprehensive analysis of common copy-number variations in the human genome. Am J Hum Genet 80:91–104

  • Yang Y-T, Chen C-T, Tsai T (2013) Absorption and fluorescence spectral properties of hematoporphyrin in liposomes, micelles, and nanoparticles. Dyes Pigments 96:763–769

    CAS  Google Scholar 

  • Yarden Y (2001) The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. Eur J Cancer 37:3–8

    Google Scholar 

  • Yarden Y, Sliwkowski MX (2001) Untangling the ErbB signalling network. Nat Rev Mol Cell Biol 2:127–137

    CAS  PubMed  Google Scholar 

  • Zahonero C, Sánchez-Gómez P (2014) EGFR-dependent mechanisms in glioblastoma: towards a better therapeutic strategy. Cell Mol Life Sci:1–24

Download references

Acknowledgments

The study was supported by grants from the Brazilian agencies, Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) Thematic Project (# 2013/50181-1 A.C.T.), and Post Doc project (# 2015/18684-9 L.B.P). The authors also thank Financiadora de Estudos e Projeto (FINEP) 01.10.0758.01 and CNPq-National Institute of Science and Technology-INCT of Nanobiotechnology (Project # 573880/2008-5 A.C.T.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio C. Tedesco.

Ethics declarations

Conflict of interest statement

The authors declare that thhe have no conflicts of interest regarding this article.

Ethical approval statement

This article does not contain any studies with human participants or animals performed by the authors.

Additional information

This article is part of a Special Issue on ‘Latin America’ edited by Pietro Ciancaglini and Rosangela Itri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paula, L.B., Primo, F.L. & Tedesco, A.C. Nanomedicine associated with photodynamic therapy for glioblastoma treatment. Biophys Rev 9, 761–773 (2017). https://doi.org/10.1007/s12551-017-0293-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-017-0293-3

Keywords

Navigation