Skip to main content
Log in

Historical perspective on heart function: the Frank–Starling Law

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

More than a century of research on the Frank–Starling Law has significantly advanced our knowledge about the working heart. The Frank–Starling Law mandates that the heart is able to match cardiac ejection to the dynamic changes occurring in ventricular filling and thereby regulates ventricular contraction and ejection. Significant efforts have been attempted to identify a common fundamental basis for the Frank–Starling heart and, although a unifying idea has still to come forth, there is mounting evidence of a direct relationship between length changes in individual constituents (cardiomyocytes) and their sensitivity to Ca2+ ions. As the Frank–Starling Law is a vital event for the healthy heart, it is of utmost importance to understand its mechanical basis in order to optimize and organize therapeutic strategies to rescue the failing human heart. The present review is a historic perspective on cardiac muscle function. We “revive” a century of scientific research on the heart’s fundamental protein constituents (contractile proteins), to their assemblies in the muscle (the sarcomeres), culminating in a thorough overview of the several synergistically events that compose the Frank–Starling mechanism. It is the authors’ personal beliefs that much can be gained by understanding the Frank–Starling relationship at the cellular and whole organ level, so that we can finally, in this century, tackle the pathophysiologic mechanisms underlying heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abbott BC, Mommaerts WFHM (1959) A study of inotropic mechanisms in the papillary muscle preparation. J Gen Physiol 42:533–561

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Agarkova I, Perriard J-C (2005) The M-band: an elastic web that crosslinks thick filaments in the center of the sarcomere. Trends Cell Biol 15:477–485

    Article  CAS  PubMed  Google Scholar 

  • Aird W (2011) Discovery of the cardiovascular system: from Galen to William Harvey. J Thromb Haemost 9:118–129

    Article  PubMed  Google Scholar 

  • Allen DG, Kentish JC (1985) The cellular basis of the length-tension relation in cardiac muscle. J Mol Cell Cardiol 17:821–840

    Article  CAS  PubMed  Google Scholar 

  • Allen D, Kentish J (1988) Calcium concentration in the myoplasm of skinned ferret ventricular muscle following changes in muscle length. J Physiol 407:489–503

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Allen DG, Kurihara S (1982) The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol 327:79–94

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Allen DG, Orchard CH (1987) Myocardial contractile function during ischemia and hypoxia. Circ Res 60:153–168

    Article  CAS  PubMed  Google Scholar 

  • Allen DG, Jewell BR, Murray JW (1974) The contribution of activation processes to the length-tension relation of cardiac muscle. Nature 248:606–607

    Article  CAS  PubMed  Google Scholar 

  • Arteaga GM, Palmiter KA, Leiden JM, Solaro RJ (2000) Attenuation of length dependence of calcium activation in myofilaments of transgenic mouse hearts expressing slow skeletal troponin I. J Physiol 526:541–549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Babu A, Sonnenblick E, Gulati J (1988) Molecular basis for the influence of muscle length on myocardial performance. Science 240:74–76

    Article  CAS  PubMed  Google Scholar 

  • Bailey K (1942) Myosin and adenosinetriphosphatase. Biochem J 36:121–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bailey K (1946) Tropomyosin: a new asymmetric protein component of muscle. Nature 157:368–369

    Article  CAS  PubMed  Google Scholar 

  • Bailey K (1948) Tropomyosin: a new asymmetric protein component of the muscle fibril. Biochem J 43:271–279

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Behrmann E et al (2012) Structure of the rigor actin-tropomyosin-myosin complex. Cell 150:327–338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bendall JR (1953) Further observations on a factor (the ‘Marsh’ factor) effecting relaxation of ATP-shortened muscle-fibre models, and the effect of Ca and Mg ions upon it. J Physiol 121:232–254

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bendall JR (1954) The relaxing effect of myokinase on muscle fibres; Its identity with the ‘Marsh’ factor. Proc R Soc Lond B Biol Sci 142:409–426

    Article  CAS  PubMed  Google Scholar 

  • Bhuiyan MS, Gulick J, Osinska H, Gupta M, Robbins J (2012) Determination of the critical residues responsible for cardiac myosin binding protein C’s interactions. J Mol Cell Cardiol 53:838–847

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biesiadecki BJ, Chong SM, Nosek TM, Jin J-P (2007) Troponin T core structure and the regulatory NH2-terminal variable region. Biochemistry 46:1368–1379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Biesiadecki BJ et al (2010) Removal of the cardiac troponin I N-terminal extension improves cardiac function in aged mice. J Biol Chem 285:19688–19698

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blasius W (1872) Am Froschherzen angestellte versuche uber die Herz-Arbeit unter verschiedenen innerhalb des Kreislaufes herrschenden Druck-Verhaltnissen. Verhandl Phys Med Ges 2:49

    Google Scholar 

  • Blix M (1891) Die Lange und Spannung des Muskels. Skandinavisches Archiv Physiol 5:173–206

    Article  Google Scholar 

  • Boontje NM et al (2011) Enhanced myofilament responsiveness upon b-adrenergic stimulation in post-infarct remodeled myocardium. J Mol Cell Biol 50:487–499

    CAS  Google Scholar 

  • Bowman W (1840) On the minute structure and movements of voluntary muscle. Phil Trans Royal Soc Lond 130:457–501

    Article  Google Scholar 

  • Bozler E (1954) Relaxation in extracted muscle fibers. J Gen Physiol 38:149–159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brandt P, Lopez E, Reuben J, Grundfest H (1967) The relationship between myofilament packing density and sarcomere length in frog striated muscle. J Cell Biol 33:255–263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bremel RD, Weber A (1972) Cooperation within actin filament in vertebrate skeletal muscle. Nat New Biol 238:97–101

    Article  CAS  PubMed  Google Scholar 

  • Brutsaert DL, Sys SU (1989) Relaxation and diastole of the heart. Physiol Rev 69:1228–1315

    CAS  PubMed  Google Scholar 

  • Cazorla O, Vassort G, Garnier D, Le Guennec J-Y (1999) Length modulation of active force in tat cardiac myocytes: is titin the sensor? J Mol Cell Cardiol 31:1215–1227

    Article  CAS  PubMed  Google Scholar 

  • Cazorla O, Wu Y, Irving TC, Granzier H (2001) Titin-based modulation of calcium sensitivity of active tension in mouse skinned cardiac myocytes. Circ Res 88:1028–1035

    Article  CAS  PubMed  Google Scholar 

  • Cazorla O et al (2006) Length and protein kinase A modulations of myocytes in cardiac myosin binding protein C-deficient mice. Cardiovasc Res 69:370–380

    Article  CAS  PubMed  Google Scholar 

  • Chalovich JM, Eisenberg E (1982) Inhibition of actomyosin ATPase activity by troponin-tropomyosin without blocking the binding of myosin to actin. J Biol Chem 257:2432–2437

    PubMed Central  CAS  PubMed  Google Scholar 

  • Chapman CB, Mitchell JH (1965) Starling on the heart. Facsimile reprints including the Linacre Lecture on the Law of the Heart. Dawsons of Pall Mall

  • Chung CS, Granzier HL (2011) Contribution of titin and extracellular matrix to passive pressure and measurement of sarcomere length in the mouse left ventricle. J Mol Cell Cardiol 50:731–739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Close RI (1972) The relations between sarcomere length and characteristics of isometric twitch contractions of frog sartorius muscle. J Physiol 220:745–762

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cooke R, Bialek W (1979) Contraction of glycerinated muscle fibers as a function of the ATP concentration. Biophys J 28:241–258

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Craig R, Offer G (1976) The location of C-protein in rabbit skeletal muscle. Proc R Soc Lond B Biol Sci 192:451–461

    Article  CAS  PubMed  Google Scholar 

  • de Tombe PP et al (2010) Myofilament length dependent activation. J Mol Cell Cardiol 48:851–858

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Dobie WM (1849) XII - ”Observations on the minute structure and mode of contraction of voluntary muscular fibre"; being the abstract of a paper read before the Royal Medical Society, Edinburgh, December 15th, 1848. J Nat Hist 3:109–119

    Article  Google Scholar 

  • Donaldson SK, Kerrick WG (1975) Characterization of the effects of Mg2+ on Ca2+- and Sr2+-activated tension generation of skinned skeletal muscle fibers. J Gen Physiol 66:427–444

    Article  CAS  PubMed  Google Scholar 

  • dos Remedios CG, Millikan RGC, Morales MF (1972) Polarization of tryptophan fluorescence from single striated muscle fibers. A molecular probe of contractile state. J Gen Physiol 59:103–120

    Article  PubMed Central  PubMed  Google Scholar 

  • Drabikowski W, Nonomura Y (1968) The interaction of troponin with F-actin and its abolition by tropomyosin. Biochim Biophys Acta 160:129–131

    Article  CAS  PubMed  Google Scholar 

  • Drabikowski W, Dabrowska R, Barylko B (1971a) Separation and characterization of the constituents of troponin. FEBS Lett 12:148–152

    Article  CAS  PubMed  Google Scholar 

  • Drabikowski W, Rafalowska U, Dabrowska R, Szpacenko A, Barylko B (1971b) The effect of proteolytic enzymes on the troponin complex. FEBS Lett 19:259–263

    Article  CAS  PubMed  Google Scholar 

  • Dreser H (1887) Ueber Herzarbeit und Herzgifte. Naunyn-Schmiedeberg’s Archiv Pharmacol 24:221–240

    Article  Google Scholar 

  • Ebashi S (1960) Calcium binding and relaxation in the actomyosin system. Biochem J 48:150–151

    CAS  Google Scholar 

  • Ebashi S (1961a) Calcium binding activity of vesicular relaxing factor. J Biochem 50:236–244

    CAS  Google Scholar 

  • Ebashi S (1961b) The "role" of the relaxing factor and the contraction-relaxation cycle of skeletal muscle. Prog Theor Phys 17:35–40

    Article  Google Scholar 

  • Ebashi S (1963) Third component participating in the super precipitation of ‘natural actomyosin’. Nature 200:1010

    Article  CAS  PubMed  Google Scholar 

  • Ebashi S (1968) E.M. Calcium ion and muscle contraction. Prog Biophys Mol Biol 18:123–183

    Article  CAS  PubMed  Google Scholar 

  • Ebashi F, Ebashi S (1962) Removal of calcium and relaxation in actomyosin systems. Nature 194:378–379

    Article  CAS  PubMed  Google Scholar 

  • Ebashi S, Ebashi F (1964) A new protein component participating in the superprecipitation of myosin B. J Biochem 55:604–613

    CAS  PubMed  Google Scholar 

  • Ebashi S, Endo M (1968) Calcium ion and muscle contraction. Prog Biophys Mol Biol 18:121–139

    Article  Google Scholar 

  • Ebashi S, Kodama A (1965) A new protein factor promoting aggregation of tropomyosin. J BIochem 58:107–108

    CAS  PubMed  Google Scholar 

  • Ebashi S, Kodama A (1966) Native tropomyosin-like action of troponin on trypsin-treated myosin B. J Biochem 60:733–734

    CAS  PubMed  Google Scholar 

  • Ebashi S, Lipmann F (1962) Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J Cell Biol 14:389–400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ebashi S, Endo M, Ohtsuki I (1969) Control of muscle contraction. Quatert Rev Biophys 2:351–384

    Article  CAS  Google Scholar 

  • Ebashi S, Wakabayashi T, Ebashi F (1971) Troponin and its components. J Biochem 69:441–445

    CAS  PubMed  Google Scholar 

  • Edman KAP (2010) Contractile performance of striated Muscle. Muscle Biophys 682:7–40

    Article  CAS  Google Scholar 

  • Edman K, Kiessling A (1971) The time course of the active state in relation to sarcomere length and movement studied in single skeletal muscle fibres of the frog. Acta Physiol Scand 81:182–196

    Article  CAS  PubMed  Google Scholar 

  • Eisenberg E, Kielley WW (1970) Native tropomyosin: Effect on the interaction of actin with heavy meromyosin and subfragment-1. Biochem Biophy Res Comm 40:50–56

    Article  CAS  Google Scholar 

  • Elliott T (1912) The control of the suprarenal glands by the splanchnic nerves. J Physiol 44:374–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Elliott GF, Lowy J, Worthington CR (1963) An X-ray and light-diffraction study of the filament lattice of striated muscle in the living state and in rigor. J Mol Biol 6:295–305

    Article  Google Scholar 

  • Elliott GF, Lowy J, Millman BM (1967) Low-angle X-ray diffraction studies of living striated muscle during contraction. J Mol Biol 25:31–45

    Article  CAS  PubMed  Google Scholar 

  • Endo M (1972) Stretch-induced increase in activation of skinned muscle fibres by calcium. Nat New Biol 237:211–213

    Article  CAS  PubMed  Google Scholar 

  • Endo M (1973) Length dependence of activation of skinned muscle fibers by calcium. Cold Spring Harb Symp Quant Biol 37:505–510

    Article  CAS  Google Scholar 

  • Endo M, Tanaka M, Ogawa Y (1970) Calcium Induced Release of Calcium from the Sarcoplasmic Reticulum of Skinned Skeletal Muscle Fibres. Nature 228:34–36

    Article  CAS  PubMed  Google Scholar 

  • Engelhardt W (1942) Enzymatic and mechanical properties of muscle proteins. Yale J Biol Med 15:21–38

    PubMed Central  CAS  PubMed  Google Scholar 

  • Engelhardt WA, Liubimova MN (1939) Myosine and adenosinetriphosphatase. Nature 144:668–669

    Article  CAS  Google Scholar 

  • Engelmann TW (1873) Mikroskopische Untersuchungen über die quergestreifte Muskelsubstanz. Pflügers Archiv Eur J Physiol 7:33–71

    Article  Google Scholar 

  • Engelmann TW (1904) Das herz und seine tätigkeit im lichte neuerer forschung. Th Wilhelm Engelmann 1:44

    Google Scholar 

  • Evans CL, Hill AV (1914) The relation of length to tension development and heat production on contraction in muscle. J Physiol 49:10–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fabiato A, Fabiato F (1975) Dependence of the contractile activation of skinned cardiac cells on the sarcomere length. Nature 256:54–56

    Article  CAS  PubMed  Google Scholar 

  • Fabiato A, Fabiato F (1978) Myofilament-generated tension oscillations during partial calcium activation and activation dependence of the sarcomere length-tension relation of skinned cardiac cells. J Gen Physiol 72:667–699

    Article  CAS  PubMed  Google Scholar 

  • Farman GP, Allen EJ, Schoenfelt KQ, Backx PH, de Tombe PP (2010) The role of thin filament cooperativity in cardiac length-dependent calcium activation. Biophys J 99:2978–2986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farman GP et al (2011) Myosin head orientation: a structural determinant for the Frank-Starling relationship. Am J Physiol 300:2155–2160

    Google Scholar 

  • Filo RS, Bohr DF, Ruegg JC (1965) Glycerinated skeletal and smooth muscle: calcium and magnesium dependence. Science 147:1581–1583

    Article  CAS  PubMed  Google Scholar 

  • Fiske CH, Subbarow Y (1927) The nature of the "inorganic phosphate" in voluntary muscle. Science 65:401–403

    Article  CAS  PubMed  Google Scholar 

  • Ford LE, Podolsky RJ (1970) Regenerative calcium release within muscle cells. Science 167:58–59

    Article  CAS  PubMed  Google Scholar 

  • Frank O (1895) Zur Dynamik des Herzmuskels. Ztschr Biol 32:370

    Google Scholar 

  • Frank O (1959) On the dynamics of cardiac muscle (Translation). Am Heart J 58:282–317

    Article  Google Scholar 

  • Frank D, Kuhn C, Katus H, Frey N (2006) The sarcomeric Z-disc: a nodal point in signalling and disease. J Mol Med 84:446–468

    Article  CAS  PubMed  Google Scholar 

  • Freiburg A, Gautel M (1996) A molecular map of the interactions between titin and myosin-binding protein C. Implications for sarcomeric assembly in familial hypertrophic cardiomyopathy. Eur J Biochem 235:317–323

    Article  CAS  PubMed  Google Scholar 

  • Freiburg A et al (2000) Series of exon-skipping events in the elastic spring region of titin as the structural basis for myofibrillar elastic diversity. Circ Res 86:1114–1121

    Article  CAS  PubMed  Google Scholar 

  • Fuchs F, Wang Y-P (1996) Sarcomere length versus interfilament spacing as determinants of cardiac myofilament Ca2+ sensitivity and Ca2+ binding. J Mol Cell Cardiol 28:1375–1383

    Article  CAS  PubMed  Google Scholar 

  • Fukuda N, Sasaki D (2001) Ishiwata, S.i. & Kurihara, S. Length dependence of tension generation in rat skinned cardiac muscle: role of titin in the Frank-Starling mechanism of the heart. Circulation 104:1639–1645

    Article  CAS  PubMed  Google Scholar 

  • Fukuda N, Kajiwara H, Ishiwata SI, Kurihara S (2000) Effects of MgADP on length dependence of tension generation in skinned rat cardiac muscle. Circ Res 86:e1–e6

    Article  CAS  PubMed  Google Scholar 

  • Fukuda N, Wu Y, Farman G, Irving TC, Granzier H (2003) Titin isoform variance and length dependence of activation in skinned bovine cardiac muscle. J Physiol 553:147–154

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fürth O (1895) Ueber die Eiweisskörper des Muskelplasmas. Naunyn-Schmiedeberg’s Archiv Pharmacol 36:231–274

    Article  Google Scholar 

  • Gautel M, Goulding D, Bullard B, Weber K, Furst DO (1996) The central Z-disk region of titin is assembled from a novel repeat in variable copy numbers. J Cell Sci 109:2747–2754

    CAS  PubMed  Google Scholar 

  • Geeves M, Conibear P (1995) The role of three-state docking of myosin S1 with actin in force generation. Biophys J 68:199S–201S

    Google Scholar 

  • Geeves MA, Holmes KC (1999) Structural mechanism of muscle contraction. Annu Rev Biochem 68:687–728

    Article  CAS  PubMed  Google Scholar 

  • Geeves MA, Lehrer SS (1994) Dynamics of the muscle thin filament regulatory switch: the size of the cooperative unit. Biophys J 67:273–282

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gergely J (1953) Studies on myosin-adenosinetriphosphatase. J Biol Chem 200:543–550

    CAS  PubMed  Google Scholar 

  • Gilbert R, Kelly MG, Mikawa T, Fischman DA (1996) The carboxyl terminus of myosin binding protein C (MyBP-C, C-protein) specifies incorporation into the A-band of striated muscle. J Cell Sci 109:101–111

    CAS  PubMed  Google Scholar 

  • Godt R, Maughan D (1977) Swelling of skinned muscle fibers of the frog. Biophys J 19:103–116

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Godt RE, Maughan DW (1981) Influence of osmotic compression on calcium activation and tension in skinned muscle fibers of the rabbit. Pflugers Arch 391:334–337

    Article  CAS  PubMed  Google Scholar 

  • Goldman Y, Simmons R (1977) Active and rigor muscle stiffness. J Physiol 269:55P–57P

    CAS  PubMed  Google Scholar 

  • Goldman YE, Hibberd MG, Trentham DR (1984) Relaxation of rabbit psoas muscle fibres from rigor by photochemical generation of adenosine-5′-triphosphate. J Physiol 354:577–604

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gollapudi, Sampath K, Mamidi R, Mallampalli, Sri L, Chandra M (2012) The N-terminal extension of cardiac troponin T stabilizes the blocked state of cardiac thin filament. Biophys J 103:940–948

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon AM, Huxley A, Julian F (1966) The variation in isometric tension with sarcomere length in vertebrate muscle fibres. J Physiol 184:170–192

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gordon AM, Homsher E, Regnier M (2000) Regulation of contraction in striated muscle. Physiol Rev 80:853–924

    CAS  PubMed  Google Scholar 

  • Granzier HL, Irving TC (1995) Passive tension in cardiac muscle: contribution of collagen, titin, microtubules, and intermediate filaments. Biophys J 68:1027–1044

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greaser ML, Gergely J (1971) Reconstitution of troponin Activity from three protein components. J Biol Chem 246:4226–4233

    CAS  PubMed  Google Scholar 

  • Greaser ML, Gergely J (1973) Purification and properties of the components from troponin. J Biol Chem 248:2125–2133

    CAS  PubMed  Google Scholar 

  • Greaser ML et al (2008) Mutation that dramatically alters rat titin isoform expression and cardiomyocyte passive tension. J Mol Cell Cardiol 44:983–991

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greene LE, Eisenberg E (1980) Cooperative binding of myosin subfragment-1 to the actin-troponin-tropomyosin complex. Proc Natl Acad Sci U S A 77:2616–2620

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Greenfield NJ et al (2006) Solution NMR structure of the junction between tropomyosin molecules: implications for actin binding and regulation. J Mol Biol 364:80–96

    Article  CAS  PubMed  Google Scholar 

  • Gremels H (1936) Über die Steuerung der energetischen Vorgänge am Säugetierherzen. Naunyn Schmiedeberg’s Arch Pharmacol 182:1–54

    Article  CAS  Google Scholar 

  • Grimm AF, Whitehorn WV (1966) Characteristics of resting tension of myocardium and localization of its elements. Am J Physiol 210:1362–1368

    CAS  PubMed  Google Scholar 

  • Grimm A, Whitehorn W (1968) Myocardial length-tension sarcomere relationships. Am J Physiol 214:1378–1387

    CAS  PubMed  Google Scholar 

  • Gruen M, Gautel M (1999) Mutations in β-myosin S2 that cause familial hypertrophic cardiomyopathy (FHC) abolish the interaction with the regulatory domain of myosin-binding protein-C. J Mol Biol 286:933–949

    Article  CAS  PubMed  Google Scholar 

  • Gruen M, Prinz H, Gautel M (1999) cAPK-phosphorylation controls the interaction of the regulatory domain of cardiac myosin binding protein C with myosin-S2 in an on-off fashion. FEBS Lett 453:254–259

    Article  CAS  PubMed  Google Scholar 

  • Guz A (1974) Chairman’s Introduction. In: Ciba Foundation Symposium 24 - Physiological Basis of Starling’s Law of the Heart 1–5

  • Haller AV (1754) Physiology: being a course of lectures upon the visceral anatomy & vital economy of human bodies. Translated by Samuel Mihles. Innys and Richardson, London

  • Hanft LM, McDonald KS (2010) Length dependence of force generation exhibit similarities between rat cardiac myocytes and skeletal muscle fibres. J Physiol 588:2891–2903

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanft LM, Biesiadecki BJ, McDonald KS (2013) Length dependence of striated muscle force generation is controlled by phosphorylation of cTnI at serines 23/24. J Physiol 591(Pt 18):4535–4547

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hanson J, Huxley HE (1953) Structural basis of the cross-striations in muscle. Nature 172:530–532

    Article  CAS  PubMed  Google Scholar 

  • Hartshorne DJ, Mueller H (1968) Fractionation of troponin into two distinct proteins. Biochim Biophys Acta Res Comm 31:647–653

    Article  CAS  Google Scholar 

  • Hartshorne DJ, Pyun HY (1971) Calcium binding by the troponin complex, and the purification and properties of troponin A. Biochim Biophys Acta 229:698–711

    Article  CAS  PubMed  Google Scholar 

  • Harvey W (1889) On the motion of the heart and blood in animals. G. Bell and Sons

  • Haselgrove JC (1973) X-Ray evidence for a conformational change in the actin-containing filaments of vertebrate striated muscle. Cold Spring Harb Symp Quant Biol 37:341–352

    Article  CAS  Google Scholar 

  • Haselgrove JC, Huxley HE (1973) X-ray evidence for radial cross-bridge movement and for the sliding filament model in actively contracting skeletal muscle. J Mol Biol 77:549–568

    Article  CAS  PubMed  Google Scholar 

  • Head JG, Ritchie MD, Geeves MA (1995) Characterization of the equilibrium between blocked and closed states of muscle thin filaments. Eur J Biochem 227:694–699

    Article  CAS  PubMed  Google Scholar 

  • Heeley DH, Smillie LB, Lohmeier-Vogel EM (1989) Effects of deletion of tropomyosin overlap on regulated actomyosin subfragment 1 ATPase. Biochem J 258:831–836

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heidenhain M (1913) Über die Entstehung der quergestreiften Muskelsubstanz bei der Forelle. Archiv für Mikros Anat 83:A427–A447

    Article  Google Scholar 

  • Heilbrunn LV (1940) The action of calcium on muscle protoplasm. Physiol Zool 13:88–94

    Article  CAS  Google Scholar 

  • Hellam DC, Podolsky RJ (1969) Force measurements in skinned muscle fibres. J Physiol 200:807–819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Helmes M, Granzier H (2011) Cardiomyocyte stretch-sensing. OUP, Oxford

    Book  Google Scholar 

  • Herron TJ et al (2006) Activation of myocardial contraction by the N-terminal domains of myosin binding protein-C. Circ Res 98:1290–1298

    Article  CAS  PubMed  Google Scholar 

  • Herzberg O, Moult J, James MN (1986) A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. J Biol Chem 261:2638–2644

    CAS  PubMed  Google Scholar 

  • Hibberd M, Jewell B (1982) Calcium- and length-dependent force production in rat ventricular muscle. J Physiol 329:527–540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hill AV (1913) The combinations of haemoglobin with oxygen and with carbon monoxide. I. Biochem J 7:471–480

    Article  CAS  PubMed  Google Scholar 

  • Hill AV (1964) The effect of tension in prolonging the active state in a twitch. Proc R Soc Lond B Biol Sci 159:589–595

    Article  CAS  PubMed  Google Scholar 

  • Hill C, Weber K (1986) Monoclonal antibodies distinguish titins from heart and skeletal muscle. J Cell Biol 102:1099–1108

    Article  CAS  PubMed  Google Scholar 

  • Hill TL, Eisenberg E, Greene L (1980) Theoretical model for the cooperative equilibrium binding of myosin subfragment 1 to the actin-troponin-tropomyosin complex. Proc Natl Acad Sci U S A 77:3186–3190

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hofmann PA, Fuchs F (1987a) Evidence for a force-dependent component of calcium binding to cardiac troponin C. Am J Physiol 253:C541–C546

    CAS  PubMed  Google Scholar 

  • Hofmann PA, Fuchs F (1987b) Effect of length and cross-bridge attachment on Ca2+ binding to cardiac troponin C. Am J Physiol 253:C90–C96

    CAS  PubMed  Google Scholar 

  • Hofmann PA, Fuchs F (1988) Bound calcium and force development in skinned cardiac muscle bundles: Effect of sarcomere length. J Mol Cell Cardiol 20:667–677

    Article  CAS  PubMed  Google Scholar 

  • Holmes KC, Lehman W (2008) Gestalt-binding of tropomyosin to actin filaments. J Muscle Res Cell Motil 29:213–219

    Article  CAS  PubMed  Google Scholar 

  • Houmeida A et al (2008) Evidence for the oligomeric state of ‘elastic’ titin in muscle sarcomeres. J Mol Biol 384:299–312

    Article  CAS  PubMed  Google Scholar 

  • Housmans PR, Lee NK, Blinks (1983) Active shortening retards the decline of the intracellular calcium transient in mammalian heart muscle. Science 221:159–161

    Article  CAS  PubMed  Google Scholar 

  • Howell WH, Donaldson F (1884) Experiments upon the heart of the dog with reference to the maximum volume of blood sent out by the left ventricle in a single beat, and the influence of variations in venous pressure, arterial pressure, and pulse-rate upon the work done by the heart. Phil Trans Royal Soc Lond 175:139–160

    Article  Google Scholar 

  • Huxley HE (1953a) Electron microscope studies of the organisation of the filaments in striated muscle. Biochim Biophys Acta 12:387–394

    Article  CAS  PubMed  Google Scholar 

  • Huxley HE (1953b) X-Ray analysis and the problem of muscle. Proc R Soc Lond 141:59–62

    Article  CAS  PubMed  Google Scholar 

  • Huxley A (1957a) Muscle structure and theories of contraction. Prog Biophys Biophys Chem 7:255–318

    CAS  PubMed  Google Scholar 

  • Huxley HE (1957b) The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol 3:631–648

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Huxley HE (1961) The contractile structure of cardiac and skeletal muscle. Circulation 24:328–335

    Article  CAS  PubMed  Google Scholar 

  • Huxley HE (1963) Electron microscope studies on the structure of natural and synthetic protein filaments from striated muscle. J Mol Biol 7:281–308

    Article  CAS  PubMed  Google Scholar 

  • Huxley HE (1969) The mechanism of muscular contraction. Science 20:1356–1365

    Article  Google Scholar 

  • Huxley HE (1971) The Croonian Lecture, 1970: The structural basis of muscular contraction. Proc R Soc Lond 178:131–149

    Article  CAS  PubMed  Google Scholar 

  • Huxley HE (1973a) Muscle 1972: progress and problems. Cold Spring Harb Symp Quant Biol 37:689–693

    Article  CAS  Google Scholar 

  • Huxley AF (1973b) A note suggesting that the cross-bridge attachment during muscle contraction may take place in two stages. Proc R Soc Lond B Biol Sci 183:83–86

    Article  CAS  PubMed  Google Scholar 

  • Huxley HE, Brown W (1967) The low-angle X-ray diagram of vertebrate striated muscle and its behaviour during contraction and rigor. J Mol Biol 30:383–434

    Article  CAS  PubMed  Google Scholar 

  • Huxley H, Hanson J (1954) Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature 173:973–976

    Article  CAS  PubMed  Google Scholar 

  • Huxley A, Niedergerke R (1954) Structural changes in muscle during contraction; interference microscopy of living muscle fibres. Nature 173:917–973

    Google Scholar 

  • Irving TC, Konhilas J, Perry D, Fischetti R, de Tombe PP (2000) Myofilament lattice spacing as a function of sarcomere length in isolated rat myocardium. Am J Physiol 279:H2568–H2573

    CAS  Google Scholar 

  • Jewell B, Wilkie D (1960) The mechanical properties of relaxing muscle. J Physiol 152:30–47

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johansson JE (1891) Die reizung der vasomotoren nach der lähmung der cerebrospinalen herznerven. Archiv für Physiol, 103–156

  • Johnson P, Smillie LB (1977) Polymerizability of rabbit skeletal tropomyosin: effects of enzymic and chemical modifications. Biogeosciences 16:2264–2269

    CAS  Google Scholar 

  • Kabsch W, Mannherz HG, Suck D, Pai EF, Holmes KC (1990) Atomic structure of the actin: DNase I complex. Nature 347:37–44

    Article  CAS  PubMed  Google Scholar 

  • Kentish JC, ter Keurs HE, Ricciardi L, Bucx JJ, Noble MI (1986) Comparison between the sarcomere length-force relations of intact and skinned trabeculae from rat right ventricle. Influence of calcium concentrations on these relations. Circ Res 58:755–768

    Article  CAS  PubMed  Google Scholar 

  • Kielley WW, Meyerhof O (1948) A new magnesium-activated adenosinetriphosphatase from muscle. J Biol Chem 174:387–388

    CAS  PubMed  Google Scholar 

  • Kielley WW, Meyerhof O (1950) Studies on adenosinetriphosphatase of muscle; a new magnesium-activated a denosinetriphosphatase. J Biol Chem 176:591–601

    Google Scholar 

  • Knowlton FP, Starling EH (1912) The influence of variations in temperature and blood-pressure on the performance of the isolated mammalian heart. J Physiol 44:206–219

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kominz DR, Mitchell ER, Nihei T, Kay CM (1965) The papain digestion of skeletal myosin A. Biochemistry 4:2373–2382

    Article  CAS  Google Scholar 

  • Komukai K, Kurihara S (1997) Length dependence of Ca2+-tension relationship in aequorin-injected ferret papillary muscles. Am J Physiol 273:1068–1074

    Google Scholar 

  • Konhilas JP, Irving TC, de Tombe PP (2002a) Myofilament calcium sensitivity in skinned rat cardiac trabeculae: role of interfilament spacing. Circ Res 90:59–65

    Article  CAS  PubMed  Google Scholar 

  • Konhilas JP, Irving TC, de Tombe PP (2002b) Length-dependent activation in three striated muscle types of the rat. J Physiol 544:225–236

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Konhilas JP et al (2003) Troponin I in the murine myocardium: influence on length-dependent activation and interfilament spacing. J Physiol 547:951–961

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kostin S, Hein S, Arnon E, Scholz D, Schaper J (2000) The cytoskeleton and related proteins in the human failing heart. Heart Fail Rev 5:271–280

    Article  CAS  PubMed  Google Scholar 

  • Krause W (1869) Die motorischen Endplatten der quergestreiften Muskelfasern. Hahn, Hannover

    Google Scholar 

  • Kuster DWD et al (2013) GSK3β phosphorylates newly identified site in the Pro-Ala rich region of cardiac myosin binding protein C and alters cross-Bridge cycling kinetics in human. Circ Res 112:633–639

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Labeit S, Kolmerer B (1995) Titins: giant proteins in charge of muscle ultrastructure and elasticity. Science 270:293–296

    Article  CAS  PubMed  Google Scholar 

  • Labeit SGM, Lakey A, Trinick J (1992) Towards a molecular understanding of titin. EMBO J 11:1711–1716

    PubMed Central  CAS  PubMed  Google Scholar 

  • Labeit S, Kolmerer B, Linke WA (1997) The giant protein titin. Emerging roles in physiology and pathophysiology. Circ Res 80:290–294

    Article  CAS  PubMed  Google Scholar 

  • Lehman W et al (2000) Tropomyosin and actin isoforms modulate the localization of tropomyosin strands on actin filaments. J Mol Biol 302:593–606

    Article  CAS  PubMed  Google Scholar 

  • Lehndorff A (1908) Über die ursachen der typischen schwankungen des allgemeinen blutdruckes bei reizung der vasomotoren. Archiv für Physiol, 362–391

  • Linke WA (2008) Sense and stretchability: The role of titin and titin-associated proteins in myocardial stress-sensing and mechanical dysfunction. Cardiovasc Res 77:637–648

    CAS  PubMed  Google Scholar 

  • Linke WA, Kruger M (2010) The giant protein titin as an integrator of myocyte signaling pathways. Physiology 25:186–198

    Article  CAS  PubMed  Google Scholar 

  • Locke FS, Rosenheim O (1907) Contributions to the physiology of the isolated heart. The consumption of dextrose by mammalian cardiac muscle. J Physiol 36:205–220

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lohmann K (1934) Uber die enzymatische aufspaltung der kreatinphosphorsaure; zugleich ein beitrag zum chemismus der muskelkontraktion. Biochem Z 271:264–277

    CAS  Google Scholar 

  • Lohmann K (1935) Konstitution der adenylpyrophosphorsaure and adeninediphosphorsaure. Biochem Z 282:120–123

    CAS  Google Scholar 

  • Lowey S, Goldstein L, Cohen C, Luck SM (1967) Proteolytic degradation of myosin and the meromyosins by a water-insoluble polyanionic derivative of trypsin: Properties of a helical subunit isolated from heavy meromyosin. J Mol Biol 23:287–304

    Article  CAS  PubMed  Google Scholar 

  • Ludwig C (1856) Lehrbuch Der Physiologie Des Menschen. C.F. Winter, Heidelberg 1852-1856 2

  • Lundsgaard E (1930a) Untersuchungen fiber muskelkontraktion ohne milchsaure. Biochem Z 217:162–177

    CAS  Google Scholar 

  • Lundsgaard E (1930b) Weitere untersuchungen uber muskelkontraktionen ohne milchsaurebildung. Biochem Z 227:51–83

    CAS  Google Scholar 

  • Lundsgaard E (1930c) Uber die einwirkung der monoiodoessigsaure auf den spaltungs- und oxydationsstoffwechsel. Biochem Z 220:8–18

    CAS  Google Scholar 

  • Luther PK et al (2011) Direct visualization of myosin-binding protein C bridging myosin and actin filaments in intact muscle. Proc Natl Acad Sci U S A 108:11423–11428

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lymn RW, Taylor EW (1971) Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry 10:4617–4624

    Article  CAS  PubMed  Google Scholar 

  • Magid A, Reedy M (1980) X-ray diffraction observations of chemically skinned frog skeletal muscle processed by an improved method. Biophys J 30:270–340

    Google Scholar 

  • Malinchik S, Xu S, Yu LC (1997) Temperature-induced structural changes in the myosin thick filament of skinned rabbit psoas muscle. Biophys J 73:2304–2312

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Manning EP, Tardiff JC, Schwartz SD (2011) A model of calcium activation of the cardiac thin filament. Biochemistry 50:7405–7413

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Manning EP, Tardiff JC, Schwartz SD (2012) Molecular effects of familial hypertrophic cardiomyopathy-related mutations in the TNT1 domain of cTnT. J Mol Biol 421:54–66

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Marey EJ (1881) La circulation du sang à l’ état physiologique et dans les maladies. Libraire de L’Academie de Medecine, Paris

    Google Scholar 

  • Marsh BB (1951) A factor modifying muscle fibre syneresis. Nature 167:1065–1066

    Article  CAS  PubMed  Google Scholar 

  • Marsh BB (1952) The effects of adenosine triphosphate on the fibre volume of a muscle homogenate. Biochim Biophys Acta 9:247–260

    Article  CAS  PubMed  Google Scholar 

  • Martyn DA, Gordon AM (1988) Length and myofilament spacing-dependent changes in calcium sensitivity of skeletal fibres: effects of pH and ionic strength. J Muscle Res Cell Motil 9:428–445

    Article  CAS  PubMed  Google Scholar 

  • Maruyama K et al (1977) Connectin, an elastic protein of muscle. Characterization and function. J Biochem 82:317–337

    CAS  PubMed  Google Scholar 

  • Maruyama K, Kimura S, Yoshidomi H, Sawada H, Kikuchi M (1984) Molecular size and shape of beta-connectin, an elastic protein of striated muscle. J Biochem 95:1423–1433

    CAS  PubMed  Google Scholar 

  • Maruyama K et al (1985) Connectin filaments link thick filaments and Z lines in frog skeletal muscle as revealed by immunoelectron microscopy. J Cell Biol 101:2167–2172

    Article  CAS  PubMed  Google Scholar 

  • Mateja RD, Greaser ML, de Tombe PP (2012) Impact of titin isoform on length dependent activation and cross-bridge cycling kinetics in rat skeletal muscle. Biochim Biophys Acta 1833:804–811

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Matsubara I, Millman BM (1974) X-Ray diffraction studies on cardiac muscle. In: Ciba Foundation Symposium 24 - Physiological Basis of Starling’s Law of the Heart 31-41. John Wiley & Sons, Ltd

  • Matsubara I, Millman BM (1974b) X-ray diffraction patterns from mammalian heart muscle. J Mol Biol 82:527–536

    Article  CAS  PubMed  Google Scholar 

  • Maytum R, Lehrer SS, Geeves MA (1998) Cooperativity and Switching within the Three-State Model of Muscle Regulation. Biochemistry 38:1102–1110

    Article  Google Scholar 

  • McDonald KS, Moss RL (1995) Osmotic compression of single cardiac myocytes eliminates the reduction in Ca2+ sensitivity of tension at short sarcomere length. Circ Res 77:199–205

    Article  CAS  PubMed  Google Scholar 

  • McDonald KS et al (1995) Length dependence of Ca2+ sensitivity of tension in mouse cardiac myocytes expressing skeletal troponin C. J Physiol 483:131–139

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • McKillop DF, Geeves MA (1993) Regulation of the interaction between actin and myosin subfragment 1: evidence for three states of the thin filament. Biophys J 65:693–701

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meek WJ, Eyster JAE (1915) The effect of adrenalin on the heart-rate. Am J Physiol 38:62–66

    CAS  Google Scholar 

  • Mihalyi E, Szent-Gyorgyi AG (1953) Trypsin digestion of muscle proteins. I. Ultracentrifugal analysis of the process. J Biol Chem 201:189–196

    CAS  PubMed  Google Scholar 

  • Mines GR (1913) On functional analysis by the action of electrolytes. J Physiol 46:188–235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Miyamoto CA, Fischman DA, Reinach FC (1999) The interface between MyBP-C and myosin: site-directed mutagenesis of the CX myosin-binding domain of MyBP-C. J Muscle Res Cell Motil 20:703–716

    Article  CAS  PubMed  Google Scholar 

  • Moos C, Mason CM, Besterman JM, Feng INM, Dubin JH (1978) The binding of skeletal muscle C-protein to F-actin, and its relation to the interaction of actin with myosin subfragment-1. J Mol Biol 124:571–586

    Article  CAS  PubMed  Google Scholar 

  • Morris EP, Lehrer SS (1984) Troponin-tropomyosin interactions. Fluorescence studies of the binding of troponin, troponin T and chymotryptic troponin T fragments to specifically labeled tropomyosin. Biogeosciences 23:2214–2220

    CAS  Google Scholar 

  • Moss L, Swinford A, Greaser M (1983) Alterations in the Ca2+ sensitivity of tension development by single skeletal muscle fibers at stretched lengths. Biophys J 43:115–119

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Moss RL, Nwoye LO, Greaser ML (1991) Substitution of cardiac troponin C into rabbit muscle does not alter the length dependence of Ca2+ sensitivity of tension. J Physiol 440:273–289

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mueller H (1965) Characterization of the molecular region containing the active sites of myosin. J Biol Chem 240:3816–3828

    CAS  PubMed  Google Scholar 

  • Mueller H, Perry SV (1961) Studies on the tryptic digestion of heavy meromyosin. Biochim Biophys Acta 50:599–601

    Article  CAS  PubMed  Google Scholar 

  • Müller J (1844) Handbuch der Physiologie des Menschen für Vorlesungen. Vierte Auflage, Coblenz. J Hölscher 1837 1

  • Mun JY et al (2011) Electron microscopy and 3D reconstruction of F-actin decorated with cardiac myosin-binding protein C. J Mol Biol 410:214–225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murakami K et al (2005) Structural basis for Ca2+-regulated muscle relaxation at interaction sites of troponin with actin and tropomyosin. J Mol Biol 352:178–201

    Article  CAS  PubMed  Google Scholar 

  • Murakami K et al (2008) Structural basis for tropomyosin overlap in thin (actin) filaments and the generation of a molecular swivel by troponin-T. Proc Natl Acad Sci U S A 105:7200–7205

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murakami K et al (2010) Structural basis for actin assembly, activation of ATP hydrolysis, and delayed phosphate release. Cell 143:275–287

    Article  CAS  PubMed  Google Scholar 

  • Murray AC, Kay CM (1971) Separation and characterization of the inhibitory factor of the troponin system. Biochem Biophys Res Comm 44:237–244

    Article  CAS  PubMed  Google Scholar 

  • Nagashima H, Asakura S (1982) Studies on co-operative properties of tropomyosin-actin and tropomyosin-troponin-actin complexes by the use of N-ethylmaleimide-treated and untreated species of myosin subfragment 1. J Mol Biol 155:409–428

    Article  CAS  PubMed  Google Scholar 

  • Offer G (1973) C-protein and the periodicity in the thick filaments of vertebrate skeletal muscle. Cold Spring Harb Symp Quant Biol 37:87–93

    Article  CAS  Google Scholar 

  • Offer G, Moos C, Starr R (1973) A new protein of the thick filaments of vertebrate skeletal myofibrils: Extraction, purification and characterization. J Mol Biol 74:653–676

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka H, Yajima H, Maruyama K, Kimura S (1997) Binding of the N-terminal 63 kDa portion of connectin/titin to α-actinin as revealed by the yeast two-hybrid system. FEBS Lett 401:65–67

    Article  CAS  PubMed  Google Scholar 

  • Orlova A, Galkin VE, Jeffries CMJ, Egelman EH, Trewhella J (2011) The N-terminal domains of myosin binding protein C can bind polymorphically to F-actin. J Mol Biol 412:379–386

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Page SG (1974) Measurements of structural parameters in cardiac muscle. In: Ciba Foundation Symposium 24 - Physiological Basis of Starling’s Law of the Heart 13-30. John Wiley & Sons, Ltd

  • Palm T, Greenfield NJ, Hitchcock-DeGregori SE (2003) Tropomyosin ends determine the stability and functionality of overlap and troponin T complexes. Biophys J 84:3181–3189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pan BS, Gordon AM, Luo ZX (1989) Removal of tropomyosin overlap modifies cooperative binding of myosin S-1 to reconstituted thin filaments of rabbit striated muscle. J Biol Chem 264:8495–8498

    CAS  PubMed  Google Scholar 

  • Parmley W, Chuck L (1973) Length-dependent changes in myocardial contractile state. Am J Physiol 224:1195–1199

    CAS  PubMed  Google Scholar 

  • Parry DAD, Squire JM (1973) Structural role of tropomyosin in muscle regulation: Analysis of the X-ray diffraction patterns from relaxed and contracting muscles. J Mol Biol 75:33–55

    Article  CAS  PubMed  Google Scholar 

  • Pate E, Cooke R (1989) Addition of phosphate to active muscle fibers probes actomyosin states within the powerstroke. Pflugers Arch 414:73–81

    Article  CAS  PubMed  Google Scholar 

  • Patterson SW, Starling EH (1914) On the mechanical factors which determine the output of the ventricles. J Physiol 48:357–379

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Patterson SW, Piper H, Starling E (1914) The regulation of the heart beat. J Physiol 48:465–513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Paul DM, Morris EP, Kensler RW, Squire JM (2009) Structure and orientation of troponin in the thin filament. J Biol Chem 284:15007–15015

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pearlstone JR, Smillie LB (1982) Binding of troponin-T fragments to several types of tropomyosin. Sensitivity to Ca2+ in the presence of troponin-C. J Biol Chem 257:10587–10592

    CAS  PubMed  Google Scholar 

  • Pearlstone JR, Smillie LB (1983) Effects of troponin-I plus -C on the binding of troponin-T and its fragments to alpha-tropomyosin. J Biol Chem 254:2534–2542

    Google Scholar 

  • Pepe FA (1966) Some aspects of the structural organization of the myofibril as revealed by antibody-staining methods. J Cell Biol 28:505–525

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perry SV, Corsi A (1958) Extraction of proteins other than myosin from the isolated rabbit myofibril. Biochem J 68:5–12

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perry SV, Cole HA, Head JF, Wilson FJ (1973) Localization and mode of action of the inhibitory protein component of the troponin complex. Cold Spring Harb Symp Quant Biol 37:251–262

    Article  CAS  Google Scholar 

  • Perz-Edwards RJ et al (2011) X-ray diffraction evidence for myosin-troponin connections and tropomyosin movement during stretch activation of insect flight muscle. Proc Natl Acad Sci U S A 108:120–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pfuhl M, Gautel M (2012) Structure, interactions and function of the N-terminus of cardiac myosin binding protein C (MyBP-C): who does what, with what, and to whom? J Muscle Res Cell Motil 33:83–94

    Article  CAS  PubMed  Google Scholar 

  • Pirani A et al (2005) Single particle analysis of relaxed and activated muscle thin filaments. J Mol Biol 346:761–772

    Article  CAS  PubMed  Google Scholar 

  • Poole KJV et al (2006) A comparison of muscle thin filament models obtained from electron microscopy reconstructions and low-angle X-ray fibre diagrams from non-overlap muscle. J Struct Biol 155:273–284

    Article  CAS  PubMed  Google Scholar 

  • Potter JD, Gergely J (1974) Troponin, tropomyosin, and actin interactions in the Ca2+ ion regulation of muscle contraction. Biochemistry 13:2697–2703

    Article  CAS  PubMed  Google Scholar 

  • Pringle JWS (1949) The excitation and contraction of the flight muscles of insects. J Physiol 108:226–232

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pringle JWS (1978) The Croonian Lecture, 1977: stretch activation of muscle: function and mechanism. Proc Royal Soc Lond 201:107–130

    Article  CAS  Google Scholar 

  • Rack PMH, Westbury DR (1969) The effects of length and stimulus rate on tension in the isometric cat soleus muscle. J Physiol 204:443–460

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rall JA (2014) Birth of the sliding filament model of muscular contraction: proposal. In: Mechanism of muscular contraction. Springer, New York, pp 29–57

    Google Scholar 

  • Ramsey RW, Street SF (1940) The isometric length-tension diagram of isolated skeletal muscle fibers of the frog. J Cell Comp Biol 15:11–34

    CAS  Google Scholar 

  • Ratti J, Rostkova E, Gautel M, Pfuhl M (2011) Structure and interactions of myosin-binding protein C domain C0: cardiac-specific regulation of myosin at its neck? J Biol Chem 286:12650–12658

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Regnier M et al (2002) Thin filament near-neighbour regulatory unit interactions affect rabbit skeletal muscle steady-state force-Ca2+ relations. J Physiol 540:485–497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rice RV (1961) Conformation of individual macromolecular particles from myosin solutions. Biochim Biophys Acta 52:602–604

    Article  CAS  PubMed  Google Scholar 

  • Richard Zobel C, Carlson FD (1963) An electron microscopic investigation of myosin and some of its aggregates. J Mol Biol 7:78–89

    Article  Google Scholar 

  • Ringer S (1882) Concerning the influence exerted by each of the constituents of the blood on the contraction of the ventricle. J Physiol 3:380–393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ringer S (1883) A further contribution regarding the influence of the different constituents of the blood on the contraction of the Heart. J Physiol 4:29–42

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robinson TF, Winegrad S (1979) The measurement and dynamic implications of thin filament lengths in heart muscle. J Physiol 286:607–619

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rome E (1972) Relaxation of glycerinated muscle: Low-angle X-ray diffraction studies. J Mol Biol 65:331–345

    Article  CAS  PubMed  Google Scholar 

  • Rosenblueth A, Alanís J, López E, Rubio R (1959) The adaptation of ventricular muscle to different circulatory conditions. Arch Int Physiol Biochim 67:358–373

    CAS  PubMed  Google Scholar 

  • Roy CS (1879) On the Influences which modify the work of the heart. J Physiol 1:452–496

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roy CSA, Adami JG (1892) Contributions to the physiology and pathology of the mammalian heart. Br Med J 1:428–430

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rϋdel R, Taylor SR (1971) Striated muscle fibers: facilitation of contraction at short lengths by caffeine. Science 172:387–388

    Article  Google Scholar 

  • Sandow A (1952) Excitation-contraction coupling in muscular response. Yale J Biol Med 25:176–201

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sarkar S, Sreter FA, Gergely J (1971) Light chains of myosins from white, red, and cardiac muscles. Proc Natl Acad Sci U S A 68:946–950

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sarnoff SJ, Mitchell JH (1961) The regulation of the performance of the heart. Am J Med 30:747–771

    Article  CAS  PubMed  Google Scholar 

  • Sarnoff SJ, Mitchell JH, Gilmore JP, Remensnyder JP (1960) Homeometric autoregulation in the heart. Circ Res 8:1077–1091

    Article  CAS  PubMed  Google Scholar 

  • Schafer EA (1890) On the minute structure of the muscle-columns or sarcostyles which form the wing-muscles of insects. Proc R Soc Lond 49:280–286

    Article  Google Scholar 

  • Schaub MP (1971) SV. The regulatory proteins of the myofibril. Characterization and properties of the inhibitory factor (troponin B). Biochem J 123:367–377

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schaub MC, Perry SV (1969) The relaxing protein system of striated muscle. Resolution of the troponin complex into inhibitory and calcium ion-sensitizing factors and their relationship to tropomyosin. Biochem J 115:993–1005

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schaub M, Perry S, Häcker W (1972) The regulatory proteins of the myofibril. Characterization and biological activity of the calcium-sensitizing factor (troponin A). Biochem J 126:237–249

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Seo K et al (2014) Hyperactive adverse mechanical stress responses in dystrophic heart are coupled to transient receptor potential canonical 6 and blocked by cGMP-protein kinase G modulation. Circ Res 114:823–832

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sequeira V, Nijenkamp LLAM, Regan JA, van der Velden J (2013a) The physiological role of cardiac cytoskeleton and its alterations in heart failure. Biochim Biophys Acta 1838:700–722

    Article  PubMed  CAS  Google Scholar 

  • Sequeira V et al (2013b) Perturbed length-sependent activation in human hypertrophic cardiomyopathy with missense sarcomeric gene mutations. Circ Res 112:1491–1505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sequeira V, Witjas-Paalberends ER, Kuster DD, Velden J (2013c) Cardiac myosin-binding protein C: hypertrophic cardiomyopathy mutations and structure-function relationships. Pflugers Arch 2:201–206

    Google Scholar 

  • Sequeira V, Najafi A, Wijnker PJM, dos Remedios C, Michels M, Kuster DWD, van der Velden J (2015) ADP-stimulated contraction: a predictor of thin-filament activation in cardiac disease. Proc Natl Acad Sci. (in press)

  • Shaffer JF, Kensler RW, Harris SP (2009) The myosin-binding protein C motif binds to F-actin in a phosphorylation-sensitive manner. J Biol Chem 284:12318–12327

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Slayter H, Lowey S (1967) Substructure of the myosin molecule as visualized by electron microscopy. Proc Natl Acad Sci U S A 58:1611–1618

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith SH, Fuchs F (1999) Effect of ionic strength on length-dependent Ca2+ activation in skinned cardiac muscle. J Mol Cell Cardiol 31:2115–2125

    Article  CAS  PubMed  Google Scholar 

  • Sonnenblick EH (1968) Correlation of myocardial ultrastructure and function. Circulation 38:29–44

    Article  CAS  PubMed  Google Scholar 

  • Sonnenblick EH, Skelton CL (1974) Reconsideration of the ultrastructural basis of cardiac length-tension relations. Circ Res 35:517–526

    Article  CAS  PubMed  Google Scholar 

  • Sonnenblick EH, Spiro D, Cottrell TS (1963) Fine structural changes in heart muscle in relation of the lengthtension curve. Proc Natl Acad Sci U S A 49:193–200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sonnenblick EH, Spotnitz H, Spiro D (1964) Role of the sarcomere in ventricular function and the mechanism of heart failure. Circ Res 15:70–81

    CAS  PubMed  Google Scholar 

  • Sorimachi H et al (1997) Tissue-specific expression and α-actinin binding properties of the Z-disc titin: implications for the nature of vertebrate Z-discs. J Mol Biol 270:688–695

    Article  CAS  PubMed  Google Scholar 

  • Squire JM, Al-Khayat HA, Yagi N (1993) Muscle thin-filament structure and regulation. Actin sub-domain movements and the tropomyosin shift modelled from low-angle X-ray diffraction. J Chem Soci 89:2717–2726

    CAS  Google Scholar 

  • Squire JM, Harford JJ, Al-Khayat HA (1994) Molecular movements in contracting muscle: towards "muscle - the movie". Biophys Chem 50:87–96

    Article  CAS  PubMed  Google Scholar 

  • Starling EH (1918) The linacre lecture on the law of the heart given at Cambridge, 1915. Nature 101:18

    Article  Google Scholar 

  • Starling EH (1920) On the circulatory changes associated with exercise. J Royal Army Med Corps 34:258

    Google Scholar 

  • Starr R, Offer G (1978) The interaction of C-protein with heavy meromyosin and subfragment-2. Biochem J 171:813–816

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stein LA, Schwarz RP (1979) Chock, P.B. & Eisenberg, E. Mechanism of the actomyosin adenosine triphosphatase. Evidence that adenosine 5′-triphosphate hydrolysis can occur without dissociation of the actomyosin complex. Biochemistry 18:3895–3909

    Article  CAS  PubMed  Google Scholar 

  • Stelzer JE, Dunning SB, Moss RL (2006a) Ablation of cardiac myosin-binding protein-C accelerates stretch activation in murine skinned myocardium. Circ Res 98:1212–1218

    Article  CAS  PubMed  Google Scholar 

  • Stelzer JE, Patel JR, Moss RL (2006b) Protein kinase A-mediated acceleration of the stretch activation response in murine skinned myocardium is eliminated by ablation of cMyBP-C. Circ Res 99:884–890

    Article  CAS  PubMed  Google Scholar 

  • Stenger R, Spiro D (1961) The ultrastructure of mammalian cardiac muscle. J Biophys Biochem Cytol 9:325–351

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stephen H (1740) Foundations of anesthesiology. An account of some hydraulic and hydrostatical experiments made on the blood and blood-vessels of animals. J Clin Monit Comput 16:45–47

    Google Scholar 

  • Stienen GJM, Blangé T, Treijtel BW (1985) Tension development and calcium sensitivity in skinned muscle fibres of the frog. Pflugers Arch 405:19–23

    Article  CAS  PubMed  Google Scholar 

  • Straub FB (1942) Actin studies. Int Med Chem Univ Szeged 2:3–15

    CAS  Google Scholar 

  • Straub FB (1943) Actin II studies. Int Med Chem Univ Szeged 3:23–37

    CAS  Google Scholar 

  • Sun Y-B, Lou F, Irving M (2009) Calcium- and myosin-dependent changes in troponin structure during activation of heart muscle. J Physiol 587:155–163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Szent-Györgyi A (1942) Myosin and muscular contraction. Inst Med Chem Univ Szeged 1:1–71

    Google Scholar 

  • Szent-Györgyi A (1946) Contraction and the chemical structure of the muscle fibril. J Colloid Sci 1:1–19

    Article  Google Scholar 

  • Szent-Györgyi AG (1953) Meromyosins, the subunits of myosin. Arch Biochem Biophys 42:305–320

    Article  PubMed  Google Scholar 

  • Takeda S, Yamashita A, Maeda K, Maeda Y (2003) Structure of the core domain of human cardiac troponin in the Ca2+-saturated form. Nature 424:35–41

    Article  CAS  PubMed  Google Scholar 

  • Tardiff J (2011) Thin filament mutations: developing an integrative approach to a complex disorder. Circ Res 108:765–782

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taylor SR, Rϋdel R (1970) Striated muscle fibers: inactivation of contraction induced by shortening. Science 167:882–884

    Article  CAS  PubMed  Google Scholar 

  • Terui T et al (2008) Troponin and titin coordinately regulate length-dependent activation in skinned porcine ventricular muscle. J Gen Physiol 131:275–283

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tobacman LS et al (2002) The troponin tail domain promotes a conformational state of the thin filament that suppresses myosin activity. J Biol Chem 277:27636–27642

    Article  CAS  PubMed  Google Scholar 

  • Trombitás K, Greaser ML, Pollack GH (1997) Interaction between titin and thin filaments in intact cardiac muscle. J Muscle Res Cell Motil 18:345–351

    Article  PubMed  Google Scholar 

  • Tskhovrebova L et al (2010) Shape and flexibility in the titin 11-domain super-repeat. J Mol Biol 397:1092–1105

    Article  CAS  PubMed  Google Scholar 

  • van der Velden J, de Jong JW, Owen VJ, Burton PBJ, Stienen GJM (2000) Effect of protein kinase A on calcium sensitivity of force and its sarcomere length dependence in human cardiomyocytes. Cardiovasc Res 46:487–495

    Article  PubMed  Google Scholar 

  • van der Velden J et al (2004) Alterations in myofilament function contribute to left ventricular dysfunction in pigs early after myocardial infarction. Circ Res 95:e85–e95

    Article  PubMed  CAS  Google Scholar 

  • van der Velden J et al (2006) Functional effects of protein kinase C-mediated myofilament phosphorylation in human myocardium. Cardiovasc Res 69:876–887

    Article  PubMed  CAS  Google Scholar 

  • Vaughan KT, Weber FE, Einheber S, Fischman DA (1993) Molecular cloning of chicken myosin-binding protein (MyBP) H (86-kDa protein) reveals extensive homology with MyBP-C (C-protein) with conserved immunoglobulin C2 and fibronectin type III motifs. J Biol Chem 268:3670–3676

    CAS  PubMed  Google Scholar 

  • Vibert P, Craig R, Lehman W (1997) Steric-model for activation of muscle thin filaments. J Mol Biol 266:8–14

    Article  CAS  PubMed  Google Scholar 

  • Vinogradova MV et al (2005) Ca2 + -regulated structural changes in troponin. PNAS 102:5038–5043

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • von Anrep G (1912) On the part played by the suprarenals in the normal vascular reactions of the body. J Physiol 45:307–317

    Article  Google Scholar 

  • von Kries J (1880) Untersuchungen zur mechanik des quergestreiften muskels. Archiv für Physiol, 348–374

  • von Kries J (1892) Untersuchungen zur mechanik des quergestreiften muskeln. Archiv für Physiol, 1–21

  • Wagner D, Weeds A (1977) Studies on the role of myosin alkali light chains. J Mol Biol 109:455–470

    Article  CAS  PubMed  Google Scholar 

  • Wakabayashi K et al (1994) X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction. Biophys J 67:2422–2435

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang YP, Fuchs F (1994) Length, force, and Ca(2+)-troponin C affinity in cardiac and slow skeletal muscle. Am J Physiol 266:1077–1082

    Google Scholar 

  • Wang Y-P, Fuchs F (1995) Osmotic compression of skinned cardiac and skeletal muscle bundles: Effects on force generation, Ca2+ sensitivity and Ca2+ binding. J Mol Cell Cardiol 27:1235–1244

    Article  CAS  PubMed  Google Scholar 

  • Wang K, McClure J, Tu A (1979) Titin: major myofibrillar components of striated muscle. Proc Natl Acad Sci U S A 76:3698–3702

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Watanabe S (1955) Relaxing effects of EDTA on glycerol-treated muscle fibers. Arch Biochem Biophys 54:559–562

    Article  CAS  PubMed  Google Scholar 

  • Weber H (1934) Die Muskeleiweisskörper und der Feinbau des Skeletmuskels. Ergebn Physiol Biol Chem Exp Pharmakol 36:109–150

    Article  CAS  Google Scholar 

  • Weber HHD (1935) Feinbau und die mechanischen Eigenschaften des Myosinfadens. Pflügers Archiv Eur J Physiol 235:205–233

    Article  Google Scholar 

  • Weber A (1959) On the role of calcium in the activity of adenosine 5′-triphosphate hydrolysis by actomyosin. J Biol Chem 234:2764–2769

    CAS  PubMed  Google Scholar 

  • Weber A, Winicur S (1961) The role of calcium in the superprecipitation of actomyosin. J Biol Chem 236:3198–3202

    CAS  PubMed  Google Scholar 

  • Weeds AG, Pope B (1971) Chemical studies on light chains from cardiac and skeletal muscle myosins. Nature 234:85–88

    Article  CAS  PubMed  Google Scholar 

  • White HD, Taylor EW (1976) Energetics and mechanism of actomyosin adenosine triphosphatase. Biochemistry 15:5818–5826

    Article  CAS  PubMed  Google Scholar 

  • Whitten AE, Jeffries CM, Harris SP, Trewhella J (2008) Cardiac myosin-binding protein C decorates F-actin: Implications for cardiac function. Proc Natl Acad Sci U S A 105:18360–18365

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wiggers CJ (1921a) Studies on the consecutive phases of the cardiac cycle. Am J Physiol 56:415–438

    Google Scholar 

  • Wiggers CJ (1921b) The present status of cardiodynamic studies on normal and pathologic hearts. JAMA 27:475–502

    Google Scholar 

  • Wijnker PJM et al (2014) Length-dependent activation is modulated by cardiac troponin I bisphosphorylation at Ser23 and Ser24 but not by Thr143 phosphorylation. Am J Physiol 306:H1171–H1181

    CAS  Google Scholar 

  • Wilkinson JM, Perry SV, Cole H, Trayer IP (1971) Characterization of components of inhibitory-factor (troponin B) preparations of the myofibril. Biochem J 124:55P–56P

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wilkinson JM, Perry S, Cole H, Trayer I (1972) The regulatory proteins of the myofibril. Separation and biological activity of the components of inhibitory-factor preparations. Biochem J 127:215–228

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woods EF, Himmelfarb S, Harrington WF (1963) Studies on the structure of myosin in solution. J Biol Chem 238:2374–2385

    CAS  PubMed  Google Scholar 

  • Xu S, Kress M, Huxley HE (1987) X-ray diffraction studies of the structural state of crossbridges in skinned frog sartorius muscle at low ionic strength. J Muscle Res Cell Motil 8:39–54

    Article  CAS  PubMed  Google Scholar 

  • Xu S et al (1997) X-ray diffraction studies of cross-bridges weakly bound to actin in relaxed skinned fibers of rabbit psoas muscle. Biophys J 73:2292–2303

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yamamoto K, Moos C (1983) The C-proteins of rabbit red, white, and cardiac muscles. J Biol Chem 258:8395–8401

    CAS  PubMed  Google Scholar 

  • Zoghbi ME, Woodhead JL, Moss RL, Craig RW (2008) Three-dimensional structure of vertebrate cardiac muscle myosin filaments. Proc Natl Acad Sci U S A 105:2386–2390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge support from the Netherlands organization for scientific research (NWO; VIDI grant 91711344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vasco Sequeira.

Ethics declarations

Conflict of interest

Vasco Sequeira declares that he has no conflict of interest.

Jolanda van der Velden declares that she has no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sequeira, V., van der Velden, J. Historical perspective on heart function: the Frank–Starling Law. Biophys Rev 7, 421–447 (2015). https://doi.org/10.1007/s12551-015-0184-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-015-0184-4

Keywords

Navigation