Skip to main content
Log in

The excitation–contraction coupling mechanism in skeletal muscle

Biophysical Reviews Aims and scope Submit manuscript

Abstract

First coined by Alexander Sandow in 1952, the term excitation–contraction coupling (ECC) describes the rapid communication between electrical events occurring in the plasma membrane of skeletal muscle fibres and Ca2+ release from the SR, which leads to contraction. The sequence of events in twitch skeletal muscle involves: (1) initiation and propagation of an action potential along the plasma membrane, (2) spread of the potential throughout the transverse tubule system (T-tubule system), (3) dihydropyridine receptors (DHPR)-mediated detection of changes in membrane potential, (4) allosteric interaction between DHPR and sarcoplasmic reticulum (SR) ryanodine receptors (RyR), (5) release of Ca2+ from the SR and transient increase of Ca2+ concentration in the myoplasm, (6) activation of the myoplasmic Ca2+ buffering system and the contractile apparatus, followed by (7) Ca2+ disappearance from the myoplasm mediated mainly by its reuptake by the SR through the SR Ca2+ adenosine triphosphatase (SERCA), and under several conditions movement to the mitochondria and extrusion by the Na+/Ca2+ exchanger (NCX). In this text, we review the basics of ECC in skeletal muscle and the techniques used to study it. Moreover, we highlight some recent advances and point out gaps in knowledge on particular issues related to ECC such as (1) DHPR-RyR molecular interaction, (2) differences regarding fibre types, (3) its alteration during muscle fatigue, (4) the role of mitochondria and store-operated Ca2+ entry in the general ECC sequence, (5) contractile potentiators, and (6) Ca2+ sparks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Abbiss C, Laursen P (2005) Models to explain fatigue during prolonged endurance cycling. Sports Med 35:865–898

    PubMed  Google Scholar 

  • Adams B, Tanabe T, Mikami A, Numa S, Beam K (1990) Intramembrane charge movement restored in dysgenic skeletal muscle by injection of dihydropyridine receptor cDNAs. Nature 346:569–572

    CAS  PubMed  Google Scholar 

  • Adrian R, Costantin L, Peachey L (1969) Radial spread and contraction in frog muscle fibres. J Physiol 204:231–257

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allen D, Lee J, Westerblad H (1989) Intracellular calcium and tension during fatigue in isolated single muscle fibres from Xenopus laevis. J Physiol 415:433–458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allen D, Lännergren J, Westerblad H (1997) The role of ATP in the regulation of intracellular Ca2+ release in single fibres of mouse skeletal muscle. J Physiol 498:587–600

    CAS  PubMed Central  PubMed  Google Scholar 

  • Allen D, Lännergren J, Westerblad H (2002) Intracellular ATP measured with luciferin/luciferase in isolated single mouse skeletal muscle fibres. Pflugers Arch 443(5–6):836–842

    CAS  PubMed  Google Scholar 

  • Allen D, Lamb G, Westerblad H (2008) Skeletal muscle fatigue: cellular mechanisms. Physiol Rev 88:287–332

    CAS  PubMed  Google Scholar 

  • Alonso M, Villalobos C, Chamero P, Alvarez J, Garcia-Sancho J (2006) Calcium microdomains in mitochondria and nucleus. Cell Calcium 40:513–525

    CAS  PubMed  Google Scholar 

  • Anderson A, Altafaj X, Zheng Z, Wang Z, Delbono O, Ronjat M et al (2006) The junctional SR protein JP-45 affects the functional expression of the voltage-dependent Ca2+ channel Cav1.1. J Cell Sci 119:2145–2155

    CAS  PubMed Central  PubMed  Google Scholar 

  • Apostol S, Ursu D, Lehmann-Horn F, Melzer W (2009) Local calcium signals induced by hyper-osmotic stress in mammalian skeletal muscle cells. J Muscle Res Cell Motil 30:97–109

    CAS  PubMed  Google Scholar 

  • Appelt D, Buenviaje B, Champ C, Franzini-Armstrong C (1989) Quantitation of “junctional feet” content in two types of muscle fiber from hind limb muscles of the rat. Tissue Cell 21:783–794

    CAS  PubMed  Google Scholar 

  • Armstrong C, Bezanilla F, Horowitz P (1972) Twitches in the presence of ethylene glycol bis(-aminoethyl ether)-N, N′-tetracetic acid. Biochim Biophys Acta 267:605–608

    CAS  PubMed  Google Scholar 

  • Ávila G, Dirksen R (2000) Functional impact of the ryanodine receptor on the skeletal muscle L-type Ca2+ channel. J Gen Physiol 114:467–480

    Google Scholar 

  • Axelsson J, Thesleff S (1958) Activation of the contractile mechanism in striated muscle. Acta Physiol Scand 44:55–66

    CAS  PubMed  Google Scholar 

  • Balnave C, Allen D (1998) Evidence for Na+/Ca2+ Exchange in intact single skeletal muscle fibers from the mouse. Am J Physiol Cell Physiol 274:940–946

    Google Scholar 

  • Bangsbo J, Juel C (2006) Lactic acid accumulation is a disadvantage during muscle activity. J Appl Physiol 100:1412–1413

    CAS  PubMed  Google Scholar 

  • Bär A, Pette D (1988) Three fast myosin heavy chains in adult rat skeletal muscle. FEBS Lett 235:153–155

    PubMed  Google Scholar 

  • Barclay J, Hansel M (1991) Free radicals may contribute to oxidative skeletal muscle fatigue. Can J Physiol Pharmacol 69:279–284

    CAS  PubMed  Google Scholar 

  • Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476:341–345

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baylor S, Hollingworth S (1988) Fura-2 calcium transients in frog skeletal muscle fibres. J Physiol 403:151–192

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baylor S, Hollingworth S (2003) Sarcoplasmic reticulum calcium release compared in slow-twitch and fast-twitch fibres of mouse muscle. J Physiol 551:125–138

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baylor S, Hollingworth S (2011) Calcium indicators and calcium signalling in skeletal muscle fibres during excitation-contraction coupling. Prog Biophys Mol Biol 105:162–179

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beam K, Franzini-Armstong C (1997) Functional and structural approaches to the study of excitation-contraction coupling. Methods Cell Biol 52:283–306

    CAS  PubMed  Google Scholar 

  • Beam K, Knudson C, Powell J (1986) A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Nature 320:168–170

    CAS  PubMed  Google Scholar 

  • Bekoff A, Betz W (1977) Physiological properties of dissociated muscle fibres obtained from innervated and denervated adult rat muscle. J Physiol 271:25–40

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bergström M, Hultman E (1988) Energy cost and fatigue during intermittent electrical stimulation of human skeletal muscle. J Appl Physiol 65:1500–1505

    PubMed  Google Scholar 

  • Bernardi P (1992) Modulation of the mitochondrial cyclosporin A-sensitive permeability transition pore by the proton electrochemical gradient. Evidence that the pore can be opened by membrane depolarization. J Biol Chem 267:8834–8839

    CAS  PubMed  Google Scholar 

  • Bernardi P (1999) Mitochondrial transport of cations: channels, exchangers, and permeability transition. Physiol Rev 79:1127–1155

    CAS  PubMed  Google Scholar 

  • Bernardi P, von Stockum S (2012) The permeability transition pore as a Ca(2+) release channel: new answers to an old question. Cell Calcium 52:22–27

    CAS  PubMed Central  PubMed  Google Scholar 

  • Berridge M (2006) Calcium microdomains: organization and function. Cell Calcium 40:405–412

    CAS  PubMed  Google Scholar 

  • Beutner G, Sharma V, Giovannucci D, Yule D, Sheu S (2001) Identification of a ryanodine receptor in rat heart mitochondria. J Biol Chem 276:21482–21488

    CAS  PubMed  Google Scholar 

  • Beutner G, Sharma V, Lin L, Ryu S, Dirksen R, Sheu S (2005) Type 1 ryanodine receptor in cardiac mitochondria: transducer of excitation-metabolism coupling. Biochim Biophys Acta 1717:1–10

    CAS  PubMed  Google Scholar 

  • Bezanilla F (2000) The voltage sensor in voltage-dependent ion channels. Physiol Rev 80:555–592

    CAS  PubMed  Google Scholar 

  • Bezanilla F, Caputo C, González-Serratos H, Venosa R (1972) Sodium dependence of the inward spread of activation in isolated twitch muscle fibres of the frog. J Physiol 223:507–523

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bigland-Ritchie B, Woods J (1984) Changes in muscle contractile properties and neural control during human muscular fatigue. Muscle Nerve 7:691–699

    CAS  PubMed  Google Scholar 

  • Bleunven C, Treves S, Jinyu X, Leo E, Ronjat M, De Waard M et al (2008) SRP-27 is a novel component of the supramolecular signaling complex involved in skeletal muscle excitation-contraction coupling. Biochem J 411:343–349

    CAS  PubMed  Google Scholar 

  • Block B, Imagawa T, Campbell K, Franzini-Armstrong C (1988) Structural evidence for direct interaction between the molecular components of the transverse tubule/sarcoplasmic reticulum junction in skeletal muscle. J Cell Biol 107:2587–2600

    CAS  PubMed  Google Scholar 

  • Bolaños P, Guillén A, Rojas H, Boncompagni S, Caputo C (2008) The use of CalciumOrange-5N as a specific marker of mitochondrial Ca2+ in mouse skeletal muscle fibers. Pflugers Arch 455:721–731

    PubMed  Google Scholar 

  • Bolaños P, Guillén A, DiPolo R, Caputo C (2009) Factors affecting SOCE activation in mammalian skeletal muscle fibers. J Physiol Sci 59:317–328

    PubMed  Google Scholar 

  • Boncompagni S, Rossi A, Micaroni M, Beznoussenko G, Polishchuk R, Dirksen R, Protasi F (2009) Mitochondria are linked to calcium stores in striated muscle by developmentally regulated tethering structures. Mol Biol Cell 20:1058–1067

    CAS  PubMed Central  PubMed  Google Scholar 

  • Boncompagni S, Thomas M, Lopez J, Allen P, Yuan Q, Kranias E, Franzini-Armstrong C, Perez C (2013) Triadin/Junctin double null mouse reveals a differential role for Triadin and Junctin in anchoring CASQ to the jSR and regulating Ca(2+) homeostasis. PLoS ONE 7:e39962

    Google Scholar 

  • Bottinelli R, Reggiani C (2000) Human skeletal muscle fibres: molecular and functional diversity. Prog Biophys Mol Biol 73:195–262

    CAS  PubMed  Google Scholar 

  • Brochet D, Yang D, Di Maio A, Lederer W, Franzini-Armstrong C, Cheng H (2005) Ca2+ blinks: rapid nanoscopic store calcium signaling. Proc Natl Acad Sci U S A 102:3099–3104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brooke M, Kaiser K (1970) Three “myosin adenosine triphosphatase” systems: the nature of their pH lability and sulfhydryl dependence. J Histochem Cytochem 18:670–672

    CAS  PubMed  Google Scholar 

  • Brotto M, Nosek T (1996) Hydrogen peroxide disrupts Ca2+ release from the sarcoplasmic reticulum of rat skeletal muscle fibers. J Appl Physiol 81:731–737

    CAS  PubMed  Google Scholar 

  • Bruton J, Tavi P, Aydin J, Wasterblad H, Lanergren J (2003) Mitochondrial and myoplasmic [Ca2+] in single fibers from Mouse limb muscles during repeated tetanic contraction. J Physiol 551:179–190

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruton J, Place N, Yamada T, Silva J, Andrade F, Dahlstedt A, Zhang S, Katz A, Larsson N, Westerblad H (2008) Reactive oxygen species and fatigue-induced prolonged low-frequency force depression in skeletal muscle fibres of rats, mice and SOD2 overexpressing mice. J Physiol 586:175–184

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bruton J, Cheng A, Westerblad H (2012) Methods to detect Ca2+ in living cells. Adv Exp Med Biol 740:27–43

    CAS  PubMed  Google Scholar 

  • Buck E, Nguyen H, Pessah I, Allen P (1997) Dyspedic mouse skeletal muscle expresses major elements of the triadic junction but lacks detectable ryanodine receptor protein and function. J Biol Chem 272:7360–7367

    CAS  PubMed  Google Scholar 

  • Buntinas L, Gunter K, Sparagna G, Gunter T (2001) The rapid mode of calcium uptake into heart mitochondria (RaM): comparison to RaM in liver mitochondria. Biochim Biophys Acta 1504:248–261

    CAS  PubMed  Google Scholar 

  • Burke R, Levine D, Tsairis P, Zajac F (1973) Physiological types and histochemical profiles in motor units of the cat gastrocnemius. J Physiol 234:723–748

    CAS  PubMed Central  PubMed  Google Scholar 

  • Calderón J (2013) Enzymatic dissociation of long muscles from mouse: a model for the study of fiber types in skeletal muscle. Iatreia 26:117–126

    Google Scholar 

  • Calderón JC, Bolaños P, Torres SH, Rodriguez-Arroyo G, Caputo C (2009) Different fibre populations distinguished by their calcium transient characteristics in enzymatically dissociated murine flexor digitorum brevis and soleus muscles. J Muscle Res Cell Motil 30:125–137

    PubMed  Google Scholar 

  • Calderón JC, Bolaños P, Caputo C (2010) Myosin heavy chain isoform composition and Ca2+ transients in fibres from enzymatically dissociated murine soleus and extensor digitorum longus muscles. J Physiol 588(1):267–279

    PubMed Central  PubMed  Google Scholar 

  • Calderón JC, Bolaños P, Caputo C (2011) Kinetic changes in tetanic calcium transients in enzymatically dissociated muscle fibres under repetitive stimulation. J Physiol 589(21):5269–5283

    PubMed Central  PubMed  Google Scholar 

  • Calderón J, Raigosa D, Giraldo M, Bolaños P, Caputo C (2013) Calibration of Ca2+ transients obtained with the fast Ca2+ and Mg2+ dye Magfluo-4. Biophys J 104(2–S1):293a. abstract,1502-Pos

    Google Scholar 

  • Calderón-Vélez J, Figueroa-Gordon C (2009) El acoplamiento exitación-contracción en el músculo esquelético: preguntas por responder a pesar de 50 años de studio. Biomedica 29:140–160

    PubMed  Google Scholar 

  • Caputo C (1983) Pharmacological investigations of excitation-contraction coupling. Chapter 14. In: Peachey L, Adrian R (eds) Handbook of physiology. American Physiological Society, Bethesda

    Google Scholar 

  • Caputo C, Bolaños P (2008) Effect of mitochondria poisoning by FCCP on Ca2+ signaling in mouse skeletal muscle fibers. Pflugers Arch 455:733–743

    CAS  PubMed  Google Scholar 

  • Caputo C, Giménez M (1967) Effects of external Ca2+ deprivation on single muscle fibres. J Gen Physiol 50:2177–2195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caputo C, Edman K, Lou F, Sun Y (1994) Variation in myoplasmic Ca concentration during contraction and relaxation studied by the indicator fluo-3 in frog muscle fibres. J Physiol 478:137–148

    CAS  PubMed Central  PubMed  Google Scholar 

  • Caputo C, Bolaños P, Escobar A (1999) Fast calcium removal during single twitches in amphibian skeletal muscle fibres. J Muscle Res Cell Motil 20:555–567

    CAS  PubMed  Google Scholar 

  • Caputo C, Bolaños P, González A (2004) Inactivation of Ca2+ transients in amphibian and mammalian muscle fibres. J Muscle Res Cell Motil 25:315–328

    CAS  PubMed  Google Scholar 

  • Carafoli E, Tiozzo R, Lugli G, Crovetti F, Kratzing C (1974) The release of calcium from heart mitochondria by sodium. J Mol Cell Cardiol 6:361–371

    CAS  PubMed  Google Scholar 

  • Carroll S, Klein M, Schneider M (1997) Decay of calcium transients after electrical stimulation in rat fast- and slow-twitch skeletal muscle fibres. J Physiol 501:573–588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Casarotto M, Cui Y, Karunasekara Y, Harvey P, Norris N, Borrad P et al (2006) Structural and functional characterization of interactions between the dihydropyridine receptor II-III loop and the ryanodine receptor. Clin Exp Pharmacol Physiol 33:1114–1117

    CAS  PubMed  Google Scholar 

  • Casas M, Figueroa R, Jorquera G, Escobar M, Molgó J, Jaimovich E (2010) IP(3)-dependent, post-tetanic calcium transients induced by electrostimulation of adult skeletal muscle fibers. J Gen Physiol 136:455–467

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng H, Lederer W (2008) Calcium sparks. Physiol Rev 88:1491–1545

    Google Scholar 

  • Cheng H, Lederer W, Cannell M (1993) Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 262:740–744

    Google Scholar 

  • Cheung A, Dantzig J, Hollingworth S, Baylor S, Goldman Y, Mitchison T, Straight A (2002) A small-molecule inhibitor of skeletal muscle myosin II. Nat Cell Biol 4:83–89

    CAS  PubMed  Google Scholar 

  • Chin E, Allen D (1998) The contribution of pH-dependent mechanisms to fatigue at different intensities in mammalian single muscle fibres. J Physiol 512:831–840

    CAS  PubMed Central  PubMed  Google Scholar 

  • Coronado R, Morrissette J, Sukhareva, Vaughan D (1994) Structure and function of ryanodine receptors. Am J Physiol 266:C1485–C1504

    CAS  PubMed  Google Scholar 

  • Craig R, Padrón R (2004) Molecular structure of the sarcomere. Chapter 7. In: Engel A, Franzini-Armstrong C (eds) Myology, 3rd edn. McGrawHill, New York, pp 129–166

    Google Scholar 

  • Csordás G, Renken C, Várnai P, Walter L, Weaver D, Buttle K, Balla T, Mannella C, Hajnóczky G (2006) Structural and functional features and significance of the physical linkage between ER and mitochondria. J Cell Biol 174:915–921

    PubMed Central  PubMed  Google Scholar 

  • Cully T, Launikonis B (2013) Store-operated Ca2+ entry is not required for store refilling in skeletal muscle. Clin Exp Pharmacol Physiol 40:338–344

    CAS  PubMed  Google Scholar 

  • Dahlstedt AJ, Katz A, Westerblad H (2001) Role of myoplasmic phosphate in contractile function of skeletal muscle: studies on creatine kinase-deficient mice. J Physiol 533:379–388

    CAS  PubMed Central  PubMed  Google Scholar 

  • Damiani E, Margreth A (1994) Characterization study of the ryanodine receptor and of calsequestrin isoforms of mammalian skeletal muscles in relation to fibre types. J Muscle Res Cell Motil 15:86–101

    CAS  PubMed  Google Scholar 

  • Darnley G, Duke A, Steele D, MacFarlane N (2001) Effects of reactive oxygen species on aspects of excitation-contraction coupling in chemically skinned rabbit diaphragm muscle fibres. Exp Physiol 86:161–168

    CAS  PubMed  Google Scholar 

  • Davies K, Quintanilha A, Brooks G, Packer L (1982) Free radicals and tissue damage produced by exercise. Biochem Biophys Res Commun 107:1198–1205

    CAS  PubMed  Google Scholar 

  • de Brito O, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610

    PubMed  Google Scholar 

  • De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476:336–340

    PubMed  Google Scholar 

  • Delay M, Garcia D, Sanchez J (1990) The effects of lyotropic anion on charge movement, calcium currents and calcium signals in frog skeletal muscle fibres. J Physiol 425:449–469

    CAS  PubMed Central  PubMed  Google Scholar 

  • Delbono O, Stefani E (1993) Calcium transients in single mammalian skeletal muscle fibres. J Physiol 463:689–707

    CAS  PubMed Central  PubMed  Google Scholar 

  • DiFranco M, Neco P, Capote J, Meera P, Vergara J (2006) Quantitative evaluation of mammalian skeletal muscle as a heterologous protein expression system. Protein Expr Purif 47:281–288

    CAS  PubMed  Google Scholar 

  • DiFranco M, Tran P, Quiñonez M, Vergara J (2011) Functional expression of transgenic 1sDHPR channels in adult mammalian skeletal muscle fibres. J Physiol 589:1421–1442

    Google Scholar 

  • Dirksen R (2009a) Checking your SOCCs and feet: the molecular mechanisms of Ca2+ entry in skeletal muscle. J Physiol 587:3139–3147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dirksen R (2009b) Sarcoplasmic reticulum-mitochondrial through-space coupling in skeletal muscle. Appl Physiol Nutr Metab 34:389–395

    CAS  PubMed Central  PubMed  Google Scholar 

  • Doyle D, Morais Cabral J, Pfuetzner R, Kuo A, Gulbis J, Cohen S et al (1998) The structure of potassium channel: molecular basis of K+ conduction and selectivity. Science 280:69–77

    CAS  PubMed  Google Scholar 

  • Drago I, De Stefani D, Rizzuto R, Pozzan T (2012) Mitochondrial Ca2+ uptake contributes to buffering cytoplasmic Ca2+ peaks in cardiomyocytes. Proc Natl Acad Sci U S A 109:12986–12991

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dubowitz V, Pearse A (1960) A comparative histochemical study of oxidative enzyme and phophorylase activity in skeletal muscle. Histochemie 2:105–117

    CAS  PubMed  Google Scholar 

  • Ducret T, Vandebrouck C, Cao M, Lebacq J, Gailly P (2006) Functional role of store-operated and stretch-activated channels in murine adult skeletal muscle fibres. J Physiol 575:913–924

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duke A, Steele D (2000) Characteristics of phosphate-induced Ca(2+) efflux from the SR in mechanically skinned rat skeletal muscle fibers. Am J Physiol Cell Physiol 278:C126–C135

    CAS  PubMed  Google Scholar 

  • Dulhunty A, Banyard M, Medveczky C (1987) Distribution of calcium ATPase in the sarcoplasmic reticulum of fast- and slow-twitch muscles determined with monoclonal antibodies. J Membr Biol 99:79–92

    CAS  PubMed  Google Scholar 

  • Dutka T, Cole L, Lamb G (2005) Calcium phosphate precipitation in the sarcoplasmic reticulum reduces action potential-mediated Ca2+ release in mammalian skeletal muscle. Am J Physiol 289:C1502–C1512

    CAS  Google Scholar 

  • Ebashi S (1974) Regulatory mechanism of muscle contraction with special reference to the Ca-troponin-tropomyosin system. Essays Biochem 10:1–36

    CAS  PubMed  Google Scholar 

  • Ebashi S, Endo M, Ohtsuki I (1969) Control of muscle contraction. Q Rev Biophys 2:351–384

    CAS  PubMed  Google Scholar 

  • Edman K (2005) Contratile properties of mouse single muscle fibers, a comparison with amphibian muscle fibers. J Exp Biol 208:1905–1913

    CAS  PubMed  Google Scholar 

  • Edwards J, Murphy R, Cully T, von Wegner F, Friedrich O, Launikonis B (2010) Ultra-rapid activation and deactivation of store-operated Ca(2+) entry in skeletal muscle. Cell Calcium 47:458–467

    CAS  PubMed  Google Scholar 

  • Edwards J, Cully T, Shannon T, Stephenson D, Launikonis B (2012) Longitudinal and transversal propagation of excitation along the tubular system of rat fast-twitch muscle fibres studied by high speed confocal microscopy. J Physiol 590:475–492

    CAS  PubMed Central  PubMed  Google Scholar 

  • Eisenberg B (1983) Quantitative ultrastructure of mammalian skeletal muscle. In: Peachey LD (ed) Handbook of Physiology Skeletal Muscle. American Physiological Society, Bethesda, p 95

    Google Scholar 

  • Eisner V, Csordás G, Hajnóczky G (2013) Interactions between sarco-endoplasmic reticulum and mitochondria in cardiac and skeletal muscle - pivotal roles in Ca2+ and reactive oxygen species signaling. J Cell Sci 126:2965–2978

    CAS  PubMed  Google Scholar 

  • el-Hayek R, Antoniu B, Wang J, Hamilton SL, Ikemoto N (1995) Identification of calcium release-triggering and blocking regions of the II-III loop of the skeletal muscle dihydropyridine receptor. J Biol Chem 270:22116–22118

    CAS  PubMed  Google Scholar 

  • Endo M (1975) Mechanism of action of caffeine on the sarcoplasmic reticulum of skeletal muscle. Proc Jpn Acad 51:479–484

    CAS  Google Scholar 

  • Endo M (2009) Calcium-induced calcium release in skeletal muscle. Physiol Rev 89:1153–1176

    CAS  PubMed  Google Scholar 

  • Endo M, Tanaka M, Ogawa Y (1970) Calcium induced release of calcium from the sarcoplasmic reticulum of skinned skeletal muscle fibres. Nature 228:34–36

    CAS  PubMed  Google Scholar 

  • Escobar A, Monck J, Fernandez J, Vergara J (1994) Localization of the site of Ca2+ release at the level of a single sarcomere in skeletal muscle fibres. Nature 367:739–741

    CAS  PubMed  Google Scholar 

  • Eusebi F, Miledi R, Takahashi T (1980) Calcium transients in mammalian muscles. Nature 284:560–561

    CAS  PubMed  Google Scholar 

  • Fabiato A (1984) Dependence of the Ca2+-induced release from the sarcoplasmic reticulum of skinned skeletal muscle fibres from the frog semitendinosus on the rate of change of free Ca2+ concentration at the outer surface of the sarcoplasmic reticulum. J Physiol 353:56P

    Google Scholar 

  • Farkas D, Wei M, Febbroriello P, Carson J, Loew L (1989) Simultaneous imaging of cell and mitochondrial membrane potentials. Biophys J 56:1053–1069

    CAS  PubMed Central  PubMed  Google Scholar 

  • Felder E, Franzini-Armstrong C (2002) Type 3 ryanodine receptors of skeletal muscle are segregated in a parajunctional position. Proc Natl Acad Sci U S A 99:1695–1700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ferguson D, Franzini-Armstrong C (1988) The Ca2+ ATPase content of slow and fast twitch fibers of guinea pig. Muscle Nerve 11:561–570

    CAS  PubMed  Google Scholar 

  • Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel S, Tanasa B, Hogan P, Lewis R, Daly M, Rao A (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441:179–185

    CAS  PubMed  Google Scholar 

  • Fieni F, Lee SB, Jan YN, Kirichok Y (2012) Activity of the mitochondrial calcium uniporter varies greatly between tissues. Nat Commun 3:1317

    PubMed  Google Scholar 

  • Figueroa L, Shkryl VM, Zhou J, Manno C, Momotake A, Brum G, Blatter LA, Ellis-Davies GC, Ríos E (2012) Synthetic localized calcium transients directly probe signalling mechanisms in skeletal muscle. J Physiol 590:1389–1411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fill M, Copello J (2002) Ryanodine receptor calcium release channels. Physiol Rev 82:893–922

    CAS  PubMed  Google Scholar 

  • Fitts R (1994) Cellular mechanisms of muscle fatigue. Physiol Rev 74:49–94

    CAS  PubMed  Google Scholar 

  • Foulks J, Miller J, Perry F (1973) Repolarization-induced reactivation ofcontracture tension in frog skeletal muscle. Can J Physiol Pharmacol 51:324–334

    CAS  PubMed  Google Scholar 

  • Fourest-Lieuvin A, Rendu J, Osseni A, Pernet-Gallay K, Rossi D, Oddoux S, Brocard J, Sorrentino V, Marty I, Fauré J (2012) Role of triadin in the organization of reticulum membrane at the muscle triad. J Cell Sci 125:3443–3453

    CAS  PubMed  Google Scholar 

  • Franke W, Kartenbeck J (1971) Outer mitochondrial membrane continuous with endoplasmic reticulum. Protoplasma 73:35–41

    CAS  PubMed  Google Scholar 

  • Franzini-Armstrong C (1999) The sarcoplasmic reticulum and the control of muscle contraction. FASEB J 13:S266–S270

    CAS  PubMed  Google Scholar 

  • Franzini-Armstrong C (2007) ER-mitochondria communication. How privileged? Physiology (Bethesda) 22:261–268

    CAS  Google Scholar 

  • Franzini-Armstrong C, Boncompagni S (2011) The evolution of the mitochondria-to-calcium release units relationship in vertebrate skeletal muscles. J Biomed Biotechnol 2011:830573

    PubMed Central  PubMed  Google Scholar 

  • Franzini-Armstrong C, Jorgensen A (1994) Structure and development of e-c coupling units in skeletal muscle. Annu Rev Physiol 56:509–534

    CAS  PubMed  Google Scholar 

  • Franzini-Armstrong C, Porter K (1964) Sarcolemmal invaginations constituting the T system in fish muscle fibres. J Cell Biol 22:675–696

    CAS  PubMed Central  PubMed  Google Scholar 

  • Franzini-Armstrong C, Ferguson D, Champ C (1988) Discrimination between fast- and slow-twitch fibres of guinea pig skeletal muscle using the relative surface density of junctional transverse tubule membrane. J Muscle Res Cell Motil 9:403–414

    CAS  PubMed  Google Scholar 

  • Fraysse B, Rouaud T, Millour M, Fontaine-Pérus J, Gardahaut M, Levitsky D (2001) Expression of the Na+/Ca2+ exchanger in skeletal muscle. Am J Physiol 280:C146–C154

    CAS  Google Scholar 

  • Fryer M, Stephenson G (1996) Total and sarcoplasmic reticulum calcium contents of skinned fibres from rat skeletal muscle. J Physiol 493:357–370

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fryer M, Owen V, Lamb G, Stephenson G (1995) Effects of creatine phosphate and Pi on Ca movements and tension development in rat skinned skeletal muscle fibres. J Physiol 482:123–140

    CAS  PubMed Central  PubMed  Google Scholar 

  • Füchtbauer E, Rowlerson A, Gotz K, Friedrich G, Mabuchi K, Gergely J, Jockusch H (1991) Direct correlation of parvalbumin levels with myosin isoforms and succinate dehydrogenase activity on frozen sections of rodent muscle. J Histochem Cytochem 39:355–361

    PubMed  Google Scholar 

  • Gauthier G, Padykula H (1966) Cytological studies of fiber types in skeletal muscle. J Cell Biol 28:333–354

    Google Scholar 

  • Gillis J (1997) Inhibition of mitochondrial calcium uptake slows down relaxation in mitochondria-rich skeletal muscles. J Muscle Res Cell Motil 18:473–483

    CAS  PubMed  Google Scholar 

  • Gillis J, Thomason D, Lefévre J, Kretsinger R (1982) Parvalbumins and muscle relaxation: a computer simulation study. J Muscle Res Cell Motil 3:377–398

    CAS  PubMed  Google Scholar 

  • Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick G, Petronilli V, Zoratti M, Szabo I, Lippe G, Bernardi P (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci U S A 110:5887–5892

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glitsch M, Bakowski D, Parekh A (2002) Store-operated Ca2+ entry depends on mitochondrial Ca2+ uptake. EMBO J 21:6744–6754

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gollnick P, Korge P, Karpakka J, Saltin B (1991) Elongation of skeletal muscle relaxation during exercise is linked to reduced calcium uptake by the sarcoplasmic reticulum in man. Acta Physiol Scand 142:135–136

    CAS  PubMed  Google Scholar 

  • Gomolla M, Gottschalk G, Lüttgau H (1983) Perchlorate-induced alterations in electrical and mechanical parameters of frog skeletal muscle fibres. J Physiol 343:197–214

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gonzalez Narvaez A, Castillo A (2007) Ca2+ store determines gating of store operated calcium entry in mammalian skeletal muscle. J Muscle Res Cell Motil 28:105–113

    CAS  PubMed  Google Scholar 

  • González-Serratos H (1971) Inward spread of activation in vertebrate muscle fibres. J Physiol 212:777–799

    PubMed Central  PubMed  Google Scholar 

  • Goonasekera S, Beard N, Groom L, Kimura T, Lyfenko A, Rosenfeld A, Marty I, Dulhunty A, Dirksen R (2007) Triadin binding to the C-terminal luminal loop of the ryanodine receptor is important for skeletal muscle excitation-contraction coupling. J Gen Physiol 130:365–378

    CAS  PubMed Central  PubMed  Google Scholar 

  • Grabowski W, Lobsiger E, Luttgau H (1972) The effect of repetitive stimulation at low frequencies upon the electrical and mechanical activity of single muscle fibres. Pflugers Arch 334:222–239

    CAS  PubMed  Google Scholar 

  • Green H (1998) Cation pumps in skeletal muscle: potential role in muscle fatigue. Acta Physiol Scand 162:201–213

    CAS  PubMed  Google Scholar 

  • Grynkiewicz G, Poenie M, Tsien R (1985) A New Generation of Ca2+ Indicators with Greatly Improved Fluorescence Properties. J Biol Chem 260:3440–3450

    CAS  PubMed  Google Scholar 

  • Gunter T, Pfeiffer D (1990) Mechanisms by which mitochondria transport calcium. Am J Physiol 258:C755–C786

    CAS  PubMed  Google Scholar 

  • Gunter T, Gunter K, Sheu S, Gavin C (1994) Mitochondrial calcium transport: physiological and pathological relevance. Am J Physiol 267:C313–C339

    CAS  PubMed  Google Scholar 

  • Gustafsson M (2000) Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J Microsc 198:82–87

    CAS  PubMed  Google Scholar 

  • Hasselbach W (1964) Relaxing factor and the relaxation of muscle. Prog Biophys Mol Biol 14:167–222

    CAS  Google Scholar 

  • Hasselbach W (1998) The Ca2+-ATPase of the sarcoplasmic reticulum in skeletal and cardiac muscle. Ann NY Acad Sci 853:1–8

    CAS  PubMed  Google Scholar 

  • Hasselbach W, Makinose M (1961) The calcium pump of the “relaxing granules” of muscle and its dependence on ATP splitting. Biochem Z 333:518–528

    CAS  PubMed  Google Scholar 

  • Hasselbach W, Suko J, Stromer M, The R (1975) Mechanism of calcium transport in sarcoplasmic reticulum. Ann NY Acad Sci 264:335–349

    CAS  PubMed  Google Scholar 

  • He ZH, Bottinelli R, Pellegrino MA, Ferenczi MA, Reggiani C (2000) ATP consumption and efficiency of human single muscle fibers with different myosin isoform composition. Biophys J 79:945–961

    CAS  PubMed Central  PubMed  Google Scholar 

  • Heilbrunn L, Wiercinsky F (1947) The action of various cations on muscle protoplasm. J Cell Comp Physiol 29:15–32

    CAS  Google Scholar 

  • Heizmann C, Berchtold M, Rowlerson A (1982) Correlation of parvalbumin concentration with relaxation speed in mammalian muscle. Proc Natl Acad Sci U S A 79:7243–7247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hell SW, Wichmann J (1994) Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt Lett 19:780–782

    CAS  PubMed  Google Scholar 

  • Hernández-Ochoa E, Schneider M (2012) Voltage clamp methods for the study of membrane currents and SR Ca2+ release in adult skeletal muscle fibres. Prog Biophys Mol Biol 108:98–118

    PubMed Central  PubMed  Google Scholar 

  • Hidalgo C (2005) Cross talk between Ca2+ and redox signaling cascades in muscle and neurons through the combined activation of ryanodine receptors/Ca2+ release channels. Phil Trans R Soc B 360:2237–2246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hill A (1949) The abrupt transition from rest to activity in muscle. Proc R Soc B 136:399–420

    CAS  Google Scholar 

  • Hill A, Kupalov P (1929) Anaerobic and aerobic activity in isolated muscle. Proc R Soc London B 105:313–322

    CAS  Google Scholar 

  • Hille B, Campbell T (1976) An improved Vaseline gap voltage clamp for skeletal muscle fibers. J Gen Physiol 67:265–293

    CAS  PubMed  Google Scholar 

  • Hodgkin A, Horowicz P (1959) The influence of potassium and chloride ions on the membrane potential of single muscle fibres. J Physiol 148:127–160

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hodgkin A, Horowicz P (1960) The effect of nitrate and other anions on the mechanical response of single muscle fibers. J Physiol 153:404–412

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hodgkin A, Huxley A (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hollingworth S, Marshall M (1981) A comparative study of charge movement in rat and frog skeletal muscle fibres. J Physiol 321:583–602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hollingworth S, Gee K, Baylor S (2009) Low-affinity Ca2+ indicators compared in measurements of skeletal muscle Ca2+ transients. Biophys J 97:1864–1872

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hollingworth S, Kim M, Baylor S (2012) Measurement and simulation of myoplasmic calcium transients in mouse slow-twitch muscle fibres. J Physiol 590:575–594

    CAS  PubMed Central  PubMed  Google Scholar 

  • Horowicz P (1961) Influence of ions on the membrane potential of muscle fibres. In: Shanes A (ed) Biophysics of physiological and pharmacological actions. Washington, American Association for the Advancement of Science, pp 217–234

    Google Scholar 

  • Hoth M, Penner R (1992) Depletion of intracellular calcium stores activates a calcium current in mast cells. Nature 355:353–356

    CAS  PubMed  Google Scholar 

  • Hoth M, Button D, Lewis R (2000) Mitochondrial control of calcium-channel gating: a mechanism for sustained signaling and transcriptional activation in T lymphocytes. Proc Natl Acad Sci U S A 97:10607–10612

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hudecova S, Vadaszova A, Soukup T, Krizanova O (2004) Effect of thyroid hormones on the gene expression of calcium transport systems in rat muscles. Life Sci 75:923–931

    CAS  PubMed  Google Scholar 

  • Hunter D, Haworth R (1979) The Ca2+-induced membrane transition in mitochondria. III. Transitional Ca2+ release. Arch Biochem Biophys 195:468–477

    CAS  PubMed  Google Scholar 

  • Huxley H (1964) Evidence for continuity between the central elements of the triads and extracellular space in frog sartorius muscle. Nature 202:1067

    CAS  PubMed  Google Scholar 

  • Huxley H (1969) The mechanism of muscular contraction. Science 164:1356–1366

    CAS  PubMed  Google Scholar 

  • Isaeva E, Shirokova N (2003) Metabolic regulation of Ca2+ release in permeabilized mammalian skeletal muscle fibres. J Physiol 547:453–462

    CAS  PubMed  Google Scholar 

  • Isaeva E, Shkryl V, Shirokova N (2005) Mitochondrial redox state and Ca2+ sparks in permeabilized mammalian skeletal muscle. J Physiol 565:855–872

    CAS  PubMed Central  PubMed  Google Scholar 

  • James P, Inui M, Tada M, Chiesi M, Carafoli E (1989) Nature and site of phospholamban regulation of the Ca2+ pump of sarcoplasmic reticulum. Nature 342:90–92

    CAS  PubMed  Google Scholar 

  • Jayasinghe I, Baddeley D, Kong C, Wehrens X, Cannell M, Soeller C (2012) Nanoscale organization of junctophilin-2 and ryanodine receptors within peripheral couplings of rat ventricular cardiomyocytes. Biophys J 102(5):L19–L21

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jiang Y, Lee A, Chen J, Cadene M, Chalt B, MacKinnon R (2002) The open pore conformation of potassium channels. Nature 417:523–526

    CAS  PubMed  Google Scholar 

  • Jiang D, Zhao L, Clapham D (2009) Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326:144–147

    CAS  PubMed  Google Scholar 

  • Jorgensen A, Jones L (1986) Localization of phospholamban in slow but not fast canine skeletal muscle fibers. J Biol Chem 261:3775–3781

    CAS  PubMed  Google Scholar 

  • Jung D, Baysal K, Brierley G (1995) The sodium-calcium antiport of heart mitochondria is not electroneutral. J Biol Chem 270:672–678

    CAS  PubMed  Google Scholar 

  • Jung D, Mo S, Kim D (2006) Calumenin, a multiple EF-hands Ca2+-binding protein, interacts with ryanodine receptor-1 in rabbit skeletal sarcoplasmic reticulum. Biochem Biophys Res Commun 34:34–42

    Google Scholar 

  • Kahn A, Sandow A (1950) The potentiation of muscular contraction by the nitrate-ion. Science 112:647–649

    CAS  PubMed  Google Scholar 

  • Kanter M, Nolte L, Holloszy J (1993) Effects of an antioxidant vitamin mixture on lipid peroxidation at rest and postexercise. J Appl Physiol 74:965–969

    CAS  PubMed  Google Scholar 

  • Kao C, Stanfield P (1968) Action of some ions on the electrical properties and mechanical threshold of frog twitch muscle. J Physiol 198:291–309

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kao J, Li G, Auston D (2010) Practical aspects of measuring intracellular calcium signals with fluorescent indicators. Methods Cell Biol 99:113–152

    CAS  PubMed  Google Scholar 

  • Katerinopoulos H, Foukaraki E (2002) Polycarboxylate fluorescent indicators as ion concentration probes in biological systems. Curr Med Chem 9:275–306

    CAS  PubMed  Google Scholar 

  • Kent-Braun J (1999) Central and peripheral contributions to muscle fatigue in humans during sustained maximal effort. Eur J Appl Physiol 80:57–63

    CAS  Google Scholar 

  • Kent-Braun J, Miller R, Weiner M (1993) Phases of metabolism during progressive exercise to fatigue in human skeletal muscle. J Appl Physiol 75:573–580

    CAS  PubMed  Google Scholar 

  • Kinnally K, Campo M, Tedeschi H (1989) Mitochondrial channel activity studied by patch-clamping mitoplasts. J Bioenerg Biomembr 21:497–506

    CAS  PubMed  Google Scholar 

  • Kirichok Y, Krapivinsky G, Clapham D (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    CAS  PubMed  Google Scholar 

  • Klar T, Jakobs S, Dyba M, Egner A, Hell S (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210

    CAS  PubMed Central  PubMed  Google Scholar 

  • Klein M, Simon B, Szucs G, Schneider M (1988) Simultaneous recording of calcium transients in skeletal muscle using high and low-affinity calcium indicators. Biophys J 53:971–988

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knuth S, Dave H, Peters J, Fitts R (2006) Low cell pH depresses peak power in rat skeletal muscle fibres at both 30 °C and 15 °C: implications for muscle fatigue. J Physiol 575:887–899

    CAS  PubMed Central  PubMed  Google Scholar 

  • Konishi M, Hollingworth S, Harkins A, Baylor S (1991) Myoplasmic calcium transients in intact frog skeletal muscle fibers monitored with the fluorescent indicator furaptra. J Gen Physiol 97:271–301

    CAS  PubMed  Google Scholar 

  • Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J, Weissman J, Walter P (2009) An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477–481

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kovács L, Schneider M (1978) Contractile activation by voltage clamp depolarization of cut skeletal muscle fibres. J Physiol 277:483–506

    PubMed Central  PubMed  Google Scholar 

  • Kovács L, Ríos E, Schneider M (1983) Measurement and modification of free calcium transients in frog skeletal muscle fibres by a metallochromic indicator dye. J Physiol 343:161–196

    PubMed Central  PubMed  Google Scholar 

  • Kurebayashi N, Ogawa Y (2001) Depletion of Ca2+ in the sarcoplasmic reticulum stimulates Ca2+ entry into mouse skeletal muscle fibres. J Physiol 533:185–199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kuznetsov A, Troppmair J, Sucher R, Hermann M, Saks V, Margreiter R (2006) Mitochondrial subpopulations and heterogeneity revealed by confocal imaging: possible physiological role? Biochim Biophys Acta 1757:686–691

    CAS  PubMed  Google Scholar 

  • Lacampagne A, Lederer W, Schneider M, Klein M (1996) Repriming and activation alter the frequency of stereotyped discrete Ca2+ release events in frog skeletal muscle. J Physiol 497:581–588

    Google Scholar 

  • Lai F, Erickson H, Rousseau E, Liu Q, Meissner G (1988) Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331:315–319

    CAS  PubMed  Google Scholar 

  • Lamb G (2002) Excitation-contraction coupling and fatigue mechanisms in skeletal muscle: studies with mecanically skinned fibres. J Muscle Res Cell Motil 23:81–91

    CAS  PubMed  Google Scholar 

  • Lamb G, Stephenson D (1994) Effects of intracellular pH and [Mg2+] on excitation-contraction coupling in skeletal muscle fibres of the rat. J Physiol 478:331–339

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lamb G, Walsh T (1987) Calcium currents, charge movement and dihydropyridine binding in fast- and slow-twitch muscles of rat and rabbit. J Physiol 393:595–617

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lamb G, Junankar P, Stephenson D (1995) Raised intracellular Ca2+ abolishes excitation-contraction coupling in skeletal muscle fibres of rat and toad. J Physiol 489:349–362

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lännergren J, Westerblad H (1987) The temperature dependence of isometric contractions of single, intact fibres dissected from a mouse foot muscle. J Physiol 390:285–293

    PubMed Central  PubMed  Google Scholar 

  • Lännergren J, Westerblad H, Bruton J (2001) Changes in mitochondrial Ca2+ detected with Rhod-2 in single frog and mouse skeletal muscle fibres during and after repeated tetanic contractions. J Muscle Res Cell Motil 22:265–275

    PubMed  Google Scholar 

  • Launikonis B, Ríos E (2007) Store-operated Ca2+ entry during intracellular Ca2+ release in mammalian skeletal muscle. J Physiol 583:81–97

    CAS  PubMed Central  PubMed  Google Scholar 

  • Launikonis BS, Zhou J, Royer L, Shannon T, Brum G, Ríos E (2005) Confocal imaging of [Ca2+] in cellular organelles by SEER, shifted excitation and emission ratioing of fluorescence. J Physiol 567:523–543

    CAS  PubMed Central  PubMed  Google Scholar 

  • Leberer E, Pette D (1986) Immunochemical quantification of sarcoplasmic reticulum Ca-ATPase, of calsequestrin and of parvalbumin in rabbit skeletal muscles. Eur J Biochem 156:489–496

    CAS  PubMed  Google Scholar 

  • Leong P, MacLennan D (1998) A 37-amino acid sequence in the skeletal muscle ryanodine receptor interacts with the cytoplasmic loop between domains II and III in the skeletal muscle dihydropyridine receptor. J Biol Chem 273:7791–7794

    CAS  PubMed  Google Scholar 

  • Leppik J, Aughey R, Medved I, Fairweather I, Carey M, McKenna M (2004) Prolongued exercise to fatigue in humans impairs skeletal muscle Na-K ATPase activity, sarcoplasmic reticulum Ca release and Ca uptake. J Appl Physiol 97:1414–1423

    CAS  PubMed  Google Scholar 

  • Lewis J, Tata J (1973) A rapidly sedimenting fraction of rat liver endoplasmic reticulum. J Cell Sci 13:447–459

    CAS  PubMed  Google Scholar 

  • Lindinger M, Heigenhauser G (1991) The roles of ion fluxes in skeletal muscle fatigue. Can J Physiol Pharmacol 69:246–253

    CAS  PubMed  Google Scholar 

  • Liou J, Kim M, Heo W, Jones J, Myers J, Ferrell J Jr, Meyer T (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15:1235–1241

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lipp P, Niggli E (1996) Submicroscopic calcium signals as fundamental events of excitation--contraction coupling in guinea-pig cardiac myocytes. J Physiol 492:31–38

    Google Scholar 

  • Ludtke S, Serysheva I, Hamilton S, Chiu W (2005) The pore structure of the closed RyR1 channel. Structure 13:1203–1211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luff A, Atwood H (1972) Membrane properties and contraction of single muscle fibers in the mouse. Am J Physiol 222:1435–1440

    CAS  PubMed  Google Scholar 

  • Luik R, Wu M, Buchanan J, Lewis R (2006) The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions. J Cell Biol 174:815–825

    CAS  PubMed Central  PubMed  Google Scholar 

  • Luttgau H (1965) The effect of metabolic inhibitors on the fatigue of the action potential in single muscle fibres. J Physiol 178:45–67

    PubMed Central  Google Scholar 

  • Lüttgau H, Oetliker H (1968) The action of caffeine on the activation of the contractile mechanism in striated muscle fibres. J Physiol 194:51–74

    PubMed Central  PubMed  Google Scholar 

  • Ma J, Pan Z (2003) Junctional membrane structure and store operated calcium entry in muscle cells. Front Biosci 8:d242–d255

    CAS  PubMed  Google Scholar 

  • MacLennan D, Brandl C, Korczak B, Green N (1985) Amino-acid sequence of a Ca2++Mg2+-dependent ATPase from rabbit muscle sarcoplasmic reticulum, deduced from its complementary DNA sequence. Nature 316:696–700

    CAS  PubMed  Google Scholar 

  • Mannella C, Colombini M, Frank J (1983) Structural and functional evidence for multiple channel complexes in the outer membrane of Neurospora crassa mitochondria. Proc Natl Acad Sci U S A 80:2243–2247

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mannella C, Buttle K, Rath B, Marko M (1998) Electron microscopic tomography of rat-liver mitochondria and their interaction with the endoplasmic reticulum. Biofactors 8:225–228

    CAS  PubMed  Google Scholar 

  • Manno C, Figueroa L, Fitts R, Ríos E (2013) Confocal imaging of transmembrane voltage by SEER of di-8-ANEPPS. J Gen Physiol 141(3):371–387

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martonosi A, Pikula S (2003) The structure of the Ca2+-ATPase of sarcoplasmic reticulum. Acta Biochim Pol 50:337–365

    CAS  PubMed  Google Scholar 

  • McCully K, Clark B, Kent J, Wilson J, Chance B (1991) Biochemical adaptations to training: implications for resisting muscle fatigue. Can J Physiol Pharmacol 69:274–278

    CAS  PubMed  Google Scholar 

  • McLaughlin S, Bruder A, Chen S, Moser C (1975) Chaotropic anions and the surface potential of bilayer membranes. Biochim Biophys Acta 394:304–313

    CAS  PubMed  Google Scholar 

  • Meier P, Spycher M, Meyer U (1981) Isolation and characterization of rough endoplasmic reticulum associated with mitochondria from normal rat liver. Biochim Biophys Acta 646:283–297

    CAS  PubMed  Google Scholar 

  • Meissner G (1984) Adenine nucleotide stimulation of Ca2+-induced Ca2+ release in sarcoplasmic reticulum. J Biol Chem 259:2365–2374

    CAS  PubMed  Google Scholar 

  • Michaelson L, Shi G, Ward C, Rodney G (2010) Mitochondrial redox potential during contraction in single intact muscle fibers. Muscle Nerve 42:522–529

    PubMed Central  PubMed  Google Scholar 

  • Miledi R, Parker I, Schalow G (1977) Calcium transients in frog slow muscle fibres. Nature 268:750–752

    CAS  PubMed  Google Scholar 

  • Minta A, Kao J, Tsien R (1989) Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores. J Biol Chem 264:8171–8178

    CAS  PubMed  Google Scholar 

  • Mitchell P, Moyle J (1967) Chemiosmotic hypothesis of oxidative phosphorylation. Nature 213:137–139

    CAS  PubMed  Google Scholar 

  • Moopanar T, Allen D (2005) Reactive oxygen species reduce myofibrillar Ca2+ sensitivity in fatiguing mouse skeletal muscle at 37 °C. J Physiol 564:189–199

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moopanar T, Allen D (2006) The activity-induced reduction of myofibrillar Ca2+ sensitivity in mouse skeletal muscle is reversed by dithiothreitol. J Physiol 571:191–200

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moore R, Nguyen H, Galceran J, Pessah I, Allen P (1998) A transgenic myogenic cell line lacking ryanodine receptor protein for homologous expression studies: reconstitution of Ry1R protein and function. J Cell Biol 140:843–851

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morre D, Merritt W, Lembi C (1971) Connections between mitochondria and endoplasmic reticulum in rat liver and onion stem. Protoplasma 73:43–49

    CAS  PubMed  Google Scholar 

  • Mosca B, Delbono O, Messi M, Bergamelli L, Wang Z, Vukcevic M, Lopez R, Treves S, Nishi M, Takeshima H, Paolini C, Martini M, Rispoli G, Protasi F, Zorzato F (2013) Enhanced dihydropyridine receptor calcium channel activity restores muscle strength in JP45/CASQ1 double knockout mice. Nat Commun 4:1541

    PubMed  Google Scholar 

  • Moussavi R, Carson P, Boska M, Weiner M, Miller R (1989) Nonmetabolic fatigue in exercising human muscle. Neurology 39:1222–1226

    CAS  PubMed  Google Scholar 

  • Muik M, Fahrner M, Derler I, Schindl R, Bergsmann J, Frischauf I, Groschner K, Romanin C (2009) A Cytosolic Homomerization and a Modulatory Domain within STIM1 C Terminus Determine Coupling to ORAI1 Channels. J Biol Chem 284:8421–8426

    CAS  PubMed Central  PubMed  Google Scholar 

  • Naghdi S, Waldeck-Weiermair M, Fertschai I, Poteser M, Graier W, Malli R (2010) Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM1-Orai1-dependent store-operated Ca2+ entry. J Cell Sci 123:2553–2564

    CAS  PubMed  Google Scholar 

  • Nakai J, Dirksen R, Nguyen H, Pessah I, Beam K, Allen P (1996) Enhanced dihydropyridine receptor channel activity in the presence of ryanodine receptor. Nature 380:72–75

    CAS  PubMed  Google Scholar 

  • Nassar-Gentina V, Passonneau J, Vergara J, Rapoport S (1978) Metabolic correlates of fatigue and recovery from fatigue in single frog muscle fibers. J Gen Physiol 72:593–606

    CAS  PubMed  Google Scholar 

  • Natori R (1954) The property and contraction process of isolated myofibrils. Jikeikai Med J 1:119–126

    Google Scholar 

  • Niedergerke R (1955) Local muscular shortening by intracellularly applied calcium. J Physiol 128:12P–13P

    Google Scholar 

  • Oba T, Kurono C, Nakajima R, Takaishi T, Ishida K, Fuller G, Klomkleaw W, Yamaguchi M (2002) H2O2 activates ryanodine receptor but has little effect on recovery of release Ca2+ content after fatigue. J Appl Physiol 93:1999–2008

    CAS  PubMed  Google Scholar 

  • O'Brien J, Valdivia H, Block B (1995) Physiological differences between the alpha and beta ryanodine receptors of fish skeletal muscle. Biophys J 68:471–482

    PubMed Central  PubMed  Google Scholar 

  • Odermatt A, Becker S, Khanna V, Kurzydlowski K, Leisner E, Pette D, MacLennan D (1998) Sarcolipin regulates the activity of SERCA1, the fast-twitch skeletal muscle sarcoplasmic reticulum Ca2+-ATPase. J Biol Chem 273:12360–12369

    CAS  PubMed  Google Scholar 

  • Ogata T, Yamasaki Y (1985) Scanning electron-microscopic studies on the three-dimensional structure of sarcoplasmic reticulum in the mammalian red, white and intermediate muscle fibers. Cell Tissue Res 242:461–467

    CAS  PubMed  Google Scholar 

  • Pacher P, Thomas A, Hajnoczky G (2002) Ca2+ marks: miniature calcium signals in single mitochondria driven by ryanodine receptors. Proc Natl Acad Sci U S A 99:2380–2385

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pal R, Li S, Thakur P, Rodney G (2013) Real-time imaging of NADPH oxidase activity in living cell by using novel bio-sensor. Biophys J 104(2–S1):530a. abstract,2722-Pos

    Google Scholar 

  • Palmer A, Tsien R (2006) Measuring calcium signaling using genetically targetable fluorescent indicators. Nat Protoc 1:1057–1065

    CAS  PubMed  Google Scholar 

  • Pan Z, Yang D, Nagaraj RY, Nosek TA, Nishi M, Takeshima H, Cheng H, Ma J (2002) Dysfunction of store-operated calcium channel in muscle cells lacking mg29. Nat Cell Biol 4:379–383

    CAS  PubMed  Google Scholar 

  • Paolini C, Fessenden J, Pessah I, Franzini-Armstrong C (2004) Evidence for conformational coupling between two calcium channels. Proc Natl Acad Sci U S A 101:12748–12752

    CAS  PubMed Central  PubMed  Google Scholar 

  • Paolini C, Quarta M, Nori A, Boncompagni S, Canato M, Volpe P, Allen PD, Reggiani C, Protasi F (2007) Reorganized stores and impaired calcium handling in skeletal muscle of mice lacking calsequestrin-1. J Physiol 583:767–784

    CAS  PubMed Central  PubMed  Google Scholar 

  • Papadopoulus S, Leuranguer V, Bannister R, Beam K (2004) Mapping sites of potential proximity between the DHPR and RyR1 in muscle using a cyan fluorescent protein-yellow fluorescent protein tandem as a fluorescent resonance energy transfer probe. J Biol Chem 279:44046–44056

    Google Scholar 

  • Parekh A (2003) Store-operated Ca2+ entry: dynamic interplay between endoplasmic reticulum, mitochondria and plasma membrane. J Physiol 547:333–348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Parekh A, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930

    CAS  PubMed  Google Scholar 

  • Parekh A, Putney J Jr (2005) Store-operated calcium channels. Physiol Rev 85:757–810

    CAS  PubMed  Google Scholar 

  • Peachey L (1965) The sarcoplasmic reticulum and transverse tubules of the frog’s Sartorius. J Cell Biol 25:209–231

    PubMed Central  PubMed  Google Scholar 

  • Pedersen T, Nielsen O, Lamb G, Stephenson D (2004) Intracellular acidosis enhances the excitability of working muscle. Science 305:1144–1147

    CAS  PubMed  Google Scholar 

  • Perez C, Thomas M, Franzini-Armstrong C (2013) Carboxyl-terminal domain of DHPR β1A is essential for DHPR tetrad formation. Biophys J 104(2–S1):104a. abstract,542-Pos

    Google Scholar 

  • Periasamy M, Kalyanasundaram A (2007) Serca pump isoforms: their role in calcium transport and disease. Muscle Nerve 35:430–442

    CAS  PubMed  Google Scholar 

  • Petrofsky J, Lind A (1979) Isometric endurance in fast and slow muscles in the cat. Am J Physiol 236:C185–C191

    CAS  PubMed  Google Scholar 

  • Petronilli V, Szabo I, Zoratti M (1989) The inner mitochondrial membrane contains ion-conducting channels similar to those found in bacteria. FEBS Lett 259:137–143

    CAS  PubMed  Google Scholar 

  • Picard M, Hepple R, Burelle Y (2012) Mitochondrial functional specialization in glycolytic and oxidative muscle fibers: tailoring the organelle for optimal function. Am J Physiol Cell Physiol 302:C629–C641

    CAS  PubMed  Google Scholar 

  • Place N, Yamada T, Bruton JD, Westerblad H (2008) Interpolated twitches in fatiguing single mouse muscle fibres: implications for the assessment of central fatigue. J Physiol 586:2799–2805

    CAS  PubMed Central  PubMed  Google Scholar 

  • Place N, Yamada T, Zhang S, Westerblad H, Bruton J (2009) High temperature does not alter fatigability in intact mouse skeletal muscle fibres. J Physiol 587:4717–4724

    CAS  PubMed Central  PubMed  Google Scholar 

  • Place N, Yamada T, Bruton J, Westerblad H (2010) Muscle fatigue: from observations in humans to underlying mechanisms studied in intact single muscle fibres. Eur J Appl Physiol 110:1–15

    PubMed  Google Scholar 

  • Porter K, Palade G (1957) Studies on the endoplasmic reticulum. III. Its form and distribution in striated muscle cells. J Biophys Biochem Cytol 3(2):269–300

    CAS  PubMed Central  PubMed  Google Scholar 

  • Posterino G, Lamb G (2003) Effect of sarcoplasmic reticulum Ca2+ content on action-potential induced Ca2+ release in rat skeletal muscle fibres. J Physiol 551:219–237

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pouvreau S, Collet C, Allard B, Jacquemond V (2007a) Whole-cell voltage clamp on skeletal muscle fibers with silicone-clamp technique. Methods Mol Biol 403:185–194

    CAS  PubMed  Google Scholar 

  • Pouvreau S, Royer L, Yi J, Brum G, Meissner G, Ríos E, Zhou J (2007b) Ca(2+) sparks operated by membrane depolarization require isoform 3 ryanodine receptor channels in skeletal muscle. Proc Natl Acad Sci U S A 104:5235–5240

    CAS  PubMed Central  PubMed  Google Scholar 

  • Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan P (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443:230–233

    CAS  PubMed  Google Scholar 

  • Prosser B, Wright N, Hernandez-Ochoa E, Varney K, Liu Y, Olojo R, Zimmer D, Weber D, Schneider M (2008) S100A1 binds to the calmodulin binding site of ryanodine receptor and modulates skeletal muscle coupling. J Biol Chem 283:5046–5057

    CAS  PubMed  Google Scholar 

  • Prosser B, Hernández-Ochoa E, Lovering R, Andronache Z, Zimmer D, Melzer W, Schneider M (2010) S100A1 promotes action potential-initiated calcium release flux and force production in skeletal muscle. Am J Physiol Cell Physiol 299:C891–C902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Protasi F, Paolini C, Nakai J, Beam K, Franzini-Armstrong C, Allen P (2002) Multiple regions of RyR1 mediate functional and structural interactions with α1s-dihidropyridine receptors in skeletal muscle. Biophys J 83:3220–3244

    Google Scholar 

  • Putney J Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    CAS  PubMed  Google Scholar 

  • Racay P, Gregory P, Schwaller B (2006) Parvalbumin deficiency in fast-twitch muscles leads to increased 'slow-twitch type' mitochondria, but does not affect the expression of fiber specific proteins. FEBS J 273:96–108

    CAS  PubMed  Google Scholar 

  • Raju B, Murphy E, Levy L, Hall R, London R (1989) A fluorescent indicator for measuring cytosolic free magnesium. Am J Physiol 256:C540–C548

    CAS  PubMed  Google Scholar 

  • Ramesh V, Sharma V, Sheu S, Franzini-Armstrong C (1998) Structural proximity of mitochondria to calcium release units in rat ventricular myocardium may suggest a role in Ca2+ sequestration. Ann N Y Acad Sci 853:341–344

    CAS  PubMed  Google Scholar 

  • Rando T, Blau H (1994) Primary mouse myoblast purification, characterization and transplantation for cell-mediated gene therapy. J Cell Biol 125:1275–1287

    CAS  PubMed  Google Scholar 

  • Ranvier L (1873) Propriétés et structures différentes des muscles rouges et des muscles blancs, chez les Lapins et chez les Raies. Compt Rendus 77:1030–1034

    Google Scholar 

  • Rapizzi E, Pinton P, Szabadkai G, Wieckowski M, Vandecasteele G, Baird G, Tuft R, Fogarty K, Rizzuto R (2002) Recombinant expression of the voltage-dependent anion channel enhances the transfer of Ca2+ microdomains to mitochondria. J Cell Biol 159:613–624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rausch M, Treves S, Zorzato F (2013) 3D Structural illumination microscopy of the skeletal muscle excitation-contraction coupling macromolecular complex. Biophys J 104(2–S1):105a. abstract,544-Pos

    Google Scholar 

  • Reardon T, Allen D (2009) Time to fatigue is increased in mouse muscle at 37 °C; the role of iron and reactive oxygen species. J Physiol 587:4705–4716

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rebbeck R, Willemse H, Groom L, Dirksen R, Dulhunty A (2013) Interactions between dihydropyridine β1A subunit and ryanodine receptor isoforms. Biophys J 104(2–S1):105a. abstract,543-Pos

    Google Scholar 

  • Reggiani C, te Kronnie T (2006) RyR isoforms and fibre-type specific expression of proteins controlling intracellular calcium concentration in skeletal muscles. J Muscle Res Cell Motil 27:327–335

    CAS  PubMed  Google Scholar 

  • Reid M (2001) Plasticity in Skeletal, Cardiac, and Smooth Muscle. Invited Review: Redox modulation of skeletal muscle contraction: what we know and what we don’t. J Appl Physiol 90:724–731

    CAS  PubMed  Google Scholar 

  • Reid M, Haack K, Kathleen F, Valberg P, Kobzik L, West S (1992) Reactive oxygen in skeletal muscle. I. Intracellular oxidant kinetics and fatigue in vitro. J Appl Physiol 73:1797–1804

    CAS  PubMed  Google Scholar 

  • Ridgway E, Ashley C (1967) Calcium transients in single muscle fibres. Biochem Biophys Res Commun 29:229–234

    CAS  PubMed  Google Scholar 

  • Ríos E, Brum G (1987) Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature 325:717–720

    Google Scholar 

  • Ríos E, Pizarro G (1988) Voltage sensors and calcium channels of excitation-contraction coupling. News Physiol Sci 3:223–227

    Google Scholar 

  • Ríos E, Pizarro G (1991) Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiol Rev 71:849–908

    PubMed  Google Scholar 

  • Ríos E, Karhanek M, Ma J, González A (1993) An Allosteric model of the molecular interactions of excitation-contraction coupling in skeletal muscle. J Gen Physiol 102:449–481

    PubMed  Google Scholar 

  • Rizzuto R, Pozzan T (2006) Microdomains of intracellular Ca2+: molecular determinants and functional consequences. Physiol Rev 86:369–408

    CAS  PubMed  Google Scholar 

  • Rizzuto R, Simpson AW, Brini M, Pozzan T (1992) Rapid changes of mitochondrial Ca2+ revealed by specifically targeted recombinant aequorin. Nature 358:325–327

    CAS  PubMed  Google Scholar 

  • Rizzuto R, Brini M, Murgia M, Pozzan T (1993) Microdomains with high Ca2+ close to IP3-sensitive channels that are sensed by neighboring mitochondria. Science 262:744–747

    CAS  PubMed  Google Scholar 

  • Rizzuto R, Pinton P, Carrington W, Fay FS, Fogarty KE, Lifshitz LM, Tuft R, Pozzan T (1998) Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science 280:1763–1766

    CAS  PubMed  Google Scholar 

  • Rizzuto R, Bernardi P, Pozzan T (2000) Mitochondria as all-round players of the calcium game. J Physiol 529:37–47

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rizzuto R, Marchi S, Bonora M, Aguiari P, Bononi A, De Stefani D, Giorgi C, Leo S, Rimessi A, Siviero R, Zecchini E, Pinton P (2009) Ca(2+) transfer from the ER to mitochondria: when, how and why. Biochim Biophys Acta 1787:1342–1351

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rogers K, Picaud S, Roncali E, Boisgard R, Colasante C, Stinnakre J, Tavitian B, Brulet P (2007) Non-invasive in vivo imaging of calcium signaling in mice. PLoS One 2:e974

    PubMed Central  PubMed  Google Scholar 

  • Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, Zhang S, Safrina O, Kozak JA, Wagner SL, Cahalan MD, Velicelebi G, Stauderman K (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169:435–445

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rossi R, Bottinelli R, Sorrentino V, Reggiani C (2001) Response to caffeine and ryanodine receptor isoforms in mouse skeletal muscle. Am J Physiol Cell Physiol 281:C585–C594

    CAS  PubMed  Google Scholar 

  • Rossi A, Boncompagni S, Wei L, Protasi F, Dirksen R (2011) Differential impact of mitochondrial positioning on mitochondrial Ca(2+) uptake and Ca(2+) spark suppression in skeletal muscle. Am J Physiol Cell Physiol 301:C1128–C1139

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rousseau E, Pinkos J (1990) pH modulates conducting and gating behaviour of single calcium release channels. Pflugers Arch 415:645–657

    CAS  PubMed  Google Scholar 

  • Royer L, Sztretye M, Manno C, Pouvreau S, Zhou J, Knollmann B, Protasi F, Allen P, Rios E (2010) Paradoxical buffering of calcium by calsequestrin demonstrated for the calcium store of skeletal muscle. J Gen Physiol 136:325–338

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rudolf R, Mongillo M, Magalhaes P, Pozzan T (2004) In vivo monitoring of Ca2+ uptake into mitochondria of mouse skeletal muscle during contraction. J Cell Biol 166:527–536

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ryu S, Beutner G, Dirksen R, Kinnally K, Sheu S (2010) Mitochondrial ryanodine receptors and other mitochondrial Ca2+ permeable channels. FEBS Lett 584:1948–1955

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ryu S, Beutner G, Kinnally K, Dirksen R, Sheu S (2011) Single channel characterization of the mitochondrial ryanodine receptor in heart mitoplasts. J Biol Chem 286:21324–21329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Samsó M, Wagenknecht T, Allen D (2005) Internal structure and visualization of transmembrane domains of the RyR1 calcium release channel by cryo-EM. Nat Struct Mol Biol 12:539–544

    PubMed Central  PubMed  Google Scholar 

  • Samsó M, Feng W, Pessah I, Allen P (2009) Coordinated movement of cytoplasmic and transmembrane domains of RyR1 upon gating. PLoS Biol 7:e85

    Google Scholar 

  • Sandow A (1952) Excitation-contraction coupling in muscular response. Yale J Biol Med XXV:176–201. In his classical review article Professor Sandow coined the term “Excitation–Contraction Coupling” to define the chain of events that starting with the action potential, ended with force development, at a time when the nature of all the intermediate events was unknown, indicating the way for future research. The term has become so popular that it is used even in the absence of excitation as when caffeine is used to induce contraction, or to describe another phenomenon, as when the term “Excitation–Secretion Coupling”is used

    Google Scholar 

  • Sandow A (1964) Potentiation of muscular contraction. Arch Phys Med Rehabil 45:62–81

    CAS  PubMed  Google Scholar 

  • Sandow A (1965) Excitation-Contraction Coupling in skeletal muscle. Pharmacol Rev 17:265–320

    CAS  PubMed  Google Scholar 

  • Sandow A, Isaacson A (1966) Topochemical factors in potentiation of contraction by heavy metal cations. J Gen Physiol 49:937–961

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sandow A, Taylor S, Preiser H (1965) Role of the action potential in excitation-contraction coupling. Fed Proc 24:1116–1123

    CAS  PubMed  Google Scholar 

  • Santo-Domingo J, Demaurex N (2010) Calcium uptake mechanisms of mitochondria. Biochim Biophys Acta 1797:907–912

    CAS  PubMed  Google Scholar 

  • Saris N, Carafoli E (2005) A historical review of cellular calcium handling, with emphasis on mitochondria. Biochemistry (Mosc) 70:187–194

    CAS  Google Scholar 

  • Schein S, Colombini M, Finkelstein A (1976) Reconstitution in planar lipid bilayers of a voltage-dependent anion-selective channel obtained from paramecium mitochondria. J Membr Biol 30:99–120

    CAS  PubMed  Google Scholar 

  • Schermelleh L, Heintzmann R, Leonhardt H (2010) A guide to super-resolution fluorescence microscopy. J Cell Biol 190:165–175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schiaffino S, Gorza L, Sartore S, Saggin L, Ausoni S, Vianello M, Gundersen K, Lømo T (1989) Three myosin heavy chain isoforms in type 2 skeletal muscle fibres. J Muscle Res Cell Motil 10:197–205

    CAS  PubMed  Google Scholar 

  • Schmitt T, Pette D (1991) Fiber type-specific distribution of parvalbumin in rabbit skeletal muscle. Histochemistry 96:459–465

    CAS  PubMed  Google Scholar 

  • Schneider M, Chandler W (1973) Voltage dependent charge movement in skeletal muscle: a possible step in excitation-contraction coupling. Nature 242:244–246

    CAS  PubMed  Google Scholar 

  • Scriven D, Tafteh R, Chou K, Moore E (2013) Super-resolution localization and distribution of proteins within the mammalian couplon. Biophys J 104(2–S1):105a. abstract,545-Pos

    Google Scholar 

  • Sembrowich W, Quintinskie J, Li G (1985) Calcium uptake in mitochondria from different skeletal muscle types. J Appl Physiol 59:137–141

    CAS  PubMed  Google Scholar 

  • Sen C (1995) Oxidants and antioxidants in exercise. J Appl Physiol 79:675–686

    CAS  PubMed  Google Scholar 

  • Serysheva I, Chiu W, Ludtke S (2007) Single-particle electron cryomicroscopy of the ion channels in the excitation-contraction coupling junction. Methods Cell Biol 79:407–435

    CAS  PubMed  Google Scholar 

  • Shaw M, Ostap E, Goldman Y (2003) Mechanism of inhibition of skeletal muscle actomyosin by N-benzyl-p-toluene sulphonamide. Biochemistry 42:6128–6135

    CAS  PubMed  Google Scholar 

  • Shirokova N, Ríos E (1997) Small event Ca2+ release: a probable precursor of Ca2+ sparks in frog skeletal muscle. J Physiol 502:3–11

    Google Scholar 

  • Shirokova N, García J, Pizarro G, Ríos E (1996) Ca2+ release from the sarcoplasmic reticulum compared in amphibian and mammalian skeletal muscle. J Gen Physiol 107:1–18

    Google Scholar 

  • Shkryl V, Shirokova N (2006) Transfer and tunneling of Ca2+ from sarcoplasmic reticulum to mitochondria in skeletal muscle. J Biol Chem 281:1547–1554

    CAS  PubMed  Google Scholar 

  • Shore G, Tata J (1977) Two fractions of rough endoplasmic reticulum from rat liver. I. Recovery of rapidly sedimenting endoplasmic reticulum in association with mitochondria. J Cell Biol 72:714–725

    CAS  PubMed  Google Scholar 

  • Shtifman A, Ward C, Wang J, Valdivia H, Schneider M (2000) Effects of imperatoxin A on local sarcoplasmic reticulum Ca(2+) release in frog skeletal muscle. Biophys J 79:814–827

    CAS  PubMed Central  PubMed  Google Scholar 

  • Smets I, Caplanusi A, Despa S, Molnar Z, Radu M, VandeVen M, Ameloot M, Steels P (2004) Ca2+ uptake in mitochondria occurs via the reverse action of the Na+/Ca2+ exchanger in metabolically inhibited MDCK cells. Am J Physiol Ren Physiol 286:F784–F794

    CAS  Google Scholar 

  • Smith J, Imagawa T, Ma J, Fill M, Campbell K, Coronado R (1988) Purified ryanodine receptor from rabbit skeletal muscle is the Ca2+release channel of the SR. J Gen Physiol 92:1–26

    CAS  PubMed  Google Scholar 

  • Smyth J, Dehaven W, Jones B, Mercer J, Trebak M, Vazquez G, Putney J Jr (2006) Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP. Biochim Biophys Acta 1763:1147–1160

    CAS  PubMed  Google Scholar 

  • Soboloff J, Spassova M, Dziadek M, Gill D (2006) Calcium signals mediated by STIM and Orai proteins–a new paradigm in inter-organelle communication. Biochim Biophys Acta 1763:1161–1168

    CAS  PubMed  Google Scholar 

  • Sparagna G, Gunter K, Sheu S, Gunter T (1995) Mitochondrial calcium uptake from physiological-type pulses of calcium. A description of the rapid uptake mode. J Biol Chem 270:27510–27515

    CAS  PubMed  Google Scholar 

  • Stern M (1992) Buffering of calcium in the vicinity of a channel pore. Cell Calcium 13:183–192

    CAS  PubMed  Google Scholar 

  • Stiber J, Hawkins A, Zhang Z, Wang S, Burch J, Graham V, Ward C, Seth M, Finch E, Malouf N, Williams R, Eu J, Rosenberg P (2008) STIM1 signalling controls store-operated calcium entry required for development and contractile function in skeletal muscle. Nat Cell Biol 10:688–697

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Y, Lou F, Edman K (2001) 2,3-Butanedione monoxime increases speed of relaxation in single muscle fibres of frog. Acta Physiol Scand 172:53–61

    CAS  PubMed  Google Scholar 

  • Szentesi P, Jacquemond V, Kovács L, Csernoch L (1997) Intramembrane charge movement and sarcoplasmic calcium release in enzymatically isolated mammalian skeletal muscle fibres. J Physiol 502:371–384

    Google Scholar 

  • Takahashi A, Camacho P, Lechleiter J, Herman B (1999) Measurement of intracellular calcium. Physiol Rev 79:1089–1125

    CAS  PubMed  Google Scholar 

  • Takehura H, Fujinami N, Nishizawa T, Ogasawara H, Kasuga N (2001) Eccentric exercise-induced morphological changes in the membrane systems involved in excitation-contraction coupling in rat skeletal muscle. J Physiol 533:571–583

    Google Scholar 

  • Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T et al (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339:439–445

    CAS  PubMed  Google Scholar 

  • Tanabe T, Takeshima H, Mikami A, Flockerzi V, Takahashi H, Kangawa K, Kojima M, Matsuo H, Hirose T, Numa S (1987) Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 328:313–318

    CAS  PubMed  Google Scholar 

  • Tanabe T, Beam K, Powell J, Numa S (1988) Restoration of excitation-contraction coupling and slow calcium current in dysgenic muscle by dihydropyridine receptor complementary DNA. Nature 336:134–139

    CAS  PubMed  Google Scholar 

  • Tanabe T, Beam K, Adams B, Niidome T, Numa S (1990) Regions of the skeletal dihydropyridine receptor critical for excitation-contraction coupling. Nature 346:567–569

    CAS  PubMed  Google Scholar 

  • Tang S, Wong H, Wang Z, Huang Y, Zhuo Y, Pennati A, Gadda G, Delbono O, Yang J (2011) Design and application of a class of sensors to monitor Ca2+ dynamics in high Ca2+ concentration cellular compartments. Proc Natl Acad Sci U S A 108:16265–16270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Toyoshima H, Mizutani T (2004) Crystal structure of the calcium pump with a bound ATP analogue. Nature 430:529–535

    CAS  PubMed  Google Scholar 

  • Treves S, Vukcevic M, Maj M, Thurnheer R, Mosca B, Zorzato F (2009) Minor sarcoplasmic reticulum membrane components that modulate excitation-contraction coupling in striated muscles. J Physiol 587:3071–3079

    CAS  PubMed Central  PubMed  Google Scholar 

  • Treves S, Thurnheer R, Mosca B, Vukcevic M, Bergamelli L, Voltan R, Oberhauser V, Ronjat M, Csernoch L, Szentesi P, Zorzato F (2012) SRP-35, a newly identified protein of the skeletal muscle sarcoplasmic reticulum, is a retinol dehydrogenase. Biochem J 441:731–741

    CAS  PubMed  Google Scholar 

  • Tsien R (1981) A non-disruptive technique for loading calcium buffers and indicators into cells. Nature 290:527–528

    CAS  PubMed  Google Scholar 

  • Tsugorka A, Ríos E, Blatter L (1995) Imaging elementary events of calcium release in skeletal muscle cells. Science 269:1723–1726

    Google Scholar 

  • Tung C, Lobo P, Kimlicka L, Van Petegem F (2010) The amino-terminal disease hotspot of ryanodine receptors forms a cytoplasmic vestibule. Nature 468:585–58

    CAS  PubMed  Google Scholar 

  • Tupling R (2004) The sarcoplasmic reticulum in muscle fatigue and disease: role of the sarco(endo)plasmic reticulum Ca2+-ATPase. Can J Appl Physiol 29:308–329

    CAS  PubMed  Google Scholar 

  • van der Poel C, Edwards J, Macdonald W, Stephenson D (2008) Effect of temperature-induced reactive oxygen species production on excitation-contraction coupling in mammalian skeletal muscle. Clin Exp Pharmacol Physiol 35:1482–1487

    PubMed  Google Scholar 

  • Vendelin M, Beraud N, Guerrero K, Andrienko T, Kuznetsov A, Olivares J, Kay L, Saks V (2005) Mitochondrial regular arrangement in muscle cells: a "crystal-like" pattern. Am J Physiol Cell Physiol 288:C757–C767

    CAS  PubMed  Google Scholar 

  • Verburg E, Murphy R, Stephenson G, Lamb G (2005) Disruption of excitation-contraction coupling and titin by endogenous Ca2+-activated proteases in toad muscle fibres. J Physiol 564:775–789

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verburg E, Dutka T, Lamb G (2006) Long-lasting muscle fatigue: partial disruption of excitation-contraction coupling by elevated cytosolic Ca2+ concentration during contractions. Am J Physiol 290:C1199–C1208

    CAS  Google Scholar 

  • Vig M, Peinelt C, Beck A, Koomoa DL, Rabah D, Koblan-Huberson M, Kraft S, Turner H, Fleig A, Penner R, Kinet J (2006) CRACM1 is a plasma membrane protein essential for store-operated Ca2+ entry. Science 312:1220–1223

    CAS  PubMed  Google Scholar 

  • Vig M, DeHaven W, Bird G, Billingsley J, Wang H, Rao P, Hutchings A, Jouvin M, Putney J, Kinet J (2008) Defective mast cell effector functions in mice lacking the CRACM1 pore subunit of store-operated calcium release-activated calcium channels. Nat Immunol 9:89–96

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wagenknecht T, Grassucci R, Frank J, Saito A, Inui M, Fleischer S (1989) Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum. Nature 338:167–170

    CAS  PubMed  Google Scholar 

  • Wagenknecht T, Hsieh C-E, Rath B, Fleischer S, Marko M (2002) Electron tomography of frozen-hydrated isolated triad junctions. Biophys J 83:2491–2501

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang Z, Zheng Z, Messi M, Delbono O (2007) Muscle fibers from senescent mice retain excitation-contraction coupling properties in culture. In vitro Cell Dev Biol 43:222–234

    CAS  Google Scholar 

  • Wang Z, Tang S, Messi M, Yang J, Delbono (2012) Residual sarcoplasmic reticulum Ca2+ concentration after Ca2+ release in skeletal myofibers from young adult and old mice. Pflugers Arch 463:615–624

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ward C, Prosser B, Greiser M, Westerblad H, Khairallah R, Lederer W (2011) A novel assay of mechano-transduction in single muscle cells. Biophys J 100:589a. abstract,3185-Pos

    Google Scholar 

  • Weber A (1959) On the role of calcium in the activity of adenosine 5′-triphosphate hydrolysis by actomyosin. J Biol Chem 234:2764–2769

    CAS  PubMed  Google Scholar 

  • Weber A, Herz R (1968) The relationship between caffeine contracture in intact muscle and the effect of caffeine on Reticulum. J Gen Physiol 52:750–759

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wei L, Varsányi M, Dulhunty A, Beard N (2006) The conformation of calsequestrin determines its ability to regulate skeletal ryanodine receptors. Biophys J 91:1288–1301

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weisleder N, Zhou J, Ma J (2012) Detection of calcium sparks in intact and permeabilized skeletal muscle fibers. Methods Mol Biol 798:395–410

    Google Scholar 

  • Westerblad H (1999) The role of pH and inorganic phosphate ions in skeletal muscle fatigue. Chapter 12. In: Hargreaves M, Thompson M (eds) Biochemistry of exercise X. Champaign, USA, Human Kinetics, pp p147–p154

    Google Scholar 

  • Westerblad H, Allen D (1991) Changes of myoplasmic calcium concentration during fatigue in single mouse muscle fibers. J Gen Physiol 98:615–635

    CAS  PubMed  Google Scholar 

  • Westerblad H, Allen D (1992) Myoplasmic free Mg2+ concentration during repetitive stimulation of single fibres from mouse skeletal muscle. J Physiol 453:413–434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Westerblad H, Allen D (1993) The contribution of [Ca2+]i to the slowing of relaxation in fatigued single fibres from mouse skeletal muscle. J Physiol 468:729–740

    CAS  PubMed Central  PubMed  Google Scholar 

  • Westerblad H, Lännergren J (1991) Slowing of relaxation during fatigue in single mouse muscle fibres. J Physiol 434:323–336

    Google Scholar 

  • Westerblad H, Allen D, Lännergren J (2002) Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci 17:17–21

    CAS  PubMed  Google Scholar 

  • Williams D, Head S, Bakker A, Stephenson G (1990) Resting calcium concentrations in isolated skeletal muscle fibres of dystrophic mice. J Physiol 428:243–256

    Google Scholar 

  • Winegrad S (1968) Intracellular calcium movements of frog skeletal muscle during recovery from tetanus. J Gen Physiol 51:65–83

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wium E, Dulhunty A, Beard N (2012) A skeletal muscle ryanodine receptor interaction domain in triadin. PLoS One 7:e43817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong J, Baddeley D, Bushong E, Yu Z, Ellisman M, Hoshijima M, Soeller C (2013) Nanoscale distribution of ryanodine receptors and caveolin-3 in mouse ventricular myocytes: dilation of T-tubules near the junctions. Biophys J 104:L22–L24

    CAS  PubMed  Google Scholar 

  • Wood D, Zollman J, Reuben J (1975) Human skeletal muscle properties of the “chemically skinned” fiber. Science 187:1075–1076

    CAS  PubMed  Google Scholar 

  • Woods C, Novo D, DiFranco M, Vergara J (2004) The action potential-evoked sarcoplasmic reticulum calcium release is impaired in mdx mouse muscle fibres. J Physiol 557:59–75

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yaffe D, Saxel O (1977) Serial passaging and differentiation of myogenic cells isolated from dystrophic mouse muscle. Nature 270:725–727

    CAS  PubMed  Google Scholar 

  • Yi J, Ma C, Li Y, Weisleder N, Rios E, Ma J, Zhou J (2011) Mitochondrial calcium uptake regulates rapid calcium transients in skeletal muscle during excitation-contraction (E-C) coupling. J Biol Chem 286:32436–32443

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zalman L, Nikaido H, Kagawa Y (1980) Mitochondrial outer membrane contains a protein producing nonspecific diffusion channels. J Biol Chem 255:1771–1774

    CAS  PubMed  Google Scholar 

  • Zhang S, Yu Y, Roos J, Kozak J, Deerinck T, Ellisman M, Stauderman K, Cahalan M (2005) STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature 437:902–905

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou J, Launikonis B, Ríos E, Brum G (2004) Regulation of Ca2+ sparks by Ca2+ and Mg2+ in mammalian and amphibian muscle. An RyR isoform-specific role in excitation-contraction coupling? J Gen Physiol 124:409–428

    Google Scholar 

  • Zhou J, Yi J, Royer L, Launikonis B, González A, García J, Ríos E (2006) A probable role of dihydropyridine receptors in repression of Ca2+ sparks demonstrated in cultured mammalian muscle. Am J Physiol Cell Physiol 290:C539–C553

    Google Scholar 

  • Zoratti M, Szabo I, De Marchi U (2005) Mitochondrial permeability transitions: how many doors to the house? Biochim Biophys Acta 1706:40–52

    CAS  PubMed  Google Scholar 

  • Zorzato F, Fujii J, Otsu M, Phillips M, Green N, Lai F, Meissner G, MacLennan D (1990) Molecular cloning of cDNA encoding human and rabbit forms of the Ca2+ release channel (ryanodine receptor) of skeletal muscle sarcoplasmic reticulum. J Biol Chem 265:2244–2256

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The financial support comes from University of Antioquia, Medellín, Colombia (J.C.C.) and Venezuelan Institute for Scientific Research, Venezuela (P.B. and C.C.). We want to acknowledge Alis Guillén for help in obtaining some experimental results presented in this review and Carolina Figueroa por sharing some information with us.

Conflict of interest

Juan C. Calderón, Pura Bolaños and Carlo Caputo declare that they have no conflict of interest.

Human and animal studies

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan C. Calderón.

Additional information

Special Issue Advances in Biophysics in Latin America

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calderón, J.C., Bolaños, P. & Caputo, C. The excitation–contraction coupling mechanism in skeletal muscle. Biophys Rev 6, 133–160 (2014). https://doi.org/10.1007/s12551-013-0135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-013-0135-x

Keywords

Navigation