Biophysical Reviews

, Volume 7, Issue 4, pp 379–390 | Cite as

Optically-controlled platforms for transfection and single- and sub-cellular surgery

  • Mark Villangca
  • Duncan Casey
  • Jesper Glückstad


Improving the resolution of biological research to the single-cell or sub-cellular level is of critical importance in a wide variety of processes and disease conditions. Most obvious are those linked to aging and cancer, many of which are dependent upon stochastic processes where individual, unpredictable failures or mutations in individual cells can lead to serious downstream conditions across the whole organism. The traditional tools of biochemistry struggle to observe such processes: the vast majority are based upon ensemble approaches analysing the properties of bulk populations, which means that details of individual constituents is lost. What are required, then, are tools with the precision and resolution to probe and dissect cells at the single-micron scale: the scale of the individual organelles and structures that control their function. In this review, we highlight the use of highly-focused laser beams to create systems which provide precise control and specificity at the single-cell or even single-micron level. The intense focal points generated can directly interact with cells and cell membranes, which in conjunction with related modalities such as optical trapping provide a broad platform for the development of single-cell and sub-cellular surgery approaches. These highly tuneable tools have been demonstrated to deliver or remove material from cells of interest, and they can simultaneously excite fluorescent probes for imaging purposes or plasmonic structures for very local heating. We discuss both the history and recent applications of the field, highlighting the key findings and developments over the last 40 years of biophotonics research.


Optical trapping Optoporation Transfection Single-cell science 



M.V. was supported by Enhanced Spatial Light Control in Advanced Optical Fibres (e-space), a project financed by Innovation Fund Denmark.

Compliance with ethical standards

Conflict of interest

Mark Villangca declares that he has no conflict of interest.

Duncan Casey declares that he has no conflict of interest.

Jesper Glückstad declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human or animal subjects performed by the authors.


  1. Aekbote BL, Schubert F, Ormos P, Kelemen L (2014) Gold nanoparticle-mediated fluorescence enhancement by two-photon polymerized 3D microstructures. Opt Mater (Amst) 38:301–309. doi: 10.1016/j.optmat.2014.10.064 CrossRefGoogle Scholar
  2. Ando J, Bautista G, Smith N et al (2008) Optical trapping and surgery of living yeast cells using a single laser. Rev Sci Instrum 79:103705. doi: 10.1063/1.2999542 CrossRefPubMedGoogle Scholar
  3. Arita Y, Ploschner M, Antkowiak M et al (2014) Single cell transfection by laser-induced breakdown of an optically trapped gold nanoparticle. In: Heisterkamp A, Herman PR, Meunier M, Nolte S (eds) Proc. SPIE. SPIE, p 897203Google Scholar
  4. Ashkin A (1970) Acceleration and trapping of particles by radiation pressure. Phys Rev Lett 24:156–159. doi: 10.1103/PhysRevLett.24.156 CrossRefGoogle Scholar
  5. Berns MW, Olson RS, Rounds DE (1969) In vitro production of chromosomal lesions with an argon laser microbeam. Nature 221:74–75. doi: 10.1038/221074a0 CrossRefPubMedGoogle Scholar
  6. Berns MW, Aist J, Edwards J et al (1981) Laser microsurgery in cell and developmental biology. Science 213:505–513CrossRefPubMedGoogle Scholar
  7. Brzobohatý O, Karásek V, Šiler M et al (2013) Experimental demonstration of optical transport, sorting and self-arrangement using a “tractor beam.”. Nat Photonics 7:1–5. doi: 10.1038/nphoton.2012.332 Google Scholar
  8. Casey D, Wylie D, Gallo J et al (2015) A novel, all-optical tool for controllable and non-destructive poration of cells with single-micron resolution. Opt. Life Sci. OSA, Washington, D.C., p BW1A.5Google Scholar
  9. Colombelli J, Grill SW, Stelzer EHK (2004) Ultraviolet diffraction limited nanosurgery of live biological tissues. Rev Sci Instrum 75:2773. doi: 10.1063/1.1775711 CrossRefGoogle Scholar
  10. Colombelli J, Reynaud EG, Rietdorf J et al (2005) In vivo selective cytoskeleton dynamics quantification in interphase cells induced by pulsed ultraviolet laser nanosurgery. Traffic 6:1093–1102. doi: 10.1111/j.1600-0854.2005.00334.x CrossRefPubMedGoogle Scholar
  11. Constable A, Kim J, Mervis J et al (1993) Demonstration of a fiber-optical light-force trap. Opt Lett 18:1867–1869. doi: 10.1364/OL.18.001867 CrossRefPubMedGoogle Scholar
  12. Davis AA, Farrar MJ, Nishimura N et al (2013) Optoporation and genetic manipulation of cells using femtosecond laser pulses. Biophys J 105:862–871. doi: 10.1016/j.bpj.2013.07.012 PubMedCentralCrossRefPubMedGoogle Scholar
  13. Ehrlicher A, Betz T, Stuhrmann B et al (2002) Guiding neuronal growth with light. Proc Natl Acad Sci U S A 99:16024–16028. doi: 10.1073/pnas.252631899 PubMedCentralCrossRefPubMedGoogle Scholar
  14. Fong WK, Hanley TL, Thierry B et al (2010) Plasmonic nanorods provide reversible control over nanostructure of self-assembled drug delivery materials. Langmuir 26:6136–6139. doi: 10.1021/la100644s CrossRefPubMedGoogle Scholar
  15. Gu L, Varadarajan V, Koymen A, Mohanty SK (2011) Photothermal poration of cells using carbon nanoparticles. Biophys J 100:623a. doi: 10.1016/j.bpj.2010.12.3584 CrossRefGoogle Scholar
  16. Gu L, Vardarajan V, Koymen AR, Mohanty SK (2012) Magnetic-field-assisted photothermal therapy of cancer cells using Fe-doped carbon nanoparticles. J Biomed Opt 17:018003. doi: 10.1117/1.JBO.17.1.018003 CrossRefPubMedGoogle Scholar
  17. Hearn EM, Patel DR, Lepore BW et al (2009) Transmembrane passage of hydrophobic compounds through a protein channel wall. Nature 458:367–370PubMedCentralCrossRefPubMedGoogle Scholar
  18. Ho SY, Mittal GS (1996) Electroporation of cell membranes: a review. Crit Rev Biotechnol 16:349–362. doi: 10.3109/07388559609147426 CrossRefPubMedGoogle Scholar
  19. Hossack W, Theofanidou E, Crain J et al (2003) High-speed holographic optical tweezers using a ferroelectric liquid crystal microdisplay. Opt Express 11:2053. doi: 10.1364/OE.11.002053 CrossRefPubMedGoogle Scholar
  20. Kaneko T, Sakuma T, Yamamoto T, Mashimo T (2014) Simple knockout by electroporation of engineered endonucleases into intact rat embryos. Sci Rep 4:6382. doi: 10.1038/srep06382 PubMedCentralCrossRefPubMedGoogle Scholar
  21. Klein F, Striebel T, Fischer J et al (2010) Elastic fully three-dimensional microstructure scaffolds for cell force measurements. Adv Mater 22:868–871. doi: 10.1002/adma.200902515 CrossRefPubMedGoogle Scholar
  22. Klein F, Richter B, Striebel T et al (2011) Two-component polymer scaffolds for controlled three-dimensional cell culture. Adv Mater 23:1341–1345. doi: 10.1002/adma.201004060 CrossRefPubMedGoogle Scholar
  23. König K, Riemann I, Fischer P, Halbhuber KJ (1999) Intracellular nanosurgery with near infrared femtosecond laser pulses. Cell Mol Biol (Noisy-le-grand) 45:195–201Google Scholar
  24. Kremer C, Witte C, Neale SL et al (2014) Shape-dependent optoelectronic cell lysis. Angew Chemie 126:861–865. doi: 10.1002/ange.201307751 CrossRefGoogle Scholar
  25. Kress H, Park JJ-G, Mejean CO et al (2009) Cell stimulation with optically manipulated microsources. Nat Methods 6:905–909. doi: 10.1038/nmeth.1400 PubMedCentralCrossRefPubMedGoogle Scholar
  26. Kumar S, Maxwell IZ, Heisterkamp A et al (2006) Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys J 90:3762–3773. doi: 10.1529/biophysj.105.071506 PubMedCentralCrossRefPubMedGoogle Scholar
  27. Kuo S, Sheetz M (1993) Force of single kinesin molecules measured with optical tweezers. Science 260:232–234. doi: 10.1126/science.8469975 CrossRefPubMedGoogle Scholar
  28. Lanigan PMP, Ninkovic T, Chan K et al (2009) A microfluidic platform for probing single cell plasma membranes using optically trapped Smart Droplet Microtools (SDMs). Lab Chip 9:1096–1101. doi: 10.1039/b816857a CrossRefPubMedGoogle Scholar
  29. Lanigan PMP, Munro I, Grace EJ et al (2012) Dynamical hologram generation for high speed optical trapping of smart droplet microtools. Biomed Opt Express 3:1609–1619. doi: 10.1364/BOE.3.001609 PubMedCentralCrossRefPubMedGoogle Scholar
  30. Le Bihan O, Chèvre R, Mornet S et al (2011) Probing the in vitro mechanism of action of cationic lipid/DNA lipoplexes at a nanometric scale. Nucleic Acids Res 39:1595–1609PubMedCentralCrossRefPubMedGoogle Scholar
  31. Leitz G, Lundberg C, Fällman E et al (2003) Laser-based micromanipulation for separation and identification of individual Frankia vesicles. FEMS Microbiol Lett 224:97–100. doi: 10.1016/S0378-1097(03)00435-X CrossRefPubMedGoogle Scholar
  32. Liu Y, Cheng DK, Sonek GJ et al (1995) Evidence for localized cell heating induced by infrared optical tweezers. Biophys J 68:2137–2144. doi: 10.1016/S0006-3495(95)80396-6 PubMedCentralCrossRefPubMedGoogle Scholar
  33. Mao CC, Johnson KM, Turner R et al (1992) Applications of binary and analog hydrogenated amorphous-silicon ferroelectric liquid-crystal optically addressed spatial light modulators. Appl Opt 31:3908–3916. doi: 10.1364/AO.31.003908 CrossRefPubMedGoogle Scholar
  34. McGloin D, Dholakia K (2005) Bessel beams: diffraction in a new light. Contemp Phys 46:15–28. doi: 10.1080/0010751042000275259 CrossRefGoogle Scholar
  35. Neuman KC, Block SM (2004) Optical trapping. Rev Sci Instrum 75:2787–2809. doi: 10.1063/1.1785844 PubMedCentralCrossRefPubMedGoogle Scholar
  36. Neuman KC, Nagy A (2008) Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat Methods 5:491–505. doi: 10.1038/NMETH.1218 PubMedCentralCrossRefPubMedGoogle Scholar
  37. Neuman KC, Chadd EH, Liou GF et al (1999) Characterization of photodamage to Escherichia coli in optical traps. Biophys J 77:2856–2863PubMedCentralCrossRefPubMedGoogle Scholar
  38. Nieminen TA, Loke VLY, Stilgoe AB et al (2007) Optical tweezers computational toolbox. J Opt A Pure Appl Opt 9:S196–S203. doi: 10.1088/1464-4258/9/8/S12 CrossRefGoogle Scholar
  39. Olsen MH, Hjortø GM, Hansen M et al (2013) In-chip fabrication of free-form 3D constructs for directed cell migration analysis. Lab Chip. doi: 10.1039/c3lc50930c PubMedGoogle Scholar
  40. Palima D, Bañas A, Vizsnyiczai G et al (2012) Wave-guided optical waveguides. Opt Express 20:2004–2014CrossRefPubMedGoogle Scholar
  41. Palumbo G, Caruso M, Crescenzi E et al (1996) Targeted gene transfer in eucaryotic cells by dye-assisted laser optoporation. J Photochem Photobiol B 36:41–46. doi: 10.1016/S1011-1344(96)07335-6 CrossRefPubMedGoogle Scholar
  42. Paterson L, Agate B, Comrie M et al (2005) Photoporation and cell transfection using a violet diode laser. Opt Express 13:595. doi: 10.1364/OPEX.13.000595 CrossRefPubMedGoogle Scholar
  43. Phillips DB, Gibson GM, Bowman R et al (2012) An optically actuated surface scanning probe. Opt Express 20:29679–29693. doi: 10.1364/OE.20.029679 CrossRefPubMedGoogle Scholar
  44. Rodrigo PJ, Perch-Nielsen IR, Glückstad J (2006) Three-dimensional forces in GPC-based counterpropagating-beam traps. Opt Express 14:5812–5822CrossRefPubMedGoogle Scholar
  45. Rodrigo PJ, Kelemen L, Palima D et al (2009) Optical microassembly platform for constructing reconfigurable microenvironments for biomedical studies. Opt Express 17:6578–6583CrossRefPubMedGoogle Scholar
  46. Rohrbach A, Stelzer EHK (2002) Trapping forces, force constants, and potential depths for dielectric spheres in the presence of spherical aberrations. Appl Opt 41:2494. doi: 10.1364/AO.41.002494 CrossRefPubMedGoogle Scholar
  47. Salehi-Reyhani A, Kaplinsky J, Burgin E et al (2011) A first step towards practical single cell proteomics: a microfluidic antibody capture chip with TIRF detection. Lab Chip 11:1256–1261. doi: 10.1039/c0lc00613k CrossRefPubMedGoogle Scholar
  48. Schrems A, Phillips J, Casey DR et al (2014) The grab-and-drop protocol: a novel strategy for membrane protein isolation and reconstitution from single cells. Analyst 139:3296–3304. doi: 10.1039/c4an00059e CrossRefPubMedGoogle Scholar
  49. Seddon AM, Casey D, Law RV et al (2009) Drug interactions with lipid membranes. Chem Soc Rev 38:2509–2519. doi: 10.1039/b813853m CrossRefPubMedGoogle Scholar
  50. Steubing RW, Cheng S, Wright WH et al (1991) Laser induced cell fusion in combination with optical tweezers: the laser cell fusion trap. Cytometry 12:505–510. doi: 10.1002/cyto.990120607 CrossRefPubMedGoogle Scholar
  51. Stevenson DJ, Gunn-Moore FJ, Campbell P, Dholakia K (2010) Single cell optical transfection. J R Soc Interface 7:863–871. doi: 10.1098/rsif.2009.0463 PubMedCentralCrossRefPubMedGoogle Scholar
  52. Stracke F, Rieman I, König K (2005) Optical nanoinjection of macromolecules into vital cells. J Photochem Photobiol B 81:136–142. doi: 10.1016/j.jphotobiol.2005.07.006 CrossRefPubMedGoogle Scholar
  53. Thalhammer G, Steiger R, Bernet S, Ritsch-Marte M (2011) Optical macro-tweezers: trapping of highly motile micro-organisms. J Opt 13:044024. doi: 10.1088/2040-8978/13/4/044024 CrossRefGoogle Scholar
  54. Tsuda Y, Mori O, Funase R et al (2012) Achievement of IKAROS—Japanese deep space solar sail demonstration mission. Acta Astronaut 82:183–188. doi: 10.1016/j.actaastro.2012.03.032 CrossRefGoogle Scholar
  55. Tsukakoshi M, Kurata S, Nomiya Y et al (1984) A novel method of DNA transfection by laser microbeam cell surgery. Appl Phys B Photophysics Laser Chem 35:135–140. doi: 10.1007/BF00697702 CrossRefGoogle Scholar
  56. Ulriksen H-U, Thogersen J, Keiding S et al (2008) Independent trapping, manipulation and characterization by an all-optical biophotonics workstation. J Eur Opt Soc Rapid Publ 3:08034. doi: 10.2971/jeos.2008.08034 CrossRefGoogle Scholar
  57. Valley JK, Jamshidi A, Ohta AT et al (2008) Operational regimes and physics present in optoelectronic tweezers. J Microelectromech Syst 17:342–350. doi: 10.1109/JMEMS.2008.916335 PubMedCentralCrossRefPubMedGoogle Scholar
  58. Valley JK, Neale SL, Hsu H-Y et al (2009) Parallel single-cell light-induced electroporation and dielectrophoretic manipulation. Lab Chip 9:1714–1720. doi: 10.1039/b821678a PubMedCentralCrossRefPubMedGoogle Scholar
  59. Villangca M, Bañas A, Palima D, Glückstad J (2014) Dynamic diffraction-limited light-coupling of 3D-maneuvered wave-guided optical waveguides. Opt Express 22:17880–17889. doi: 10.1364/OE.22.017880 CrossRefPubMedGoogle Scholar
  60. Vogel A, Noack J, Hüttman G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B Lasers Opt 81:1015–1047. doi: 10.1007/s00340-005-2036-6 CrossRefGoogle Scholar
  61. Woerdemann M, Alpmann C, Esseling M, Denz C (2013) Advanced optical trapping by complex beam shaping. Laser Photon Rev 7:839–854. doi: 10.1002/lpor.201200058 CrossRefGoogle Scholar
  62. Wu T, Nieminen TA, Mohanty SK et al (2011) A photon-driven micromotor can direct nerve fibre growth. Nat Photonics 6:62–67. doi: 10.1038/nphoton.2011.287 CrossRefGoogle Scholar
  63. Xin H, Xu R, Li B (2012) Optical trapping, driving, and arrangement of particles using a tapered fibre probe. Sci Rep 2:818. doi: 10.1038/srep00818 PubMedCentralCrossRefPubMedGoogle Scholar
  64. Zhang H, Liu K-K (2008) Optical tweezers for single cells. J R Soc Interface 5:671–690. doi: 10.1098/rsif.2008.0052 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.DTU Fotonik, Department of Photonics EngineeringTechnical University of DenmarkKgs. LyngbyDenmark
  2. 2.Engineering and Technology Research InstituteLiverpool John Moores UniversityLiverpoolUK

Personalised recommendations