Alberg DG, Schreiber SL (1993) Structure-based design of a cyclophilin–calcineurin bridging ligand. Science 262:248–250
CAS
PubMed
Article
Google Scholar
Allen WJ, Balius TE, Mukherjee S et al (2015) DOCK 6: impact of new features and current docking performance. J Comput Chem 36:1132–1156. doi:10.1002/jcc.23905
CAS
PubMed
PubMed Central
Article
Google Scholar
Bajaj CL, Chowdhury R, Siddahanavalli V (2011) F2Dock: fast Fourier protein–protein docking. IEEE/ACM Trans Comput Biol Bioinform 8:45–58. doi:10.1109/TCBB.2009.57
CAS
PubMed
PubMed Central
Article
Google Scholar
Banitt I, Wolfson HJ (2011) ParaDock: a flexible non-specific DNA—rigid protein docking algorithm. Nucleic Acids Res 39, e135. doi:10.1093/nar/gkr620
CAS
PubMed
PubMed Central
Article
Google Scholar
Berman HM, Battistuz T, Bhat TN et al (2002) The protein data bank. Acta Crystallogr D Biol Crystallogr 58:899–907
PubMed
Article
CAS
Google Scholar
Bissantz C, Folkers G, Rognan D (2000) Protein-based virtual screening of chemical databases. 1. Evaluation of different docking/scoring combinations. J Med Chem 43:4759–4767
CAS
PubMed
Article
Google Scholar
Bodian DL, Yamasaki RB, Buswell RL, Stearns JF, White JM, Kuntz ID (1993) Inhibition of the fusion-inducing conformational change of influenza hemagglutinin by benzoquinones and hydroquinones. Biochemistry 32:2967–2978
CAS
PubMed
Article
Google Scholar
Böhm HJ (1992) The computer program LUDI: a new method for the de novo design of enzyme inhibitors. J Comput Aided Mol Des 6:61–78
PubMed
Article
Google Scholar
Brady GP Jr, Stouten PF (2000) Fast prediction and visualization of protein binding pockets with PASS. J Comput Aided Mol Des 14:383–401
CAS
PubMed
Article
Google Scholar
Brooks BR, Brooks CL, MacKerell AD et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30:1545–1614. doi:10.1002/jcc.21287
CAS
PubMed
PubMed Central
Article
Google Scholar
Bruccoleri RE, Karplus M (1990) Conformational sampling using high-temperature molecular dynamics. Biopolymers 29:1847–1862. doi:10.1002/bip.360291415
CAS
PubMed
Article
Google Scholar
Bursulaya BD, Totrov M, Abagyan R, Brooks CL 3rd (2003) Comparative study of several algorithms for flexible ligand docking. J Comput Aided Mol Des 17:755–763
CAS
PubMed
Article
Google Scholar
Caflisch A, Miranker A, Karplus M (1993) Multiple copy simultaneous search and construction of ligands in binding sites: application to inhibitors of HIV-1 aspartic proteinase. J Med Chem 36:2142–2167
CAS
PubMed
Article
Google Scholar
Canutescu AA, Shelenkov AA, Dunbrack RL Jr (2003) A graph-theory algorithm for rapid protein side-chain prediction. Protein Sci 12:2001–2014. doi:10.1110/ps.03154503
CAS
PubMed
PubMed Central
Article
Google Scholar
Chen R, Li L, Weng Z (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52:80–87. doi:10.1002/prot.10389
CAS
PubMed
Article
Google Scholar
Chen H, Lyne PD, Giordanetto F, Lovell T, Li J (2006) On evaluating molecular-docking methods for pose prediction and enrichment factors. J Chem Inf Model 46:401–415. doi:10.1021/ci0503255
CAS
PubMed
Article
Google Scholar
Chen HM, Liu BF, Huang HL, Hwang SF, Ho SY (2007) SODOCK: swarm optimization for highly flexible protein–ligand docking. J Comput Chem 28:612–623. doi:10.1002/jcc.20542
CAS
PubMed
Article
Google Scholar
Cheng TM, Blundell TL, Fernandez-Recio J (2008) Structural assembly of two-domain proteins by rigid-body docking. BMC Bioinformatics 9:441. doi:10.1186/1471-2105-9-441
PubMed
PubMed Central
Article
CAS
Google Scholar
Corbeil CR, Williams CI, Labute P (2012) Variability in docking success rates due to dataset preparation. J Comput Aided Mol Des 26:775–786. doi:10.1007/s10822-012-9570-1
CAS
PubMed
PubMed Central
Article
Google Scholar
Cummings MD, DesJarlais RL, Gibbs AC, Mohan V, Jaeger EP (2005) Comparison of automated docking programs as virtual screening tools. J Med Chem 48:962–976. doi:10.1021/jm049798d
CAS
PubMed
Article
Google Scholar
de Vries SJ, van Dijk M, Bonvin AM (2010) The HADDOCK web server for data-driven biomolecular docking. Nat Protoc 5:883–897. doi:10.1038/nprot.2010.32
PubMed
Article
CAS
Google Scholar
Debnath AK, Radigan L, Jiang S (1999) Structure-based identification of small molecule antiviral compounds targeted to the gp41 core structure of the human immunodeficiency virus type 1. J Med Chem 42:3203–3209. doi:10.1021/jm990154t
CAS
PubMed
Article
Google Scholar
DeLuca S, Khar K, Meiler J (2015) Fully flexible docking of medium sized ligand libraries with RosettaLigand. PLoS One 10:e0132508. doi:10.1371/journal.pone.0132508
PubMed
PubMed Central
Article
CAS
Google Scholar
Desmet J, De Maeyer M, Hazes B, Lasters I (1992) The dead-end elimination theorem and its use in protein side-chain positioning. Nature 356:539–542
CAS
PubMed
Article
Google Scholar
Dixon JS (1997) Evaluation of the CASP2 docking section. Proteins 29(Suppl 1):198–204
Article
Google Scholar
Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein–protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125:1731–1737. doi:10.1021/ja026939x
CAS
PubMed
Article
Google Scholar
Eisen MB, Wiley DC, Karplus M, Hubbard RE (1994) HOOK: a program for finding novel molecular architectures that satisfy the chemical and steric requirements of a macromolecule binding site. Proteins 19:199–221. doi:10.1002/prot.340190305
CAS
PubMed
Article
Google Scholar
Fernández-Recio J, Totrov M, Abagyan R (2002) Soft protein–protein docking in internal coordinates. Protein Sci 11:280–291
PubMed
PubMed Central
Article
CAS
Google Scholar
Fischer D, Norel R, Wolfson H, Nussinov R (1993) Surface motifs by a computer vision technique: searches, detection, and implications for protein–ligand recognition. Proteins 16:278–292. doi:10.1002/prot.340160306
CAS
PubMed
Article
Google Scholar
Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749. doi:10.1021/jm0306430
CAS
PubMed
Article
Google Scholar
Fu Y, Wu XJ, Chen ZG, Sun J, Zhao J, Xu WB (2015) A new approach for flexible molecular docking based on swarm intelligence. Math Probl Eng. doi:10.1155/2015/540186
Google Scholar
Gardiner EJ, Willett P, Artymiuk PJ (2001) Protein docking using a genetic algorithm. Proteins 44:44–56
CAS
PubMed
Article
Google Scholar
Gardiner EJ, Willett P, Artymiuk PJ (2003) GAPDOCK: a genetic algorithm approach to protein docking in CAPRI round 1. Proteins 52:10–14. doi:10.1002/prot.10386
CAS
PubMed
Article
Google Scholar
Garzon JI, Lopéz-Blanco JR, Pons C et al (2009) FRODOCK: a new approach for fast rotational protein–protein docking. Bioinformatics 25:2544–2551. doi:10.1093/bioinformatics/btp447
CAS
PubMed
PubMed Central
Article
Google Scholar
Goodford PJ (1985) A computational procedure for determining energetically favorable binding sites on biologically important macromolecules. J Med Chem 28:849–857
CAS
PubMed
Article
Google Scholar
Goodsell DS, Olson AJ (1990) Automated docking of substrates to proteins by simulated annealing. Proteins 8:195–202. doi:10.1002/prot.340080302
CAS
PubMed
Article
Google Scholar
Gu J, Yang X, Kang L, Wu J, Wang X (2015) MoDock: a multi-objective strategy improves the accuracy for molecular docking. Algorithms Mol Biol 10:8. doi:10.1186/s13015-015-0034-8
PubMed
PubMed Central
Article
CAS
Google Scholar
Hammes GG (2002) Multiple conformational changes in enzyme catalysis. Biochemistry 41:8221–8228
CAS
PubMed
Article
Google Scholar
Harrison SJ, Guidolin A, Faast R et al (2002) Efficient generation of alpha(1,3) galactosyltransferase knockout porcine fetal fibroblasts for nuclear transfer. Transgenic Res 11:143–150
CAS
PubMed
Article
Google Scholar
Heifetz A, Katchalski-Katzir E, Eisenstein M (2002) Electrostatics in protein–protein docking. Protein Sci 11:571–587
CAS
PubMed
PubMed Central
Article
Google Scholar
Hu X, Balaz S, Shelver WH (2004) A practical approach to docking of zinc metalloproteinase inhibitors. J Mol Graph Model 22:293–307. doi:10.1016/j.jmgm.2003.11.002
CAS
PubMed
Article
Google Scholar
Hurwitz N, Schneidman-Duhovny D, Wolfson HJ (2016) Memdock: an alpha-helical membrane protein docking algorithm. Bioinformatics 32:2444–2450. doi:10.1093/bioinformatics/btw184
PubMed
Article
Google Scholar
Jackson RM, Sternberg MJ (1995) A continuum model for protein–protein interactions: application to the docking problem. J Mol Biol 250:258–275. doi:10.1006/jmbi.1995.0375
CAS
PubMed
Article
Google Scholar
Jackson RM, Gabb HA, Sternberg MJ (1998) Rapid refinement of protein interfaces incorporating solvation: application to the docking problem. J Mol Biol 276:265–285. doi:10.1006/jmbi.1997.1519
CAS
PubMed
Article
Google Scholar
Jain AN (2003) Surflex: fully automatic flexible molecular docking using a molecular similarity-based search engine. J Med Chem 46:499–511. doi:10.1021/jm020406h
CAS
PubMed
Article
Google Scholar
Jiang F, Kim SH (1991) “Soft docking”: matching of molecular surface cubes. J Mol Biol 219:79–102
CAS
PubMed
Article
Google Scholar
Jones G, Willett P, Glen RC (1995) Molecular recognition of receptor sites using a genetic algorithm with a description of desolvation. J Mol Biol 245:43–53
CAS
PubMed
Article
Google Scholar
Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748. doi:10.1006/jmbi.1996.0897
CAS
PubMed
Article
Google Scholar
Katchalski-Katzir E, Shariv I, Eisenstein M, Friesem AA, Aflalo C, Vakser IA (1992) Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A 89:2195–2199
CAS
PubMed
PubMed Central
Article
Google Scholar
Kellenberger E, Rodrigo J, Muller P, Rognan D (2004) Comparative evaluation of eight docking tools for docking and virtual screening accuracy. Proteins 57:225–242. doi:10.1002/prot.20149
CAS
PubMed
Article
Google Scholar
Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680. doi:10.1126/science.220.4598.671
CAS
PubMed
Article
Google Scholar
Kohlbacher O, Lenhof HP (2000) BALL—rapid software prototyping in computational molecular biology. Bioinform 16:815–824
CAS
Article
Google Scholar
Kontoyianni M, McClellan LM, Sokol GS (2004) Evaluation of docking performance: comparative data on docking algorithms. J Med Chem 47:558–565. doi:10.1021/jm0302997
CAS
PubMed
Article
Google Scholar
Korb O, Stutzle T, Exner TE (2009) Empirical scoring functions for advanced protein–ligand docking with PLANTS. J Chem Inf Model 49:84–96. doi:10.1021/ci800298z
CAS
PubMed
Article
Google Scholar
Koshland DE Jr (1963) Correlation of structure and function in enzyme action. Science 142:1533–1541
CAS
PubMed
Article
Google Scholar
Kozakov D, Brenke R, Comeau SR, Vajda S (2006) PIPER: an FFT-based protein docking program with pairwise potentials. Proteins 65:392–406. doi:10.1002/prot.21117
CAS
PubMed
Article
Google Scholar
Kozakov D, Beglov D, Bohnuud T et al (2013) How good is automated protein docking? Proteins 81:2159–2166. doi:10.1002/prot.24403
CAS
PubMed
PubMed Central
Article
Google Scholar
Kuntz ID, Blaney JM, Oatley SJ, Langridge R, Ferrin TE (1982) A geometric approach to macromolecule–ligand interactions. J Mol Biol 161:269–288
CAS
PubMed
Article
Google Scholar
Laskowski RA (1995) SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions. J Mol Graph 13:323–330
CAS
PubMed
Article
Google Scholar
Lawrence MC, Davis PC (1992) CLIX: a search algorithm for finding novel ligands capable of binding proteins of known three-dimensional structure. Proteins 12:31–41. doi:10.1002/prot.340120105
CAS
PubMed
Article
Google Scholar
Leach AR (1994) Ligand docking to proteins with discrete side-chain flexibility. J Mol Biol 235:345–356
CAS
PubMed
Article
Google Scholar
Lensink MF, Wodak SJ (2013) Docking, scoring, and affinity prediction in CAPRI. Proteins 81:2082–2095. doi:10.1002/prot.24428
CAS
PubMed
Article
Google Scholar
Levitt DG, Banaszak LJ (1992) POCKET: a computer graphics method for identifying and displaying protein cavities and their surrounding amino acids. J Mol Graph 10:229–234
CAS
PubMed
Article
Google Scholar
Lewis RA, Dean PM (1989a) Automated site-directed drug design: the concept of spacer skeletons for primary structure generation. Proc R Soc Lond Ser B Biol Sci 236:125–140
CAS
Article
Google Scholar
Lewis RA, Dean PM (1989b) Automated site-directed drug design: the formation of molecular templates in primary structure generation. Proc R Soc Lond Ser B Biol Sci 236:141–162
CAS
Article
Google Scholar
Li N, Sun Z, Jiang F (2007) SOFTDOCK application to protein–protein interaction benchmark and CAPRI. Proteins 69:801–808. doi:10.1002/prot.21728
CAS
PubMed
Article
Google Scholar
Li X, Li Y, Cheng T, Liu Z, Wang R (2010) Evaluation of the performance of four molecular docking programs on a diverse set of protein–ligand complexes. J Comput Chem 31:2109–2125. doi:10.1002/jcc.21498
PubMed
Article
CAS
Google Scholar
Liu Y, Zhao L, Li W, Zhao D, Song M, Yang Y (2013) FIPSDock: a new molecular docking technique driven by fully informed swarm optimization algorithm. J Comput Chem 34:67–75. doi:10.1002/jcc.23108
PubMed
Article
CAS
Google Scholar
Mandell JG, Roberts VA, Pique ME et al (2001) Protein docking using continuum electrostatics and geometric fit. Protein Eng 14:105–113
CAS
PubMed
Article
Google Scholar
Matsuzaki Y, Ohue M, Uchikoga N, Akiyama Y (2014) Protein–protein interaction network prediction by using rigid-body docking tools: application to bacterial chemotaxis. Protein Pept Lett 21:790–798
CAS
PubMed
PubMed Central
Article
Google Scholar
McGann MR, Almond HR, Nicholls A, Grant JA, Brown FK (2003) Gaussian docking functions. Biopolymers 68:76–90. doi:10.1002/bip.10207
CAS
PubMed
Article
Google Scholar
Metropolis N, Ulam S (1949) The Monte Carlo method. J Am Stat Assoc 44:335–341
CAS
PubMed
Article
Google Scholar
Mezei M (2003) A new method for mapping macromolecular topography. J Mol Graph Model 21:463–472
CAS
PubMed
Article
Google Scholar
Miller MD, Kearsley SK, Underwood DJ, Sheridan RP (1994) FLOG: a system to select ‘quasi-flexible’ ligands complementary to a receptor of known three-dimensional structure. J Comput Aided Mol Des 8:153–174
CAS
PubMed
Article
Google Scholar
Miranker A, Karplus M (1991) Functionality maps of binding sites: a multiple copy simultaneous search method. Proteins 11:29–34. doi:10.1002/prot.340110104
CAS
PubMed
Article
Google Scholar
Moon JB, Howe WJ (1991) Computer design of bioactive molecules: a method for receptor-based de novo ligand design. Proteins 11:314–328. doi:10.1002/prot.340110409
CAS
PubMed
Article
Google Scholar
Namasivayam V, Günther R (2007) pso@autodock: a fast flexible molecular docking program based on swarm intelligence. Chem Biol Drug Des 70:475–484. doi:10.1111/j.1747-0285.2007.00588.x
CAS
PubMed
Article
Google Scholar
Ng MC, Fong S, Siu SW (2015) PSOVina: the hybrid particle swarm optimization algorithm for protein–ligand docking. J Bioinform Comput Biol 13:1541007. doi:10.1142/S0219720015410073
CAS
PubMed
Article
Google Scholar
Nishibata Y, Itai A (1993) Confirmation of usefulness of a structure construction program based on three-dimensional receptor structure for rational lead generation. J Med Chem 36:2921–2928
CAS
PubMed
Article
Google Scholar
Novotny J, Bruccoleri RE, Saul FA (1989) On the attribution of binding energy in antigen–antibody complexes McPC 603, D1.3, and HyHEL-5. Biochemistry 28:4735–4749
CAS
PubMed
Article
Google Scholar
Ohue M, Matsuzaki Y, Uchikoga N, Ishida T, Akiyama Y (2014a) MEGADOCK: an all-to-all protein–protein interaction prediction system using tertiary structure data. Protein Pept Lett 21:766–778
CAS
PubMed
PubMed Central
Article
Google Scholar
Ohue M, Shimoda T, Suzuki S, Matsuzaki Y, Ishida T, Akiyama Y (2014b) MEGADOCK 4.0: an ultra-high-performance protein–protein docking software for heterogeneous supercomputers. Bioinformatics 30:3281–3283. doi:10.1093/bioinformatics/btu532
CAS
PubMed
PubMed Central
Article
Google Scholar
Onodera K, Satou K, Hirota H (2007) Evaluations of molecular docking programs for virtual screening. J Chem Inf Model 47:1609–1618. doi:10.1021/ci7000378
CAS
PubMed
Article
Google Scholar
Österberg F, Morris GM, Sanner MF, Olson AJ, Goodsell DS (2002) Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins 46:34–40
PubMed
Article
CAS
Google Scholar
O’Sullivan D, Arrhenius T, Sidney JO et al (1991) On the interaction of promiscuous antigenic peptides with different DR alleles. Identification of common structural motifs. J Immunol 147:2663–2669
PubMed
Google Scholar
Palma PN, Krippahl L, Wampler JE, Moura JJ (2000) BiGGER: a new (soft) docking algorithm for predicting protein interactions. Proteins 39:372–384
CAS
PubMed
Article
Google Scholar
Paul N, Rognan D (2002) ConsDock: a new program for the consensus analysis of protein–ligand interactions. Proteins 47:521–533. doi:10.1002/prot.10119
CAS
PubMed
Article
Google Scholar
Pellegrini M, Doniach S (1993) Computer simulation of antibody binding specificity. Proteins 15:436–444. doi:10.1002/prot.340150410
CAS
PubMed
Article
Google Scholar
Perola E, Walters WP, Charifson PS (2004) A detailed comparison of current docking and scoring methods on systems of pharmaceutical relevance. Proteins 56:235–249. doi:10.1002/prot.20088
CAS
PubMed
Article
Google Scholar
Pierce BG, Hourai Y, Weng Z (2011) Accelerating protein docking in ZDOCK using an advanced 3D convolution library. PLoS One 6:e24657. doi:10.1371/journal.pone.0024657
CAS
PubMed
PubMed Central
Article
Google Scholar
Plewczynski D, Łaźniewski M, Augustyniak R, Ginalski K (2011) Can we trust docking results? Evaluation of seven commonly used programs on PDBbind database. J Comput Chem 32:742–755. doi:10.1002/jcc.21643
CAS
PubMed
Article
Google Scholar
Pons C, Grosdidier S, Solernou A, Pérez-Cano L, Fernández-Recio J (2010) Present and future challenges and limitations in protein–protein docking. Proteins 78:95–108. doi:10.1002/prot.22564
CAS
PubMed
Article
Google Scholar
Pons C, Jiménez-González D, González-Álvarez C et al (2012) Cell-Dock: high-performance protein–protein docking. Bioinformatics 28:2394–2396. doi:10.1093/bioinformatics/bts454
CAS
PubMed
Article
Google Scholar
Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489. doi:10.1006/jmbi.1996.0477
CAS
PubMed
Article
Google Scholar
Ravikant DV, Elber R (2010) PIE—efficient filters and coarse grained potentials for unbound protein–protein docking. Proteins 78:400–419. doi:10.1002/prot.22550
CAS
PubMed
Article
Google Scholar
Ring CS, Sun E, McKerrow JH et al (1993) Structure-based inhibitor design by using protein models for the development of antiparasitic agents. Proc Natl Acad Sci U S A 90:3583–3587
CAS
PubMed
PubMed Central
Article
Google Scholar
Ritchie DW, Kemp GJ (2000) Protein docking using spherical polar Fourier correlations. Proteins 39:178–194
CAS
PubMed
Article
Google Scholar
Ritchie DW, Venkatraman V (2010) Ultra-fast FFT protein docking on graphics processors. Bioinformatics 26:2398–2405. doi:10.1093/bioinformatics/btq444
CAS
PubMed
Article
Google Scholar
Roberts VA, Pique ME (1999) Definition of the interaction domain for cytochrome c on cytochrome c oxidase. III. Prediction of the docked complex by a complete, systematic search. J Biol Chem 274:38051–38060
CAS
PubMed
Article
Google Scholar
Roberts VA, Thompson EE, Pique ME, Perez MS, Ten Eyck LF (2013) DOT2: macromolecular docking with improved biophysical models. J Comput Chem 34:1743–1758. doi:10.1002/jcc.23304
CAS
PubMed
PubMed Central
Article
Google Scholar
Rotstein SH, Murcko MA (1993a) GenStar: a method for de novo drug design. J Comput Aided Mol Des 7:23–43
CAS
PubMed
Article
Google Scholar
Rotstein SH, Murcko MA (1993b) GroupBuild: a fragment-based method for de novo drug design. J Med Chem 36:1700–1710
CAS
PubMed
Article
Google Scholar
Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N et al (2014) rDock: a fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput Biol 10, e1003571. doi:10.1371/journal.pcbi.1003571
PubMed
PubMed Central
Article
CAS
Google Scholar
Sauton N, Lagorce D, Villoutreix BO, Miteva MA (2008) MS-DOCK: accurate multiple conformation generator and rigid docking protocol for multi-step virtual ligand screening. BMC Bioinformatics 9:184. doi:10.1186/1471-2105-9-184
PubMed
PubMed Central
Article
CAS
Google Scholar
Schapira M, Abagyan R, Totrov M (2003) Nuclear hormone receptor targeted virtual screening. J Med Chem 46:3045–3059. doi:10.1021/jm0300173
CAS
PubMed
Article
Google Scholar
Schnecke V, Swanson CA, Getzoff ED, Tainer JA, Kuhn LA (1998) Screening a peptidyl database for potential ligands to proteins with side-chain flexibility. Proteins 33:74–87
CAS
PubMed
Article
Google Scholar
Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ (2005) PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 33:W363–W367. doi:10.1093/nar/gki481
CAS
PubMed
PubMed Central
Article
Google Scholar
Shin WH, Seok C (2012) GalaxyDock: protein–ligand docking with flexible protein side-chains. J Chem Inf Model 52:3225–3232. doi:10.1021/ci300342z
CAS
PubMed
Article
Google Scholar
Shoichet BK, Kuntz ID (1991) Protein docking and complementarity. J Mol Biol 221:327–346
CAS
PubMed
Article
Google Scholar
Shoichet BK, Stroud RM, Santi DV, Kuntz ID, Perry KM (1993) Structure-based discovery of inhibitors of thymidylate synthase. Science 259:1445–1450
CAS
PubMed
Article
Google Scholar
Smith JA, Edwards SJ, Moth CW, Lybrand TP (2013) TagDock: an efficient rigid body docking algorithm for oligomeric protein complex model construction and experiment planning. Biochemistry 52:5577–5584. doi:10.1021/bi400158k
CAS
PubMed
PubMed Central
Article
Google Scholar
Terashi G, Takeda-Shitaka M, Kanou K, Iwadate M, Takaya D, Umeyama H (2007) The SKE-DOCK server and human teams based on a combined method of shape complementarity and free energy estimation. Proteins 69:866–872. doi:10.1002/prot.21772
CAS
PubMed
Article
Google Scholar
Tøndel K, Anderssen E, Drabløs F (2006) Protein Alpha Shape (PAS) Dock: a new Gaussian-based score function suitable for docking in homology modelled protein structures. J Comput Aided Mol Des 20:131–144. doi:10.1007/s10822-006-9041-7
PubMed
Article
CAS
Google Scholar
Torchala M, Moal IH, Chaleil RA, Fernandez-Recio J, Bates PA (2013) SwarmDock: a server for flexible protein–protein docking. Bioinformatics 29:807–809. doi:10.1093/bioinformatics/btt038
CAS
PubMed
Article
Google Scholar
Totrov M, Abagyan R (1994) Detailed ab initio prediction of lysozyme–antibody complex with 1.6 Å accuracy. Nat Struct Mol Biol 1:259–263
CAS
Article
Google Scholar
Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461. doi:10.1002/jcc.21334
CAS
PubMed
PubMed Central
Google Scholar
Venkatachalam CM, Jiang X, Oldfield T, Waldman M (2003) LigandFit: a novel method for the shape-directed rapid docking of ligands to protein active sites. J Mol Graph Model 21:289–307
CAS
PubMed
Article
Google Scholar
Venkatraman V, Ritchie DW (2012) Flexible protein docking refinement using pose-dependent normal mode analysis. Proteins 80:2262–2274. doi:10.1002/prot.24115
CAS
PubMed
Article
Google Scholar
Venkatraman V, Yang YD, Sael L, Kihara D (2009) Protein–protein docking using region-based 3D Zernike descriptors. BMC Bioinformatics 10:407. doi:10.1186/1471-2105-10-407
PubMed
PubMed Central
Article
CAS
Google Scholar
Verkhivker GM, Bouzida D, Gehlhaar DK et al (2000) Deciphering common failures in molecular docking of ligand–protein complexes. J Comput Aided Mol Des 14:731–751
CAS
PubMed
Article
Google Scholar
Verlinde CL, Rudenko G, Hol WG (1992) In search of new lead compounds for trypanosomiasis drug design: a protein structure-based linked-fragment approach. J Comput Aided Mol Des 6:131–147
CAS
PubMed
Article
Google Scholar
Wang Z, Sun H, Yao X et al (2016) Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys Chem Chem Phys 18:12964–12975. doi:10.1039/c6cp01555g
CAS
PubMed
Article
Google Scholar
Warren GL, Andrews CW, Capelli AM et al (2006) A critical assessment of docking programs and scoring functions. J Med Chem 49:5912–5931. doi:10.1021/jm050362n
CAS
PubMed
Article
Google Scholar
Wass MN, Fuentes G, Pons C, Pazos F, Valencia A (2011) Towards the prediction of protein interaction partners using physical docking. Mol Syst Biol 7:469. doi:10.1038/msb.2011.3
PubMed
PubMed Central
Article
Google Scholar
Wiehe K, Pierce B, Mintseris J et al (2005) ZDOCK and RDOCK performance in CAPRI rounds 3, 4, and 5. Proteins 60:207–213. doi:10.1002/prot.20559
CAS
PubMed
Article
Google Scholar
Wolfson HJ, Nussinov R (2000) Geometrical docking algorithms: a practical approach. Methods Mol Biol 143:377–397. doi:10.1385/1-59259-368-2:377
CAS
PubMed
Google Scholar
Yue SY (1990) Distance-constrained molecular docking by simulated annealing. Protein Eng 4:177–184
CAS
PubMed
Article
Google Scholar
Zhang C, Lai L (2011) SDOCK: a global protein–protein docking program using stepwise force-field potentials. J Comput Chem 32:2598–2612. doi:10.1002/jcc.21839
CAS
PubMed
Article
Google Scholar
Zhao H, Caflisch A (2013) Discovery of ZAP70 inhibitors by high-throughput docking into a conformation of its kinase domain generated by molecular dynamics. Bioorg Med Chem Lett 23:5721–5726. doi:10.1016/j.bmcl.2013.08.009
CAS
PubMed
Article
Google Scholar
Zhao Y, Sanner MF (2007) FLIPDock: docking flexible ligands into flexible receptors. Proteins 68:726–737. doi:10.1002/prot.21423
CAS
PubMed
Article
Google Scholar