Abstract
Chromatin plays an important role in gene transcription control, cell cycle progression, recombination, DNA replication and repair. The fundamental unit of chromatin, the nucleosome, is formed by a DNA duplex wrapped around an octamer of histones. Histones are susceptible to various post-translational modifications, covalent alterations that change the chromatin status. Lysine methylation is one of the major post-translational modifications involved in the regulation of chromatin function. The PWWP domain is a member of the Royal superfamily that functions as a chromatin methylation reader by recognizing both DNA and histone methylated lysines. The PWWP domain three-dimensional structure is based on an N-terminal hydrophobic β-barrel responsible for histone methyl-lysine binding, and a C-terminal α-helical domain. In this review, we set out to discuss the most recent literature on PWWP domains, focusing on their structural features and the mechanisms by which they specifically recognize DNA and histone methylated lysines at the level of the nucleosome.






Similar content being viewed by others
References
Adams-Cioaba MA, Min J (2009) Structure and function of histone methylation binding proteins. Biochem Cell Biol 87:93–105. doi:10.1139/O08-129
Allfrey VG, Faulkner R, Mirsky AE (1964) Acetylation and methylation of histones and their possible role in the regulation of RNA synthesis. Proc Natl Acad Sci U S A 51:786–794. doi:10.1073/pnas.51.5.786
Andreoli F, Del Rio A (2014) Physicochemical modifications of histones and their impact on epigenomics. Drug Discov Today 19:1372–1379. doi:10.1016/j.drudis.2014.05.005
Arents G, Bulringame RW, Wang BC, Love WE, Moudrianakis EN (1991) The nucleosomal core histone octamer at 3.1 Å resolution: a tripartite protein assembly and a left-handed superhelix. Proc Natl Acad Sci U S A 88:10148–10152
Arnaudo AM, Garcia BA (2013) Proteomic characterization of novel histone post-translational modifications. Epigenetics Chromatin 6:24. doi:10.1186/1756-8935-6-24
Brownell JE, Zhou J, Ranalli T, Kobayashi R, Edmondson DG, Roth SY, Allis CD (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell 84:843–851. doi:10.1016/S0092-8674(00)81063-6
Chen T, Tsujimoto N, Li E (2004) The PWWP domain of Dnmt3a and Dnmt3b is required for DNA methylation to the major satellite repeats at pericentric heterochromatin. Mol Cell Biol 24:9048–9058. doi:10.1128/MCB.24.20.9048-9058.2004
Cheung P, Allis CD, Sassone-Corsi P (2000) Signaling to chromatin through histone modifications. Cell 103:263–271. doi:10.1016/S0092-8674(00)00118-5
Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM (1999) Structure and ligand of a histone acetyltransferase bromodomain. Nature 399:491–496. doi:10.1038/20974
Dhayalan A, Rajavelu A, Rathert P, Tamas R, Jurkowska RZ, Ragozin S, Jeltsch A (2010) The Dnmt3a PWWP domain reads histone 3 lysine 36 trimethylation and guides DNA methylation. J Biol Chem 285:26114–26120. doi:10.1074/jbc.M109.089433
Eidahl JO, Crowe BL, North JA, McKee CJ, Shriabai N, Feng L, Plumb M, Graham RL, Gorelick RJ, Hess S, Poirier MG, Foster MP, Kvaratskhelia M (2013) Structural basis for high-affinity binding of LEDGF PWWP to mononucleosomes. Nucleic Acids Res 41:3924–3936. doi:10.1093/nar/gkt074
Gayatri S, Bedfort MT (2014) Readers of histone methylarginine marks. Biochim Biophys Acta 1839:702–710. doi:10.1016/j.bbagrm.2014.02.015
Ge YZ, Pu MT, Gowher H, Wu HP, Ding JP, Jeltsch A, Xu GL (2004) Chromatin targeting of the de novo DNA methyltransferases by the PWWP domain. J Biol Chem 279:25447–25454. doi:10.1074/jbc.M312296200
Gilbert TM, McDaniel SL, Byrun SD, Cades JA, Dancy BC, Wade H, Tackett AJ, Strahl BD, Taverna SD (2014) A PWWP domain-containing protein targets the NuA3 acetyltransferase complex via histone H3 lysine 36 trimethylation to coordinate transcriptional elongation at coding regions. Mol Cell Proteomics 13:2883–2895. doi:10.1074/mcp.M114.038224
Gong W, Zhou T, Mo J, Perrett S, Wang J, Feng Y (2012) Structural insight into recognition of methylated histone tails by the retinoblastoma-binding protein 1. J Biol Chem 287:8531–8540. doi:10.1074/jbc.M111.299149
Guo R, Zheng L, Park JW, Lv R, Chen H, Jiao F, Xu W, Mu S, Wen H, Qiu J, Wang Z, Yang P, Wu F, Hiu J, Fu X, Shi X, Shi YG, Xing Y, Lan F, Shi Y (2014) BS69/ZMYND11 reads and connects histone H3.3 lysine 36 trimethylation-decorated chromatin to regulated pre-mRNA processing. Mol Cell 56:298–310. doi:10.1016/j.molcel.2014.08.022
Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO, Van Calcar S, Qu C, Ching KA, Wang W, Weng Z, Green RD, Crawford GE, Ren B (2007) Distinctive and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat Genet 39:311–318. doi:10.1038/ng1966
Henikoff S (2005) Histone modifications: combinatorial complexity or cumulative simplicity? Proc Natl Acad Sci U S A 102:5308–5309. doi:10.1073/pnas.0501853102
Hung YL, Lee HJ, Jiang I, Lin SC, Lo WC, Lin YJ, Sue SC (2015) The first residue of the PWWP motif modulates HATH domain binding, stability, and protein-protein interaction. Biochemistry 54:4063–4074. doi:10.1021/acs.biochem.5b00454
Kim SH, Park J, Choi MC, Kim HP, Park JH, Jung Y, Lee JH, Oh DY, Im SA, Bang YJ, Kim TY (2007) Zinc-fingers and homeoboxes 1 (ZHX1) binds DNA methyltranferase (DNMT) 3b to enhance DNMT3b-mediated transcriptional repression. Biochem Biophys Res Commun 355:318–323. doi:10.1016/j.bbrc.2007.01.187
Kolasinska-Zwierz P, Down T, Latorre I, Liu T, Liu XS, Ahringer J (2009) Differential chromatin marking of introns and expressed exons by H3K36me3. Nat Genet 41:376–381. doi:10.1038/ng.322
Kornberg RD, Lorck Y (1999) Twenty-five years of the nucleosome, fundamental particle of the eukaryote chromosome. Cell 98:285–294. doi:10.1016/S0092-8674(00)81958-3
Laguri C, Duband-Goulet I, Friedich N, Axt M, Belin P, Callebaut I, Gilquin B, Zinn-Justin S, Couprie J (2008) Human mismatch repair protein MSH6 contains a PWWP domain that targets double stranded DNA. Biochemistry 47:6199–6207. doi:10.1021/bi7024639
Leoh LS, van Heertum B, De Rijck J, Filippova M, Rios-Colon L, Basu A, Martinez SR, Tungteakkhun SS, Filppov V, Christ F, De Leon M, Debyser Z, Casiano CA (2012) The stress oncoprotein LEDGF/p75 interacts with the methyl CpG binding protein MeCP2 and influences its transcriptional activity. Mol Cancer Res 10:378–391. doi:10.1158/1541-7789.MCR-11-0314
Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 398:251–260. doi:10.1038/38444
Luger K, Dechassa ML, Tremethick DJ (2012) New insights into nucleosome and chromatin structure: an ordered state or a disordered affair? Nat Rev Mol Cell Biol 13:436–447. doi:10.1038/nrm3382
Lukasik SM, Cierpicki T, Borloz M, Grembecka J, Everett A, Bushweller JH (2006) High resolution structure of the HDGF PWWP domain: a potential DNA binding domain. Protein Sci 15:314–232. doi:10.1110/ps.051751706
Maltby VE, Martin BJ, Shchulze JM, Johnson I, Hentrich T, Sharma A, Kobor MS, Howe L (2012) Histone H3 lysine 36 methylation targets the Isw1b remodeling complex to chromatin. Mol Cell Biol 32:3479–3485. doi:10.1128/MCB.00389-12
Maurer-Stroh S, Dickens NJ, Hughes-Davies L, Kouzarides T, Eisenhaber F, Ponting CP (2003) The Tudor domain ‘Royal Family’: Tudor, plant Agenet, Chromo, PWWP and MBT domains. Trends Biochem Sci 28:69–74. doi:10.1016/S0968-0004(03)00004-5
Morchikh M, Naughtin M, Di Nunzio F, Xavier J, Charneau P, Jacob Y, Lavigne M (2013) TOX4 and NOVA1 proteins are partners of LEDGF PWWP domain and affect HIV-1 replication. PLos ONE 8:e81217. doi:10.1371/journal.pone.0081217
Nameki N, Tochio N, Koshiba S, Inoue M, Yabuki T, Aoki M, Seki E, Matsuda T, Fujikura Y, Saito M, Ikari M, Watanabe M, Terada T, Shirozu M, Yoshida M, Hirota H, Tanaka A, Hayashizaki Y, Güntert P, Kigawa T, Yokoyama S (2005) Solution structure of the new PWWP domain of the hepatoma-derived growth factor family. Protein Sci 14:756–764. doi:10.1110/ps.04975305
Nimura K, Ura K, Shiratori H, Ikawa M, Okabe M, Schwartz RJ, Kaneda Y (2009) A histone H3 lysine 36 trimethyltransferase links Nkx2-5 to Wolf-Hirschhorn syndrome. Nature 460:287–291. doi:10.1038/nature08086
Park J, Kim TY, Jung Y, Song SH, Kim SH, Oh DY, Im SA, Bang YJ (2008) DNA methyltransferase 3B mutant in ICF syndrome interacts non-covalently with SUMO-1. J Mol Med 86:1269–1277. doi:10.1007/s00109-008-0392-5
Pradeepa MM, Sutherland HG, Ule J, Grimes GR, Bickmore WA (2012) Psip1/Ledgf p52 binds methylated histone H3K36 and splicing factors and contributes to the regulation of alternative splicing. PLoS Genet 8:e1002717. doi:10.1371/journal.pgen.1002717
Purdy MM, Holz-Schietinger C, Reich NO (2010) Identification of a second DNA binding site in human DNA methyltransferase 3A by substrate inhibition and domain selection. Arch Biochem Biophys 498:13–22. doi:10.1016/j.abb.2010.03.007
Qin S, Min J (2014) Structure and function of the nucleosome-binding PWWP domain. Trends Biochem Sci 39:536–547. doi:10.1016/j.tibs.2014.09.001
Qiu C, Sawada K, Zhang X, Cheng X (2002) The PWWP domain of mammalian DNA methyltransferase Dnmt3b defines a new family of DNA-binding folds. Nat Struct Biol 9:217–224. doi:10.1038/nsb759
Qiu Y, Zhang W, Zhao C, Wang W, Zhang J, Zhang Z, Li G, Shi Y, Tu X, Wu J (2012) Solution structure of the Pdp1 PWWP domain reveals its unique binding sites for methylated H4K20 and DNA. Biochem J 442:527–538. doi:10.1042/BJ20111885
Rando OJ (2012) Combinatorial complexity in chromatin structure and function: revisiting the histone code. Curr Opin Genet Dev 22:148–155. doi:10.1016/j.gde.2012.02.013
Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839:627–643. doi:10.1016/j.bbagrm.2014.03.001
Ruthenburg AJ, Li H, Milne TA, Dewell S, McGinty RK, Yuen M, Ueberheide B, Dou Y, Muir TW, Patel DJ, Allis CD (2011) Recognition of mononucleosomal histone modification pattern by BPTF via multivalent interactions. Cell 145:692–706. doi:10.1016/j.cell.2011.03.053
Shikauchi Y, Saiura A, Kubo T, Niwa Y, Yamamaoto J, Murase Y, Yoshikawa H (2009) SALL3 interacts with DNMT3A and shows the ability to inhibit CpG island methylation in hepatocellular carcinoma. Mol Cell Biol 29:1944–1958. doi:10.1128/MCB.00840-08
Shogren-Knaak M, Ishii H, Sun JM, Pazin MJ, Davie JR, Peterson CL (2006) Histone H4-K16 acetylation controls chromatin structure and protein interactions. Science 311:844–847. doi:10.1126/science.1124000
Singh DP, Kubo E, Takamura Y, Shinohara T, Kumar A, Chylack LT Jr, Fatma N (2006) DNA binding domains and nuclear localization signal of LEDGF: contribution of two helix-turn-helix (HTH)-like domains and a stretch of 58 amino acids of the N-terminal to the trans-activation potential of LEDGF. J Mol Biol 355:379–394. doi:10.1016/j.jmb.2005.10.054
Slater LM, Allen MD, Bycroft M (2003) Structural variation in PWWP domains. J Mol Biol 330:571–576. doi:10.1016/S0022-2836(03)00470-4
Smolle M, Venkatesh S, Gogol MM, Li H, Zhang Y, Florens L, Washburn MP, Workman JL (2012) Chromatin remodelers Isw1 and Chd1 maintain chromatin structure during transcription by preventing histone exchange. Nat Struct Mol Biol 19:884–892. doi:10.1038/nsmb.2312
Stec I, Wright TJ, van Ommen GJ, de Boer PA, van Haeringen A, Moorman AF, Altherr MR, den Dunnen JT (1998) WHSC1, a 90 kb SET domain-containing gene, expressed in early development and homologous to a Drosophila dysmorphy gene maps in the Wolf-Hirschhorn syndrome critical region and is fused to IgH in t(4;14) multiple myeloma. Hum Mol Genet 7:1071–1082. doi:10.1093/hmg/7.7.1071
Stec I, Nagl SB, van Ommen GJ, den Dummen JT (2000) The PWWP domain: a potential protein-protein interaction domain in nuclear proteins influencing differentiation? FEBS Lett 473:1–5. doi:10.1016/S0014-5793(00)01449-6
Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403:41–45. doi:10.1038/47412
Sue SC, Chen JY, Lee SC, Wu W, Huang T (2004) Solution structure and heparin interaction of human hepatoma-derived growth factor. J Mol Biol 343:1365–1377. doi:10.1016/j.jmb.2004.09.014
Sue SC, Lee WT, Tien SC, Lee SC, Yu JG, Wu WJ, Wu WG, Huang TH (2007) PWWP module of human hepatoma-derived growth factor forms a domain-swapped dimer with much higher affinity for heparin. J Mol Biol 367:456–472. doi:10.1016/j.jmb.2007.01.010
Taunton J, Hassig CA, Schreiber SL (1996) A mammalian histone deacetylase related to the yeast transcriptional regulator Rpd3p. Science 272:408–411. doi:10.1126/science.272.5260.408
Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14:1025–1040. doi:10.1038/nsmb1338
Turner BM, Birley AJ, Lavender J (1992) Histone H4 isoforms acetylated at specific lysine residues define individual chromosomes and chromatin domains in Drosophila polytene nuclei. Cell 69:375–384. doi:10.1016/0092-8674(92)90417-B
Van Nuland R, van Schaik FM, Simonis M, van Heesch S, Cuppen E, Boelens R, Timmers HM, van Ingen H (2013) Nucleosomal DNA binding drives the recognition of H3K36-methylated nucleosomes by the PSIP1-PWWP domain. Epigenetics Chromatin 6:1–12. doi:10.1186/1756-8935-6-12
Vermeulen M, Eberl HC, Matarase F, Marks H, Denissov S, Butter F, Lee KK, Olsen JV, Hyman AA, Stunnenberg HG, Mann M (2010) Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell 142:967–980. doi:10.1016/j.cell.2010.08.020
Vezzoli A, Bonadies N, Aleen MD, Freund SM, Santiveri CM, Kvinlaug BT, Huntly BJ, Göttgens B, Bycroft M (2010) Molecular basis of histone H3K36me3 recognition by the PWWP domain of BRPF1. Nat Struct Mol Biol 17:617–619. doi:10.1038/nsmb.1797
Völkel P, Angrand PO (2007) The control of histone lysine methylation in epigenetic regulation. Biochimie 89:1–20. doi:10.1016/j.biochi.2006.07.009
Wang Y, Reddy B, Thompson J, Wang H, Noma K, Yates JR III, Jia S (2009) Regulation of Set9-mediated H4K20 methylation by a PWWP domain protein. Mol Cell 33:428–437. doi:10.1016/j.molcel.2009.02.002
Wang J, Qin S, Li F, Li S, Zhang W, Peng J, Zhang Z, Gong Q, Wu J, Shi Y (2014) Crystal structure of human BS69 Bromo-ZnF-PWWP reveals its role in H3K36me3 nucleosome binding. Cell Res 24:890–893. doi:10.1038/cr.2014.38
Wen H, Li Y, Xi Y, Jiang S, Stratton S, Peng D, Tanaka K, Ren Y, Xia Z, Wu J, Li B, Barton MC, Li W, Haitao L, Shi X (2014) ZMYND11 links histone H3.3K36me3 to transcription elongation and tumour suppression. Nature 508:263–268. doi:10.1038/nature13045
Wozniak GC, Strahl BD (2014) Hitting the ‘mark’: interpreting lysine methylation in the context of active transcription. Biochim Biophys Acta 1839:1353–1361. doi:10.1016/j.bbagrm.2014.03.002
Wu H, Zeng H, Lam R, Tempel W, Amaya MF, Xu C, Dombrovski L, Qiu W, Wang Y, Min J (2011) Structural and histone binding ability characterizations of human PWWP domains. PLos ONE 6:e18919. doi:10.1371/journal.pone.0018919
Yang J, Everett AD (2007) Hepatoma derived growth factor binds DNA through the N-terminal PWWP domain. BMC Mol Biol 8:101. doi:10.1186/1471-2199-8-101
Acknowledgments
This work was supported by grants from Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), and by a Brazil Initiative Collaboration grant from Brown University to A.S.P. G.B.R is recipient of a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) graduate fellowship.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Germana B. Rona declares that she has no conflict of interest.
Elis C. A. Eleutherio declares that she has no conflict of interest.
Anderson S. Pinheiro declares that he has no conflict of interest.
Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.
Rights and permissions
About this article
Cite this article
Rona, G.B., Eleutherio, E.C.A. & Pinheiro, A.S. PWWP domains and their modes of sensing DNA and histone methylated lysines. Biophys Rev 8, 63–74 (2016). https://doi.org/10.1007/s12551-015-0190-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12551-015-0190-6

