Abstract
The putative anticancer alkaloids berberine, palmatine, jatrorrhizine, and sanguinarine are known to bind to nucleic acids. To develop them as potential drugs for therapeutic use, their binding affinity to functional proteins and mode of transport in the circulatory system need to be clearly understood. Towards this, many studies on their binding aspects to proteins have been reported and a considerable amount of data, mostly of biophysical nature, exists in the literature. The importance of these natural isoquinoline alkaloids and the recent literature on their interaction phenomena with functional proteins, serum albumins, hemoglobin, and lysozyme are presented in this review.
This is a preview of subscription content, access via your institution.










References
Adhami VM, Aziz MH, Mukhtar H, Ahmad N (2003) Activation of prodeath Bcl-2 family proteins and mitochondrial apoptosis pathway by sanguinarine in immortalized human HaCaT keratinocytes. Clin Cancer Res 9:3176–3182
Bal W, Sokołowska M, Kurowska E, Faller P (2013) Binding of transition metal ions to albumin: sites, affinities and rates. Biochim Biophys Acta 1830:5444–5455
Bhadra K, Suresh Kumar G (2011) Therapeutic potential of nucleic acid-binding isoquinoline alkaloids: binding aspects and implications for drug design. Med Res Rev 31:821–862
Cao Y, Han F, Chen Y (2007) Studies on the non-covalent binding between berberine and human serum albumin by electrospray ion trap mass spectrometry. J Anal Sci 23:389–392
Carter DC, Ho JX (1994) Structure of serum albumin. Adv Protein Chem 45:153–203
Carter DC, He XM, Munson SH, Twigg PD, Gernert KM, Broom MB, Miller TY (1989) Three-dimensional structure of human serum albumin. Science 244:1195–1198
Cernáková M, Kostálová D (2002) Antimicrobial activity of berberine—a constituent of Mahonia aquifolium. Folia Microbiol (Praha) 47:375–378
Chaturvedi MM, Kumar A, Darnay BG, Chainy GB, Agarwal S, Aggarwal BB (1997) Sanguinarine (pseudochelerythrine) is a potent inhibitor of NF-κB activation, IκBα phosphorylation, and degradation. J Biol Chem 272:30129–30134
Chen C, Yu Z, Li Y, Fichna J, Storr M (2014) Effects of berberine in the gastrointestinal tract—a review of actions and therapeutic implications. Am J Chin Med 42:1053–1070
Cheng LL, Wang M, Wu MH, Yao SD, Jiao Z, Wang SL (2012) Interaction mechanism between berberine and the enzyme lysozyme. Spectrochim Acta A Mol Biomol Spectrosc 97:209–214
Dong H, Zhao Y, Zhao L, Lu F (2013) The effects of berberine on blood lipids: a systemic review and meta-analysis of randomized controlled trials. Planta Med 79:437–446
Giri P, Suresh Kumar G (2010) Isoquinoline alkaloids and their binding with polyadenylic acid: potential basis of therapeutic action. Mini Rev Med Chem 10:568–577
Godowski KC (1989) Antimicrobial action of sanguinarine. J Clin Dent 1:96–101
Hazra S, Hossain M, Suresh Kumar G (2013) Binding of isoquinoline alkaloids berberine, palmatine and coralyne to hemoglobin: structural and thermodynamic characterization studies. Mol Biosyst 9:143–153
Hazra S, Suresh Kumar G (2014) Structural and thermodynamic studies on the interaction of iminium and alkanolamine forms of sanguinarine with hemoglobin. J Phys Chem B 118:3771–3784
Hossain M, Khan AY, Suresh Kumar G (2011) Interaction of the anticancer plant alkaloid sanguinarine with bovine serum albumin. PLoS One 6:e18333
Hossain M, Khan AY, Suresh Kumar G (2012) Study on the thermodynamics of the binding of iminium and alkanolamine forms of the anticancer agent sanguinarine to human serum albumin. J Chem Thermodyn 47:90–99
Hu YJ, Liu Y, Xiao XH (2009) Investigation of the interaction between Berberine and human serum albumin. Biomacromolecules 10:517–521
Hu YJ, Ou-Yang Y, Dai CM, Liu Y, Xiao XH (2010a) Binding of berberine to bovine serum albumin: spectroscopic approach. Mol Biol Rep 37:3827–3832
Hu YJ, Ou-Yang Y, Dai CM, Liu Y, Xiao XH (2010b) Site-selective binding of human serum albumin by palmatine: spectroscopic approach. Biomacromolecules 11:106–112
Hussain AR, Al-Jomah NA, Siraj AK, Manogaran P, Al-Hussein K, Abubaker J, Platanias LC, Al-Kuraya KS, Uddin S (2007) Sanguinarine-dependent induction of apoptosis in primary effusion lymphoma cells. Cancer Res 67:3888–3897
Jash C, Suresh Kumar G (2014) Binding of alkaloids berberine, palmatine and coralyne to lysozyme: a combined structural and thermodynamic study. RSC Adv 4:12514–12525
Jash C, Payghan PV, Ghoshal N, Suresh Kumar G (2014) Binding of the iminium and alkanolamine forms of sanguinarine to lysozyme: spectroscopic analysis, thermodynamics, and molecular modeling studies. J Phys Chem B 118:13077–13091
Khan AY (2013) Biophysical studies on the interaction of isoquinoline alkaloids with serum albumins. Ph.D. thesis, Jadavpur University, Kolkata
Khan AY, Hossain M, Suresh Kumar G (2013) Binding of plant alkaloids berberine and palmatine to serum albumins: a thermodynamic investigation. Mol Biol Rep 40:553–566
Kong W, Wei J, Abidi P, Lin M, Inaba S, Li C, Wang Y, Wang Z, Si S, Pan H, Wang S, Wu J, Wang Y, Li Z, Liu J, Jiang JD (2004) Berberine is a novel cholesterol-lowering drug working through a unique mechanism distinct from statins. Nat Med 10:1344–1351
Kosina P, Walterová D, Ulrichová J, Lichnovský V, Stiborová M, Rýdlová H, Vicar J, Krecman V, Brabec MJ, Simánek V (2004) Sanguinarine and chelerythrine: assessment of safety on pigs in ninety days feeding experiment. Food Chem Toxicol 42:85–91
Kragh-Hansen U, Chuang VT, Otagiri M (2002) Practical aspects of the ligand-binding and enzymatic properties of human serum albumin. Biol Pharm Bull 25:695–704
Lenfeld J, Kroutil M, Marsálek E, Slavík J, Preininger V, Simánek V (1981) Antiinflammatory activity of quaternary benzophenanthridine alkaloids from Chelidonium majus. Planta Med 43:161–165
Li Y, He WY, Tian J, Tang J, Hu Z, Chen X (2005a) The effect of berberine on the secondary structure of human serum albumin. J Mol Struct 743:79–84
Li Y, He W, Liu J, Sheng F, Hu Z, Chen X (2005b) Binding of the bioactive component jatrorrhizine to human serum albumin. Biochim Biophys Acta 1722:15–21
Li J, Li J, Jiao Y, Dong C (2014) Spectroscopic analysis and molecular modeling on the interaction of jatrorrhizine with human serum albumin (HSA). Spectrochim Acta A Mol Biomol Spectrosc 118:48–54
Liu XF, Xia YM, Fang Y, Liu LL, Zou L (2003) Interaction between bovine serum albumin and berberine chloride extracted from Chinese herbs of Coptis chinensis Franch. Chem J Chinese Univ 25:2099–2103
Liu XF, Xia YM, Fang Y (2005) Effect of metal ions on the interaction between bovine serum albumin and berberine chloride extracted from a traditional Chinese Herb coptis chinensis franch. J Inorg Biochem 99:1449–1457
Lu JJ, Bao JL, Chen XP, Huang M, Wang YT (2012) Alkaloids isolated from natural herbs as the anticancer agents. Evid Based Complement Alternat Med 2012, Article ID 485042, 12 pages
Mahady GB, Beecher CWW (1994) Quercetin-induced benzophenanthridine alkaloid production in suspension cell cultures of Sanguinaria canadensis. Planta Med 60:553–557
Maiti M, Suresh Kumar G (2007) Molecular aspects on the interaction of protoberberine, benzophenanthridine, and aristolochia group of alkaloids with nucleic acid structures and biological perspectives. Med Res Rev 27:649–695
Maiti M, Suresh Kumar G (2009) Biophysical aspects and biological implications of the interaction of benzophenanthridine alkaloids with DNA. Biophys Rev 1:119–129
Maiti M, Suresh Kumar G (2010) Polymorphic nucleic acid binding of bioactive isoquinoline alkaloids and their role in cancer. J Nucleic Acids 2010, Article ID 593408, 23 pages
Maiti M, Nandi R, Chaudhuri K (1983) The effect of pH on the absorption and fluorescence spectra of sanguinarine. Photochem Photobiol 38:245–249
Maiti M, Das S, Sen A, Das A, Suresh Kumar G, Nandi R (2002) Influence of DNA structures on the conversion of sanguinarine alkanolamine form to iminium form. J Biomol Struct Dyn 20:455–464
Malikova J, Zdarilova A, Hlobilkova A (2006) Effects of sanguinarine and chelerythrine on the cell cycle and apoptosis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 150:5–12
Marszalek M, Konarska A, Szajdzinska-Pietek E, Wolszczak M (2013) Interaction of cationic protoberberine alkaloids with human serum albumin. No spectroscopic evidence on binding to Sudlow’s site 1. J Phys Chem B 117:15987–15993
Mi R, Li PQ, Hu YJ, Fan XY, Li HY, Yu XC, Ouyang Y (2013) Biophysical studies on the interactions of jatrorrhizine with bovine serum albumin by spectroscopic and molecular modeling methods. Mol Biol Rep 40:4397–4404
Mi R, Hu YJ, Fan XY, Ouyang Y, Bai AM (2014) Exploring the site-selective binding of jatrorrhizine to human serum albumin: spectroscopic and molecular modeling approaches. Spectrochim Acta A Mol Biomol Spectrosc 117:163–169
Ou-Yang Y, Li XL, Wang H, Fang M, Hu YJ (2012) Determination of the specific interaction between palmatine and bovine serum albumin. Mol Biol Rep 39:5495–5501
Park H, Bergeron E, Senta H, Guillemette K, Beauvais S, Blouin R, Sirois J, Faucheux N (2010) Sanguinarine induces apoptosis of human osteosarcoma cells through the extrinsic and intrinsic pathways. Biochem Biophys Res Commun 399:446–451
Shaikh SMT, Seetharamappa J, Kandagal PB, Ashoka S (2006) Binding of the bioactive component isothipendyl hydrochloride with bovine serum albumin. J Mol Struct 786:46–52
Sudlow G, Birkett DJ, Wade DN (1975) The characterization of two specific drug binding sites on human serum albumin. Mol Pharmacol 11:824–832
Sudlow G, Birkett DJ, Wade DN (1976) Further characterization of specific drug binding sites on human serum albumin. Mol Pharmacol 12:1052–1061
Suresh Kumar G (2012) RNA targeting by small molecules: Binding of protoberberine, benzophenanthridine and aristolochia alkaloids to various RNA structures. J Biosci 37:539–552
Svensson CK, Woodruff MN, Baxter JG, Lalka D (1986) Free drug concentration monitoring in clinical practice. Rationale and current status. Clin Pharmacokinet 11:450–469
Tanaka M, Asahi Y, Masuda S (1995) Interaction between drugs and water-soluble polymers. VII. binding of berberine with bovine serum albumin. J Macromol Sci Pure Appl Chem 32:339–347
Tillhon M, Guamán Ortiz LM, Lombardi P, Scovassi AI (2012) Berberine: new perspectives for old remedies. Biochem Pharmacol 84:1260–1267
Vavrecková C, Gawlik I, Müller K (1996) Benzophenanthridine alkaloids of Chelidonium majus; I. Inhibition of 5- and 12-lipoxygenase by a non-redox mechanism. Planta Med 62:397–401
Vrba J, Dolezel P, Vicar J, Ulrichová J (2009) Cytotoxic activity of sanguinarine and dihydrosanguinarine in human promyelocytic leukemia HL-60 cells. Toxicol In Vitro 23:580–588
Wainer IW (1993) The impact of new liquid chromatography chiral stationary phase technology on the study of stereoselective pharmacokinetics. Trends Anal Chem 12:153–158
Walterová D, Ulrichová J, Válka I, Vicar J, Vavrecková C, Táborská E, Harjrader RJ, Meyer DL, Cerná H, Simánek V (1995) Benzo[c]phenanthridine alkaloids sanguinarine and chelerythrine: biological activities and dental care applications. Acta Univ Palacki Olomuc Fac Med 139:7–16
Wang YQ, Zhang HM, Zhang GC (2006) Studies of the interaction between palmatine hydrochloride and human serum albumin by fluorescence quenching method. J Pharm Biomed Anal 41:1041–1046
Ying LI (2010) Spectral study on the interaction between jatrorrhizine to lysozyme. Chinese J Spectrosc Lab 5:1983–1987
Zeng X, Lei G, Wei Y (2007) Investigation on binding interaction of berberine chloride with bovine serum albumin immobilized onto chromatographic supports by frontal chromatography. Chin J Chromatogr 25:348–352
Zhang W, Zhao Y, Bai X, Wang Y, Zhao D (2011) The orientation of protoberberine alkaloids and their binding activities to human serum albumin by surface-enhanced Raman scattering. Spectrochim Acta A Mol Biomol Spectrosc 78:1105–1109
Zhao CC, Zheng WF, Li MQ (2004) The interaction of berberine and human serum albumin. Spectrosc Spect Anal 24:111–113
Acknowledgments
GSK gratefully acknowledges the generous support from the Council of Scientific and Industrial Research (CSIR), Govt. of India through network projects NWP0036 and BSC0123 for the studies on alkaloid macromolecule interactions. The authors thank Dr. Basudeb Achari, Ex. Emeritus Scientist, CSIR—Indian Institute of Chemical Biology for his valuable inputs and suggestions.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
Asma Yasmeen Khan declares that she has no conflict of interest.
Gopinatha Suresh Kumar declares that he has no conflict of interest.
Ethical approval
This article does not contain any studies with human or animal subjects performed by the authors.
Rights and permissions
About this article
Cite this article
Khan, A.Y., Suresh Kumar, G. Natural isoquinoline alkaloids: binding aspects to functional proteins, serum albumins, hemoglobin, and lysozyme. Biophys Rev 7, 407–420 (2015). https://doi.org/10.1007/s12551-015-0183-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12551-015-0183-5
Keywords
- Isoquinoline alkaloids
- Serum albumins
- Hemoglobin
- Lysozyme
- Interaction