Skip to main content

Advertisement

Log in

A new horizon of DNP technology: application to in-vivo 13C magnetic resonance spectroscopy and imaging

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Dynamic nuclear polarization (DNP) is an emerging technique for increasing the sensitivity (>10,000-fold) of magnetic resonance spectroscopy and imaging (MRSI), in particularly for low-γ nuclei. DNP methodology is based on polarizing nuclear spins in an amorphous solid state at low temperature (ca. 1 K) through coupling of the nuclear spins with unpaired electron spins that are added to the sample via an organic free radical. In an amorphous solid state, the high electron spin polarization can be transferred to the nuclear spins by microwave irradiation. While this technique has been utilized in solid-state research for many years, it is only recently that dissolution methods and the required hardware have been developed to produce the high nuclear polarization provided by DNP to produce injectable hyperpolarized solutions suitable for in vivo studies. It has been applied to a number of 13C-labeled cell metabolites in biological systems and their real-time metabolic conversion has been imaged. This review focuses briefly on the DNP methodology and the significant molecules investigated to date in preclinical cancer models, in terms of their downstream metabolism in vivo or the biological processes that they can probe. In particular, conversion between hyperpolarized 13C-labeled pyruvate and lactate, catalyzed by lactate dehydrogenase, has been shown to have a number of potential applications such as diagnosis, staging tumor grade, and monitoring therapy response. Strategies for making this technique more viable to use in clinical settings have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abragam A, Goldman M (1978) Principles of dynamic nuclear polarization. Rep Prog Phys 41:395–467

    Article  CAS  Google Scholar 

  • Albers MJ, Bok R, Chen AP, Cunningham CH, Zierhut ML, Zhang VY, Kohler SJ, Tropp J, Hurd RE, Yen YF et al (2008) Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res 68:8607–8615

    Google Scholar 

  • Aptekar JW, Cassidy MC, Johnson AC, Barton RA, Lee M, Ogier AC, Vo C, Anahtar MN, Ren Y, Bhatia SN et al (2009) Silicon nanoparticles as hyperpolarized magnetic resonance imaging agents. ACS Nano 3:4003–4008

    Google Scholar 

  • Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci USA 100:10158–10163

    Article  PubMed  CAS  Google Scholar 

  • Bohndiek SE, Kettunen MI, Hu DE, Kennedy BW, Boren J, Gallagher FA, Brindle KM (2011) Hyperpolarized [1-13C]-ascorbic and dehydroascorbic acid: vitamin C as a probe for imaging redox status in vivo. J Am Chem Soc 133:11795–11801

    Google Scholar 

  • Brindle K (2008) New approaches for imaging tumour responses to treatment. Nat Rev Cancer 8:94–107

    Article  PubMed  CAS  Google Scholar 

  • Chen AP, Albers MJ, Cunningham CH, Kohler SJ, Yen YF, Hurd RE, Tropp J, Bok R, Pauly JM, Nelson SJ et al (2007) Hyperpolarized C-13 spectroscopic imaging of the TRAMP mouse at 3 T-initial experience. Magn Reson Med 58:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Day SE, Kettunen MI, Gallagher FA, Hu DE, Lerche M, Wolber J, Golman K, Ardenkjaer-Larsen JH, Brindle KM (2007) Detecting tumor response to treatment using hyperpolarized 13C magnetic resonance imaging and spectroscopy. Nat Med 13:1382–1387

    Google Scholar 

  • De Graaf RA (2007) In vivo NMR spectroscopy: principles and techniques, 2nd edn. Wiley, New York

  • Gabellieri C, Reynolds S, Lavie A, Payne GS, Leach MO, Eykyn TR (2008) Therapeutic target metabolism observed using hyperpolarized N-15 choline. J Am Chem Soc 130:4598–4599

    Article  PubMed  CAS  Google Scholar 

  • Gallagher FA, Kettunen MI, Day SE, Hu DE, Ardenkjaer-Larsen JH, in ’t Zandt R, Jensen PR, Karlsson M, Golman K, Lerche MH, Brindle KM (2008a) Magnetic resonance imaging of pH in vivo using hyperpolarized 13C-labelled bicarbonate. Nature 453:940–973

  • Gallagher FA, Kettunen MI, Day SE, Lerche M, Brindle KM (2008b) 13C MR spectroscopy measurements of glutaminase activity in human hepatocellular carcinoma cells using hyperpolarized 13C-labeled glutamine. Magn Reson Med 60:253–257

    Google Scholar 

  • Gallagher FA, Kettunen MI, Brindle KM (2009a) Biomedical applications of hyperpolarized (13)C magnetic resonance imaging. Prog Nucl Magn Reson Spectrosc 55:285–295

    Article  CAS  Google Scholar 

  • Gallagher FA, Kettunen MI, Hu DE, Jensen PR, In’t Zandt R, Karlsson M, Gisselsson A, Nelson SK, Witney TH, Bohndiek SE et al (2009b) Production of hyperpolarized [1,4-13C2]malate from [1,4-13C2]fumarate is a marker of cell necrosis and treatment response in tumors. Proc Natl Acad Sci USA 106:19801–19806

    Google Scholar 

  • Gallagher FA, Bohndiek SE, Kettunen MI, Lewis DY, Soloviev D, Brindle KM (2011) Hyperpolarized 13C MRI and PET: in vivo tumor biochemistry. J Nucl Med 52:1333–1336

    Google Scholar 

  • Gatenby RA, Gillies RJ (2004) Why do cancers have high aerobic glycolysis? Nat Rev Cancer 4:891–899

    Article  PubMed  CAS  Google Scholar 

  • Goldman M (1970) Spin temperature and nuclear magnetic resonance in solids. Clarendon, Oxford

    Google Scholar 

  • Golman K, Olsson LE, Axelsson O, Mansson S, Karlsson M, Petersson JS (2003) Silvanus Thompson Memorial Lecture Molecular imaging using hyperpolarized 13C. Br J Radiol 76:S118–S127

    Google Scholar 

  • Golman K, In ’t Zandt R, Thaning M (2006a) Real-time metabolic imaging. Proc Natl Acad Sci USA 103:11270–11275

    Article  PubMed  CAS  Google Scholar 

  • Golman K, Zandt RI, Lerche M, Pehrson R, Ardenkjaer-Larsen JH (2006b) Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 66:10855–10860

    Google Scholar 

  • Hu S, Lustig M, Balakrishnan A, Larson PE, Bok R, Kurhanewicz J, Nelson SJ, Goga A, Pauly JM, Vigneron DB (2010) 3D compressed sensing for highly accelerated hyperpolarized 13C MRSI with in vivo applications to transgenic mouse models of cancer. Magn Reson Med 63:312–321

    Google Scholar 

  • Hu S, Balakrishnan A, Bok RA, Anderton B, Larson PE, Nelson SJ, Kurhanewicz J, Vigneron DB, Goga A (2011) 13C-pyruvate imaging reveals alterations in glycolysis that precede c-Myc-induced tumor formation and regression. Cell Metab 14:131–142

    Google Scholar 

  • Hwang CF, Hill DA (1967) Phenomenological model for the new effect in dynamic polarization. Phys Rev Lett 19:1011–1013

    Article  CAS  Google Scholar 

  • Hurd RE, Yen YF, Mayer D, Chen A, Wilson D, Kohler S, Bok R, Vigneron D, KurhanewiczJ, Tropp J, Spielman D, Pfefferbaum A. (2010) Metabolic imaging in the anesthetized rat brain using hyperpolarized [1-13C] pyruvate and [1-13C] ethylpyruvate. Magn Reson Med 63:1137–1143

  • Jeffries CD (1957) Polarization of nuclei by resonance saturation in paramagnetic crystals. Phys Rev 106:164–165

    Article  CAS  Google Scholar 

  • Johannesson H, Macholl S, Ardenkjaer-Larsen JH (2009) Dynamic nuclear polarization of [1-13C]pyruvic acid at 4.6 tesla. J Magn Reson 197:167–175

    Article  PubMed  CAS  Google Scholar 

  • Keshari KR, Wilson DM, Chen AP, Bok R, Larson PEZ, Hu S, Van Criekinge M, Macdonald JM, Vigneron DB, Kurhanewicz J (2009) Hyperpolarized [2-13C]-fructose: A hemiketal DNP substrate for in vivo metabolic imaging. J Am Chem Soc 131:17591–17596

    Google Scholar 

  • Keshari KR, Kurhanewicz J, Bok R, Larson PE, Vigneron DB, Wilson DM (2011) Hyperpolarized 13C dehydroascorbate as an endogenous redox sensor for in vivo metabolic imaging. Proc Natl Acad Sci USA 108:18606–18611

    Google Scholar 

  • Kurhanewicz J, Vigneron DB, Brindle K, Chekmenev EY, Comment A, Cunningham CH, Deberardinis RJ, Green GG, Leach MO, Rajan SS et al (2011) Analysis of cancer metabolism by imaging hyperpolarized nuclei: prospects for translation to clinical research. Neoplasia 13:81–97

    PubMed  Google Scholar 

  • Larson PE, Bok R, Kerr AB, Lustig M, Hu S, Chen AP, Nelson SJ, Pauly JM, Kurhanewicz J, Vigneron DB (2010) Investigation of tumor hyperpolarized [1-13C]-pyruvate dynamics using time-resolved multiband RF excitation echo-planar MRSI. Magn Reson Med 63:582–591

    Google Scholar 

  • Larson PE, Hu S, Lustig M, Kerr AB, Nelson SJ, Kurhanewicz J, Pauly JM, Vigneron DB (2011) Fast dynamic 3D MR spectroscopic imaging with compressed sensing and multiband excitation pulses for hyperpolarized 13C studies. Magn Reson Med 65:610–619

    Article  PubMed  CAS  Google Scholar 

  • Lustig M, Donoho DL, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195

    Article  PubMed  Google Scholar 

  • Mayer D, Yen YF, Tropp J, Pfefferbaum A, Hurd RE, Spielman DM (2009) Application of subsecond spiral chemical shift imaging to real-time multislice metabolic imaging of the rat in vivo after injection of hyperpolarized 13C1-pyruvate. Magn Reson Med 62:557–564

    Article  PubMed  CAS  Google Scholar 

  • Merritt ME, Harrison C, Kovacs Z, Kshirsagar P, Malloy CR, Sherry AD (2007) Hyperpolarized Y-89 offers the potential of direct imaging of metal ions in biological systems by magnetic resonance. J Am Chem Soc 129:12942–12943

    Article  PubMed  CAS  Google Scholar 

  • Overhauser AW (1953) Paramagnetic relaxation in metals. Phys Rev 89:689–700

    Article  CAS  Google Scholar 

  • Park I, Larson PE, Zierhut ML, Hu S, Bok R, Ozawa T, Kurhanewicz J, Vigneron DB, Vandenberg SR, James CD, Nelson SJ (2010) Hyperpolarized 13C magnetic resonance metabolic imaging: application to brain tumors. Neuro Oncol 12:133–144

    Google Scholar 

  • van Heeswijk RB, Uffmann K, Comment A, Kurdzesau F, Perazzolo C, Cudalbu C, Jannin S, Konter JA, Hautle P, van den Brandt B et al (2009) Hyperpolarized lithium-6 as a sensor of nanomolar contrast agents. Magn Reson Med 61:1489–1493

    Article  PubMed  Google Scholar 

  • von Morze C, Larson PEZ, Hu S, Keshari K, Wilson DM, Ardenkjaer-Larsen JH, Goga A, Bok R, Kurhanewicz J, Vigneron DB (2011) Imaging of blood flow using hyperpolarized 13C urea in preclinical cancer models. J Magn Reson Imaging 33:692–697

    Google Scholar 

  • Ward CS, Venkatesh HS, Chaumeil MM, Brandes AH, VanCriekinge M, Dafni H, Sukumar S, Nelson SJ, Vigneron DB, Kurhanewicz J et al (2010) Noninvasive detection of target modulation following phosphatidylinositol 3-kinase inhibition using hyperpolarized 13C magnetic resonance spectroscopy. Cancer Res 70:1296–1305

    Google Scholar 

  • Warren WS, Jenista E, Branca RT, Chen X (2009) Increasing hyperpolarized spin lifetimes through true singlet eigenstates. Science 323:1711–1714

    Article  PubMed  CAS  Google Scholar 

  • Wilson DM, Hurd RE, Keshari K, Van Criekinge M, Chen AP, Nelson SJ, Vigneron DB, Kurhanewicz J (2009) Generation of hyperpolarized substrates by secondary labeling with [1,1-13C] acetic anhydride. Proc Natl Acad Sci USA 106:5503–5507

    Google Scholar 

  • Wilson DM, Keshari KR, Larson PEZ, Chen AP, Hu S, Van Criekinge M, Bok R, Nelson SJ, Macdonald JM, Vigneron DB, Kurhanewicz J (2010) Multi-compound polarization by DNP allows simultaneous assessment of multiple enzymatic activities in vivo. J Magn Reson 205:141–147

    Article  PubMed  CAS  Google Scholar 

  • Witney TH, Kettunen MI, Day SE, Hu DE, Neves AA, Gallagher FA, Fulton SM, Brindle KM (2009) A comparison between radiolabeled fluorodeoxyglucose uptake and hyperpolarized 13C-labeled pyruvate utilization as methods for detecting tumor response to treatment. Neoplasia 11:574–U588

    Google Scholar 

  • Witney TH, Kettunen MI, Hu DE, Gallagher FA, Bohndiek SE, Napolitano R, Brindle KM (2010) Detecting treatment response in a model of human breast adenocarcinoma using hyperpolarised [1-13C]pyruvate and [1,4-13C2]fumarate. Br J Cancer 103:1400–1406

    Google Scholar 

Download references

Acknowledgments

Authors gratefully acknowledge the financial support of the Wayne Huizinga Trust, and R01 CA077575-14 (RJG).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta Dutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dutta, P., Martinez, G.V. & Gillies, R.J. A new horizon of DNP technology: application to in-vivo 13C magnetic resonance spectroscopy and imaging. Biophys Rev 5, 271–281 (2013). https://doi.org/10.1007/s12551-012-0099-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-012-0099-2

Keywords

Navigation