Biophysical Reviews

, Volume 4, Issue 3, pp 189–203 | Cite as

Assessing and refining molecular dynamics simulations of proteins with nuclear magnetic resonance data

  • Jane R. AllisonEmail author


The sophistication of the force fields, algorithms and hardware used for molecular dynamics (MD) simulations of proteins is continuously increasing. No matter how advanced the methodology, however, it is essential to evaluate the appropriateness of the structures sampled in a simulation by comparison with quantitative experimental data. Solution nuclear magnetic resonance (NMR) data are particularly useful for checking the quality of protein simulations, as they provide both structural and dynamic information on a variety of temporal and spatial scales. Here, various features and implications of using NMR data to validate and bias MD simulations are outlined, including an overview of the different types of NMR data that report directly on structural properties and of relevant simulation techniques. The focus throughout is on how to properly account for conformational averaging, particularly within the context of the assumptions inherent in the relationships that link NMR data to structural properties.


Molecular dynamics Nuclear magnetic resonance Protein Biomolecular simulation 



I thank the very many people with whom I have discussed the issues involved in combining NMR data with MD simulations, in particular, Prof. Wilfred van Gunsteren, to whom this article is dedicated on the occasion of his 65th birthday.


  1. Allison JR, van Gunsteren WF (2009) A method to explore protein side chain conformational variability using experimental data. Chem Phys Chem 10(18):3213–3228PubMedGoogle Scholar
  2. Allison JR, Varnai P, Dobson CM, Vendruscolo M (2009) Determination of the free energy landscape of α-synuclein using spin label nuclear magnetic resonance measurements. J Am Chem Soc 131(51):18,314–18,326CrossRefGoogle Scholar
  3. Allison JR, Bergeler M, Hansen N, van Gunsteren WF (2011) Current computer modeling cannot explain why two highly similar sequences fold into different structures. Biochemistry 50(50):10,965–10,973CrossRefGoogle Scholar
  4. Allison JR, Hertig S, Missimer JH, Smith LJ, Steinmetz MO, Dolenc J (2012) Probing the structure and dynamics of proteins by combining molecular dynamics simulations and experimental NMR data. J Chem Theory Comput. doi: 10.1021/ct300393b
  5. Andronesi OC, Becker S, Seidel K, Heise H, Young HS, Baldus M (2005) Determination of membrane protein structure and dynamics by magic-angle-spinning solid-state NMR spectroscopy. J Am Chem Soc 127(37):12,965–12,974CrossRefGoogle Scholar
  6. Battiste JL, Wagner G (2000) Utilization of site-directed spin labeling and high-resolution heteronuclear nuclear magnetic resonance for global fold determination of large proteins with limited nuclear Overhauser effect data. Biochemistry 39(18):5355–5365PubMedCrossRefGoogle Scholar
  7. Bax A (2003) Weak alignment offers new NMR opportunities to study protein structure and dynamics. Protein Sci 12(1):1–16PubMedPubMedCentralCrossRefGoogle Scholar
  8. Beauchamp KA, Lin YS, Das R, Pande VS (2012) Are protein force fields getting better? A systematic benchmark on 524 diverse NMR measurements. J Chem Theory Comput 8(4):1409–1414PubMedPubMedCentralCrossRefGoogle Scholar
  9. Best RB, Hummer G (2009) Optimized molecular dynamics force fields applied to the helix-coil transition of polypeptides. J Phys Chem B 113(26):9004–9015PubMedPubMedCentralCrossRefGoogle Scholar
  10. Best RB, Vendruscolo M (2004) Determination of protein structures consistent with NMR order parameters. J Am Chem Soc 126(26):8090–8091PubMedCrossRefGoogle Scholar
  11. Blackledge M (2005) Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings. Prog Nucl Magn Reson Spectrosc 46(1):23–61CrossRefGoogle Scholar
  12. Boelens R, Koning TMG, Kaptein R (1988) Determination of biomolecular structures from proton-proton NOE’s using a relaxation matrix approach. J Mol Struct 173:299–311CrossRefGoogle Scholar
  13. Bonvin AM, Brünger AT (1995) Conformational variability of solution nuclear magnetic resonance structures. J Mol Biol 250(1):80–93PubMedCrossRefGoogle Scholar
  14. Bonvin AMJJ, Boelens R, Kaptein R (1994) Time- and ensemble-averaged direct NOE restraints. J Biomol NMR 4(1):143–149PubMedCrossRefGoogle Scholar
  15. Borgias BA, James TL (1990) MARDIGRAS - a procedure for matrix analysis of relaxation for discerning geometry of an aqueous structure. J Magn Reson 87(3):475–487Google Scholar
  16. Borgias BA, Gochin M, Kerwood DJ, James TL (1990) Relaxation matrix analysis of 2D NMR data. Prog Nucl Magn Reson Spectrosc 22(1):83–100CrossRefGoogle Scholar
  17. Brown WM, Wang P, Plimpton SJ, Tharrington AN (2011) Implementing molecular dynamics on hybrid high performance computers - short range forces. Comp Phys Comm 182(4):898–911CrossRefGoogle Scholar
  18. Brünger AT (1992) Free R value: a novel statistical quantity for assessing the accuracy of crystal structures. Nature 355(6359):472–475PubMedCrossRefGoogle Scholar
  19. Brünger AT (1993) Assessment of phase accuracy by cross validation: the free R value. Methods and applications. Acta Crystallogr D Biol Crystallogr 49(Pt 1):24–36PubMedCrossRefGoogle Scholar
  20. Brünger AT, Clore GM, Gronenborn AM, Saffrich R, Nilges M (1993) Assessing the quality of solution nuclear magnetic resonance structures by complete cross-validation. Science 261(5119):328–331PubMedCrossRefGoogle Scholar
  21. Brüschweiler R, Case DA (1994) Adding harmonic motion to the Karplus relation for spin-spin coupling. J Am Chem Soc 116(24):11,199–11,200CrossRefGoogle Scholar
  22. Brüschweiler R, Roux B, Blackledge M, Griesinger C, Karplus M, Ernst RR (1992) Influence of rapid intramolecular motion on NMR cross-relaxation rates. A moleculardynamics study of antamanide in solution. J Am Chem Soc 114(7):2289–2302CrossRefGoogle Scholar
  23. Bryant RG (1983) The NMR time scale. J Chem Edu 60(11):933CrossRefGoogle Scholar
  24. Buck M, Bouguet-Bonnet S, Pastor RW, MacKerell AD (2006) Importance of the CMAP correction to the CHARMM22 protein force field: dynamics of hen lysozyme. Biophys J 90(4):L36–L38PubMedCrossRefGoogle Scholar
  25. Bühl M, van Mourik T (2011) NMR spectroscopy: quantum-chemical calculations. WIREs: Comput Mol Sci 1(4):634–647Google Scholar
  26. Bürgi R, Pitera J, van Gunsteren WF (2001) Assessing the effect of conformational averaging on the measured values of observables. J Biomol NMR 19(4):305–320PubMedCrossRefGoogle Scholar
  27. Camilloni C, Robustelli P, Simone AD, Cavalli A, Vendruscolo M (2012) Characterization of the conformational equilibrium between the two major substates of RNase A using NMR chemical shifts. J Am Chem Soc 134(9):3968–3971PubMedCrossRefGoogle Scholar
  28. Case DA (1995) Calibration of ring-current effects in proteins and nucleic acids. J Biomol NMR 6(4):341–346PubMedCrossRefGoogle Scholar
  29. Castellani F, van Rossum B, Diehl A, Schubert M, Rehbein K, Oschkinat H (2002) Structure of a protein determined by solid-state magic-angle-spinning NMR spectroscopy. Nature 420(6911):98–102PubMedCrossRefGoogle Scholar
  30. Chandrasekhar I, Clore GM, Szabo A, Gronenborn AM, Brooks BR (1992) A 500 ps molecular dynamics simulation study of interleukin-1β in water: correlation with nuclear magnetic resonance spectroscopy and crystallography. J Mol Biol 226(1):239–250PubMedCrossRefGoogle Scholar
  31. Choy WY, Mulder FA, Crowhurst KA, Muhandiram DR, Millett IS, Doniach S, Forman-Kay JD, Kay LE (2002) Distribution of molecular size within an unfolded state ensemble using small-angle X-ray scattering and pulse field gradient NMR techniques. J Mol Biol 316(1):101–112PubMedCrossRefGoogle Scholar
  32. Christen M, Keller B, van Gunsteren WF (2007) Biomolecular structure refinement based on adaptive restraints using local-elevation simulation. J Biomol NMR 39(4):265–273PubMedCrossRefGoogle Scholar
  33. Clore GM, Iwahara J (2009) Theory, practice, and applications of paramagnetic relaxation enhancement for the characterization of transient low-population states of biological macromolecules and their complexes. Chem Rev 109(9):4108–4139PubMedPubMedCentralCrossRefGoogle Scholar
  34. Clore GM, Schwieters CD (2004) How much backbone motion in ubiquitin is required to account for dipolar coupling data measured in multiple alignment media as assessed by independent cross-validation? J Am Chem Soc 126(9):2923–2938PubMedCrossRefGoogle Scholar
  35. Clore GM, Schwieters CD (2006) Concordance of residual dipolar couplings, backbone order parameters and crystallographic B-factors for a small α/β protein: a unified picture of high probability, fast atomic motions in proteins. J Mol Biol 355(5):879–886PubMedCrossRefGoogle Scholar
  36. Clore G, Starich M, Gronenborn A (1998) Measurement of residual dipolar couplings of macromolecules aligned in the nematic phase of a colloidal suspension of rod-shaped viruses. J Am Chem Soc 120(40):10,571–10,572CrossRefGoogle Scholar
  37. Cornilescu G, Delaglio F, Bax A (1999) Protein backbone angle restraints from searching a database for chemical shift and sequence homology. J Biomol NMR 13(3):289–302PubMedCrossRefGoogle Scholar
  38. Daura X, Antes I, van Gunsteren WF, Thiel W, Mark AE (1999) The effect of motional averaging on the calculation of NMR-derived structural properties. Proteins Struct Funct Bioinform 36(4):542–555CrossRefGoogle Scholar
  39. Daura X, Gademann K, Schäfer H, Jaun B, Seebach D, van Gunsteren WF (2001) The β-peptide hairpin in solution: conformational study of a β-hexapeptide in methanol by NMR spectroscopy and MD simulation. J Am Chem Soc 123(10):2393–2404PubMedCrossRefGoogle Scholar
  40. de Dios A, Pearson J, Oldfield E (1993) Secondary and tertiary structural effects on protein NMR chemical shifts: an ab initio approach. Science 260(5113):1491–1496PubMedCrossRefGoogle Scholar
  41. De Simone A, Richter B, Salvatella X, Vendruscolo M (2009) Toward an accurate determination of free energy landscapes in solution states of proteins. J Am Chem Soc 131(11):3810–3811PubMedCrossRefGoogle Scholar
  42. Dedmon MM, Lindorff-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM (2005) Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc 127(2):476–477PubMedCrossRefGoogle Scholar
  43. Dolenc J, Missimer JH, Steinmetz MO, van Gunsteren WF (2010) Methods of NMR structure refinement: molecular dynamics simulations improve the agreement with measured NMR data of a C-terminal peptide of GCN4-p1. J Biomol NMR 47(3):221–235PubMedCrossRefGoogle Scholar
  44. Donaldson LW, Skrynnikov NR, Choy WY, Muhandiram DR, Sarkar B, Forman-Kay JD, Kay LE (2001) Structural characterization of proteins with an attached ATCUN motif by paramagnetic relaxation enhancement NMR spectroscopy. J Am Chem Soc 123(40):9843–9847PubMedCrossRefGoogle Scholar
  45. Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24(16):1999–2012PubMedCrossRefGoogle Scholar
  46. Edmondson SP (1992) NOE R-factors and structural refinement using FIRM, an iterative relaxation matrix program. J Magn Reson 98(2):283–298Google Scholar
  47. Eghbalnia HR, Wang L, Bahrami A, Assadi A, Markley J (2005) Protein energetic conformational analysis from NMR chemical shifts (PECAN) and its use in determining secondary structural elements. J Biomol NMR 32(1):71–81PubMedCrossRefGoogle Scholar
  48. Eichenberger AP, Smith LJ, van Gunsteren WF (2012) Ester-linked hen egg white lysozyme shows a compact fold in a molecular dynamics simulation - possible causes and sensitivity of experimentally observable quantities to structural changes maintaining this compact fold. FEBS J 279(2):299–315PubMedCrossRefGoogle Scholar
  49. Eriksson MAL, Berglund H, Härd T, Nilsson L (1993) A comparison of 15N NMR relaxation measurements with a molecular dynamics simulation: backbone dynamics of the glucocorticoid receptor DNA-binding domain. Proteins Struct Funct Bioinform 17(4):375–390CrossRefGoogle Scholar
  50. Esteban-Martín S, Fenwick RB, Salvatella X (2010) Refinement of ensembles describing unstructured proteins using NMR residual dipolar couplings. J Am Chem Soc 132(13):4626–4632PubMedCrossRefGoogle Scholar
  51. Fawzi NL, Phillips AH, Ruscio JZ, Doucleff M, Wemmer DE, Head-Gordon T (2008) Structure and dynamics of the Aβ21-30 peptide from the interplay of NMR experiments and molecular simulations. J Am Chem Soc 130(19):6145–6158PubMedPubMedCentralCrossRefGoogle Scholar
  52. Fennen J, Torda AE, van Gunsteren WF (1995) Structure refinement with molecular dynamics and a Boltzmann-weighted ensemble. J Biomol NMR 6(2):163–70PubMedCrossRefGoogle Scholar
  53. Fenwick RB, Esteban-Martíın S, Richter B, Lee D, Walter KFA, Milovanovic D, Becker S, Lakomek NA, Griesinger C, Salvatella X (2011) Weak long-range correlated motions in a surface patch of ubiquitin involved in molecular recognition. J Am Chem Soc 133(27):10,336–10,339CrossRefGoogle Scholar
  54. Francis C, Lindorff-Larsen K, Best RB, Vendruscolo M (2006) Characterization of the residual structure in the unfolded state of the Δ131Δ fragment of staphylococcal nuclease. Proteins Struct Funct Bioinform 65(1):145–152CrossRefGoogle Scholar
  55. Frank A, Möller HM, Exner TE (2012) Toward the quantum chemical calculation of NMR chemical shifts of proteins. 2. Level of theory, basis set, and solvents model dependence. J Chem Theory Comput 8(4):1480–1492PubMedCrossRefGoogle Scholar
  56. Gillespie JR, Shortle D (1997) Characterization of long-range structure in the denatured state of staphylococcal nuclease. I. Paramagnetic relaxation enhancement by nitroxide spin labels. J Mol Biol 268(1):158–169PubMedCrossRefGoogle Scholar
  57. Glättli A, van Gunsteren WF (2004) Are NMR-derived model structures for β-peptides representative for the ensemble of structures adopted in solution? Angew Chem Int Ed 43(46):6312–6316CrossRefGoogle Scholar
  58. Haasnoot CAG, de Leeuw FAAM, de Leeuw HPM, Altona C (1979) Interpretation of vicinal proton-proton coupling constants by a generalized Karplus relation. conformational analysis of the exocyclic C4’-C5’ bond in nucleosides and nucleotides: Preliminary communication. Recl Trav Chim Pays-Bas 98(12):576–577CrossRefGoogle Scholar
  59. Haasnoot CAG, De Leeuw FAAM, De Leeuw HPM, Altona C, (1981) Relationship between proton-proton NMR coupling constants and substituent electronegativities. III. Conformational analysis of proline rings in solution using a generalized Karplus equation. Biopolymers 20(6):1211–1245CrossRefGoogle Scholar
  60. Habeck M, Rieping W, Nilges M (2005) Bayesian estimation of Karplus parameters and torsion angles from three-bond scalar couplings constants. J Magn Reson 177(1):160–165PubMedCrossRefGoogle Scholar
  61. Hamelberg D, Mongan J, McCammon JA (2004) Accelerated molecular dynamics: a promising and efficient simulation method for biomolecules. J Chem Phys 120(24):11,919–11,929CrossRefGoogle Scholar
  62. Han B, Liu Y, Ginzinger S, Wishart D (2011) SHIFTX2: significantly improved protein chemical shift prediction. J Biomol NMR 50(1):43–57PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hansen MR, Mueller L, Pardi A (1998) Tunable alignment of macromolecules by filamentous phage yields dipolar coupling interactions. Nat Struct Mol Biol 5(12):1065–1074CrossRefGoogle Scholar
  64. Hess B, Scheek RM (2003) Orientation restraints in molecular dynamics simulations using time and ensemble averaging. J Mag Reson 164(1):19–27CrossRefGoogle Scholar
  65. Hornak V, Abel R, Okur A, Strockbine B, Roitberg A, Simmerling C (2006) Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins Struct Funct Bioinform 65(3):712–725CrossRefGoogle Scholar
  66. Huber T, Torda AE, van Gunsteren WF (1994) Local elevation: A method for improving the searching properties of molecular dynamics simulation. J Comput Aided Mol Des 8(6):695–708PubMedCrossRefGoogle Scholar
  67. Imai K, Osawa E (1990) An empirical extension of the Karplus equation. Magn Reson Chem 28(8):668–674CrossRefGoogle Scholar
  68. Kalk A, Berendsen HJC (1976) Proton magnetic relaxation and spin diffusion in proteins. J Magn Reson 24(3):343–366Google Scholar
  69. Kaminski GA, Friesner RA, Tirado-Rives J, Jorgensen WL (2001) Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B 105(28):6474–6487CrossRefGoogle Scholar
  70. Karplus M (1959) Contact electron-spin coupling of nuclear magnetic moments. J Chem Phys 30(1):11–15CrossRefGoogle Scholar
  71. Keepers JW, James TL (1984) A theoretical study of distance determinations from NMR. Two-dimensional nuclear Overhauser effect spectra. J Magn Reson 57(3):404–426Google Scholar
  72. Keller B, Christen M, Oostenbrink C, van Gunsteren WF (2007) On using oscillating time-dependent restraints in MD simulation. J Biomol NMR 37(1):1–14PubMedCrossRefGoogle Scholar
  73. Kemmink J, van Mierlo CPM, Scheek RM, Creighton TE (1993) Local structure due to an aromatic-amide interaction observed by 1H-nuclear magnetic resonance spectroscopy in peptides related to the N terminus of bovine pancreatic trypsin inhibitor. J Mol Biol 230(1):312–322PubMedCrossRefGoogle Scholar
  74. Kessler H, Griesinger C, Lautz J, Mueller A, van Gunsteren WF, Berendsen HJC (1988) Conformational dynamics detected by nuclear magnetic resonance NOE values and J coupling constants. J Am Chem Soc 110(11):3393–3396CrossRefGoogle Scholar
  75. Kjaergaard M, Poulsen FM (2012) Disordered proteins studied by chemical shifts. Prog Nucl Magn Reson Spectrosc 60:42–51PubMedCrossRefGoogle Scholar
  76. Klepeis JL, Lindorff-Larsen K, Dror RO, Shaw DE (2009) Long-timescale molecular dynamics simulations of protein structure and function. Curr Opin Struct Biol 19(2):120–127PubMedCrossRefGoogle Scholar
  77. Koenig B, Hu JS, Ottiger M, Bose S, Hendler R, Bax A (1999) NMR measurement of dipolar couplings in proteins aligned by transient binding to purple membrane fragments. J Am Chem Soc 121(6):1385–1386CrossRefGoogle Scholar
  78. Koerdel J, Teleman O (1992) Backbone dynamics of calbindin D9k: comparison of molecular dynamics simulations and 15N NMR relaxation measurements. J Am Chem Soc 114(12):4934–4936CrossRefGoogle Scholar
  79. Kohlhoff KJ, Robustelli P, Cavalli A, Salvatella X, Vendruscolo M (2009) Fast and accurate predictions of protein NMR chemical shifts from interatomic distances. J Am Chem Soc 131(39):13,894–13,895CrossRefGoogle Scholar
  80. Kristjansdottir S, Lindorff-Larsen K, Fieber W, Dobson CM, Vendruscolo M, Poulsen FM (2005) Formation of native and non-native interactions in ensembles of denatured ACBP molecules from paramagnetic relaxation enhancement studies. J Mol Biol 347(5):1053–1062PubMedCrossRefGoogle Scholar
  81. Lange OF, van der Spoel D, de Groot BL (2010) Scrutinizing molecular mechanics force fields on the submicrosecond timescale with NMR data. Biophys J 99(2):647–655PubMedPubMedCentralCrossRefGoogle Scholar
  82. Leeflang B, Kroon-Batenburg L (1992) CROSREL: Full relaxation matrix analysis for NOESY and ROESY NMR spectroscopy. J Biomol NMR 2(5):495–518CrossRefGoogle Scholar
  83. Li DW, Brüschweiler R (2009) Certification of molecular dynamics trajectories with NMR chemical shifts. J Phys Chem Lett 1(1):246–248CrossRefGoogle Scholar
  84. Lindorff-Larsen K, Vendruscolo M, Paci E, Dobson CM (2004) Transition states for protein folding have native topologies despite high structural variability. Nat Struct Mol Biol 11(5):443–449PubMedCrossRefGoogle Scholar
  85. Lindorff-Larsen K, Best RB, Depristo MA, Dobson CM, Vendruscolo M (2005a) Simultaneous determination of protein structure and dynamics. Nature 433(7022):128–132PubMedCrossRefGoogle Scholar
  86. Lindorff-Larsen K, Best RB, Vendruscolo M (2005b) Interpreting dynamically-averaged scalar couplings in proteins. J Biomol NMR 32(4):273–280PubMedCrossRefGoogle Scholar
  87. Lindorff-Larsen K, Piana S, Palmo K, Maragakis P, Klepeis JL, Dror RO, Shaw DE (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins Struct Funct Bioinform 78(8):1950–1958Google Scholar
  88. Lindorff-Larsen K, Maragakis P, Piana S, Eastwood MP, Dror RO, Shaw DE (2012a) Systematic validation of protein force fields against experimental data. PLoS One 7(2):e32,131CrossRefGoogle Scholar
  89. Lindorff-Larsen K, Trbovic N, Maragakis P, Piana S, Shaw DE (2012b) Structure and dynamics of an unfolded protein examined by molecular dynamics simulation. J Am Chem Soc 134(8):3787–3791PubMedCrossRefGoogle Scholar
  90. Linge JP, Habeck M, Rieping W, Nilges M (2004) Correction of spin diffusion during iterative automated NOE assignment. J Magn Reson 167(2):334–342PubMedCrossRefGoogle Scholar
  91. Louhivuori M, Otten R, Lindorff-Larsen K, Annila A (2006) Conformational fluctuations affect protein alignment in dilute liquid crystal media. J Am Chem Soc 128(13):4371–4376PubMedCrossRefGoogle Scholar
  92. Louhivuori M, Otten R, Salminen T, Annila A (2007) Evidence of molecular alignment fluctuations in aqueous dilute liquid crystalline media. J Biomol NMR 39(2):141–152PubMedPubMedCentralCrossRefGoogle Scholar
  93. Mackerell ADJ (2004) Empirical force fields for biological macromolecules: overview and issues. J Comput Chem 25(13):1584–1604PubMedCrossRefGoogle Scholar
  94. Mackerell AD, Bashford D, Bellott RL, Dunbrack RL, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102(18):3586–3616PubMedCrossRefGoogle Scholar
  95. Mackerell AD, Feig M, Brooks CL (2004) Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. J Comput Chem 25(11):1400–1415PubMedCrossRefGoogle Scholar
  96. Manolikas T, Herrmann T, Meier BH (2008) Protein structure determination from 13C spin-diffusion solid-state NMR spectroscopy. J Am Chem Soc 130(12):3959–3966PubMedCrossRefGoogle Scholar
  97. Maragakis P, Lindorff-Larsen K, Eastwood MP, Dror RO, Klepeis JL, Arkin IT, Jensen MO, Xu H, Trbovic N, Friesner RA, Palmer AG, Shaw DE (2008) Microsecond molecular dynamics simulation shows effect of slow loop dynamics on backbone amide order parameters of proteins. J Phys Chem B 112(19):6155–6158PubMedPubMedCentralCrossRefGoogle Scholar
  98. Marion D, Genest M, Ptak M (1987) Reconstruction of NOESY maps: a requirement for a reliable conformational analysis of biomolecules using 2D NMR. Biophys Chem 28(3):235–244PubMedCrossRefGoogle Scholar
  99. Markwick PRL, Sprangers R, Sattler M (2002) Dynamic effects on J-couplings across hydrogen bonds in proteins. J Am Chem Soc 125(3):644–645CrossRefGoogle Scholar
  100. Markwick PRL, Bouvignies G, Blackledge M (2007) Exploring multiple timescale motions in protein GB3 using accelerated molecular dynamics and NMR spectroscopy. J Am Chem Soc 129(15):4724–4730PubMedCrossRefGoogle Scholar
  101. Markwick PRL, Bouvignies G, Salmon L, McCammon JA, Nilges M, Blackledge M (2009) Toward a unified representation of protein structural dynamics in solution. J Am Chem Soc 131(46):16,968–16,975CrossRefGoogle Scholar
  102. Markwick PRL, Cervantes CF, Abel BL, Komives EA, Blackledge M, McCammon JA (2010) Enhanced conformational space sampling improves the prediction of chemical shifts in proteins. J Am Chem Soc 132(4):1220–1221PubMedPubMedCentralCrossRefGoogle Scholar
  103. Marsh JA, Singh VK, Jia Z, Forman-Kay JD (2006) Sensitivity of secondary structure propensities to sequence differences between α- and γ-synuclein: implications for fibrillation. Prot Sci 15(12):2795–2804CrossRefGoogle Scholar
  104. McCammon J, Gelin B, Karplus M (1977) Dynamics of folded proteins. Nature 267:585–590PubMedCrossRefGoogle Scholar
  105. Meiler J (2003) PROSHIFT: protein chemical shift prediction using artificial neural networks. J Biomol NMR 26(1):25–37PubMedCrossRefGoogle Scholar
  106. Mierke DF, Scheek RM, Kessler H (1994) Coupling constants as restraints in ensemble distance driven dynamics. Biopolymers 34(4):559–563CrossRefGoogle Scholar
  107. Missimer JH, Dolenc J, Steinmetz MO, van Gunsteren WF (2010) Exploring the trigger sequence of the GCN4 coiled-coil: biased molecular dynamics resolves apparent inconsistencies in NMR measurements. Prot Sci 19(12):2462–2474CrossRefGoogle Scholar
  108. Mulder FAA, Filatov M (2010) NMR chemical shift data and ab initio shielding calculations: emerging tools for protein structure determination. Chem Soc Rev 39(2):578–590PubMedCrossRefGoogle Scholar
  109. Nanzer AP, Torda AE, Bisang C, Weber C, Robinson JA, van Gunsteren WF (1997) Dynamical studies of peptide motifs in the Plasmodium falciparum circumsporozoite surface protein by restrained and unrestrained MD simulations. J Mol Biol 267(4):1012–1025PubMedCrossRefGoogle Scholar
  110. Neal S, Nip AM, Zhang H, Wishart DS (2003) Rapid and accurate calculation of protein 1 H, 13 C and 15 N chemical shifts. J Biomol NMR 26(3):215–240PubMedCrossRefGoogle Scholar
  111. Nielsen JT, Eghbalnia HR, Nielsen NC (2012) Chemical shift prediction for protein structure calculation and quality assessment using an optimally parameterized force field. Prog Nucl Magn Reson Spectrosc 60:1–28PubMedCrossRefGoogle Scholar
  112. Niggli DA, Ebert MO, Lin Z, Seebach D, van Gunsteren WF (2012) Helical content of a β3-octapeptide in methanol: molecular dynamics simulations explain a seemingdiscrepancy between conclusions derived from CD and NMR data. Chem Eur J 18(2):586–593PubMedCrossRefGoogle Scholar
  113. Oldfield E (2002) Chemical shifts in amino acids, peptides, and proteins: from quantum chemistry to drug design. Annu Rev Phys Chem 53(1):349–378PubMedCrossRefGoogle Scholar
  114. Osapay K, Case DA (1991) A new analysis of proton chemical shifts in proteins. J Am Chem Soc 113(25):9436–9444CrossRefGoogle Scholar
  115. Paci E, Vendruscolo M, Dobson CM, Karplus M (2002) Determination of a transition state at atomic resolution from protein engineering data. J Mol Biol 324(1):151–163PubMedCrossRefGoogle Scholar
  116. Paci E, Friel CT, Lindorff-Larsen K, Radford SE, Karplus M, Vendruscolo M (2004) Comparison of the transition state ensembles for folding of Im7 and Im9 determined using all-atom molecular dynamics simulations with φ value restraints. Proteins Struct Funct Bioinform 54(3):513–525CrossRefGoogle Scholar
  117. Paci E, Greene LH, Jones RM, Smith LJ (2005) Characterization of the molten globule state of retinol-binding protein using a molecular dynamics simulation approach. FEBS J 272(18):4826–4838PubMedCrossRefGoogle Scholar
  118. Palmer AG, Case DA (1992) Molecular dynamics analysis of NMR relaxation in a zinc-finger peptide. J Am Chem Soc 114(23):9059–9067CrossRefGoogle Scholar
  119. Pardi A, Billeter M, Wüthrich K (1984) Calibration of the angular dependence of the amide proton-Cα proton coupling constants, 3 J HNα, in a globular protein: use of 3 J HNα for identification of helical secondary structure. J Mol Biol 180(3):741–751PubMedCrossRefGoogle Scholar
  120. Pastore A, Saudek V (1990) The relationship between chemical shift and secondary structure in proteins. J Magn Reson 90(1):165–176Google Scholar
  121. Pérez C, Löhr F, Rüterjans H, Schmidt J (2001) Self-consistent Karplus parametrization of 3J-couplings depending on the polypeptide side-chain torsion χ1. J Am Chem Soc 123(29):7081–7093PubMedCrossRefGoogle Scholar
  122. Peter C, Rueping M, Wörner HJ, Jaun B, Seebach D, van Gunsteren WF (2003) Molecular dynamics simulations of small peptides: can one derive conformational preferences from ROESY spectra? Chem Eur J 9(23):5838–5849PubMedCrossRefGoogle Scholar
  123. Peti W, Smith L, Redfield C, Schwalbe H (2001) Chemical shifts in denatured proteins: Resonance assignments for denatured ubiquitin and comparisons with other denatured proteins. J Biomol NMR 19(2):153–165PubMedCrossRefGoogle Scholar
  124. Philippopoulos M, Mandel AM, Palmer AG, Lim C (1997) Accuracy and precision of NMR relaxation experiments and MD simulations for characterizing protein dynamics. Proteins: Struct Funct Bioinform 28(4):481–493CrossRefGoogle Scholar
  125. Phillips JC, Braun R, Wang W, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802PubMedPubMedCentralCrossRefGoogle Scholar
  126. Piana S, Lindorff-Larsen K, Shaw D (2011) How robust are protein folding simulations with respect to force field parameterization? Biophys J 100(9):L47–L49PubMedPubMedCentralCrossRefGoogle Scholar
  127. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117(1):1–19CrossRefGoogle Scholar
  128. Post CB, Meadows RP, Gorenstein DG (1990) On the evaluation of interproton distances for three-dimensional structure determination by NMR using a relaxation rate matrix analysis. J Am Chem Soc 112(19):6796–6803CrossRefGoogle Scholar
  129. Richter B, Gsponer J, Várnai P, Salvatella X, Vendruscolo M (2007) The MUMO (minimal under-restraining minimal over-restraining) method for the determination of native state ensembles of proteins. J Biomol NMR 37(2):117–135PubMedCrossRefGoogle Scholar
  130. Robustelli P, Kohlhoff K, Cavalli A, Vendruscolo M (2010) Using NMR chemical shifts as structural restraints in molecular dynamics simulations of proteins. Structure 18(8):923–933PubMedCrossRefGoogle Scholar
  131. Robustelli P, Stafford KA, Palmer AG (2012) Interpreting protein structural dynamics from NMR chemical shifts. J Am Chem Soc 134(14):6365–6374PubMedPubMedCentralCrossRefGoogle Scholar
  132. Sanders CR, Hare BJ, Howard KP, Prestegard JH (1994) Magnetically-oriented phospholipid micelles as a tool for the study of membrane-associated molecules. Prog Nucl Magn Reson Spectrosc 26(Part 5):421–444CrossRefGoogle Scholar
  133. Sass J, Cordier F, Hoffmann A, Rogowski M, Cousin A, Omichinski J, Lowen H, Grzesiek S (1999) Purple membrane induced alignment of biological macromolecules in the magnetic field. J Am Chem Soc 121(10):2047–2055CrossRefGoogle Scholar
  134. Sass HJ, Musco G, Stahl SJ, Wingfield PT, Grzesiek S (2000) Solution NMR of proteins within polyacrylamide gels: diffusional properties and residual alignment by mechanical stress or embedding of oriented purple membranes. J Biomol NMR 18(4):303–309PubMedCrossRefGoogle Scholar
  135. Saupe A (1968) Recent results in the field of liquid crystals. Angew Chem Int Ed 7(2):97–112CrossRefGoogle Scholar
  136. Scheek R, Torda A, Kemmink J, van Gunsteren W (1991) Computational aspects of the study of biological macromolecules by NMR, NATO ASI Series A225. Plenum Press, New York, pp 209–217Google Scholar
  137. Schmid N, Bötschi M, Van Gunsteren WF (2010) A GPU solvent-solvent interaction calculation accelerator for biomolecular simulations using the GROMOS software. J Comput Chem 31(8):1636–1643PubMedGoogle Scholar
  138. Schmid N, Eichenberger A, Choutko A, Riniker S, Winger M, Mark A, van Gunsteren W (2011) Definition and testing of the GROMOS force-field versions 54A7 and 54B7. Eur Biophys J 40(7):843–856PubMedCrossRefGoogle Scholar
  139. Schmidt J (2007) Asymmetric Karplus curves for the protein side-chain 3J couplings. J Biomol NMR 37(4):287–301PubMedCrossRefGoogle Scholar
  140. Schmidt JM, Blümel M, Löhr F, Rüterjans H (1999) Self-consistent 3J-coupling analysis for the joint calibration of Karplus coefficients and evaluation of torsion angles. J Biomol NMR 14(1):1–12PubMedCrossRefGoogle Scholar
  141. Schwalbe H, Grimshaw SB, Spencer A, Buck M, Boyd J, Dobson CM, Red-field C, Smith LJ (2001) A refined solution structure of hen lysozyme determined using residual dipolar coupling data. Prot Sci 10(4):677–688CrossRefGoogle Scholar
  142. Scott W, Mark A, van Gunsteren WF (1998) On using time-averaging restraints in molecular dynamics simulation. J Biomol NMR 12:501–508PubMedCrossRefGoogle Scholar
  143. Shaw DE, Dror RO, Salmon JK, Grossman J, Mackenzie KM, Bank JA, Young C, Deneroff MM, Batson B, Bowers KJ, Chow E, Eastwood MP, Ierardi DJ, Klepeis JL, Kuskin JS, Larson RH, Lindorff-Larsen K, Maragakis P, Moraes MA, Piana S, Shan Y, Towles B (2009) Millisecond-scale molecular dynamics simulations on anton. In: Proceedings of the Conference on High Performance Computing, Networking, Storage and Analysis (SC09)Google Scholar
  144. Shen Y, Bax A (2007) Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J Biomol NMR 38(4):289–302PubMedCrossRefGoogle Scholar
  145. Shen Y, Bax A (2010) SPARTA+: a modest improvement in empirical NMR chemical shift prediction by means of an artificial neural network. J Biomol NMR 48(1):13–22PubMedPubMedCentralCrossRefGoogle Scholar
  146. Shen Y, Delaglio F, Cornilescu G, Bax A (2009) TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomol NMR 44(4):213–223PubMedPubMedCentralCrossRefGoogle Scholar
  147. Showalter SA, Brüschweiler R (2007) Quantitative molecular ensemble interpretation of NMR dipolar couplings without restraints. J Am Chem Soc 129(14):4158–4159PubMedCrossRefGoogle Scholar
  148. Showalter SA, Johnson E, Rance M, Brüschweiler R (2007) Toward quantitative interpretation of methyl side-chain dynamics from NMR by molecular dynamics simulations. J Am Chem Soc 129(46):14,146–14,147CrossRefGoogle Scholar
  149. Siemer AB, Ritter C, Ernst M, Riek R, Meier BH (2005) High-resolution solid-state NMR spectroscopy of the prion protein HET-s in its amyloid conformation. Angew Chem Int Ed 44(16):2441–2444CrossRefGoogle Scholar
  150. Smith LJ, Sutcliffe MJ, Redfield C, Dobson CM (1991) Analysis of φ and χ1 torsion angles for hen lysozyme in solution from proton NMR spin-spin coupling constants. Biochemistry 30(4):986–996PubMedCrossRefGoogle Scholar
  151. Smith LJ, Mark AE, Dobson M, van Gunsteren WF (1995) Comparison of MD simulations and NMR experiments for hen lysozyme. Analysis of local fluctuations, cooperative motions, and global changes. Biochemistry 34(34), 10,918-10,931Google Scholar
  152. Smith PE, van Schaik RC, Szyperski T, Wüthrich K, van Gunsteren WF (1995b) Internal mobility of the basic pancreatic trypsin inhibitor in solution: a comparison of NMR spin relaxation measurements and molecular dynamics simulations. J Mol Biol 246(2):356–365PubMedCrossRefGoogle Scholar
  153. Solomon I (1955) Relaxation processes in a system of two spins. Phys Rev 99(2):559–565CrossRefGoogle Scholar
  154. Spera S, Bax A (1991) Empirical correlation between protein backbone conformation and Cα and Cβ 13C nuclear magnetic resonance chemical shifts. J Am Chem Soc 113(14):5490–5492CrossRefGoogle Scholar
  155. Steiner D, Allison JR, van Gunsteren WF (2012) On the calculation of 3Jαβ -coupling constants for side chains in proteins. J Biomol NMR. doi: 10.1007/s10858-012-9634-5
  156. Stone JE, Hardy DJ, Ufimtsev IS, Schulten K (2010) GPU-accelerated molecular modeling coming of age. J Mol Graph Model 29(2):116–125PubMedPubMedCentralCrossRefGoogle Scholar
  157. Suardıaz R, García de la Vega JM, Fabián JS, Contreras RH (2007) Theoretical Karplus relationships for vicinal coupling constants around χ1 in valine. Chem Phys Lett 442(13):119–123CrossRefGoogle Scholar
  158. Teilum, K, Kragelund BB, Poulsen FM (2002) Transient structure formation in unfolded acyl-coenzyme A-binding protein observed by site-directed spin labelling. J Mol Biol 324(2), 349–57. 0022–2836Google Scholar
  159. Tjandra N, Bax A (1997) Direct measurement of distances and angles in biomolecules by NMR in a dilute liquid crystalline medium. Science 278(5340):1111–1114PubMedCrossRefGoogle Scholar
  160. Tong Y, Ji CG, Mei Y, Zhang JZH (2009) Simulation of NMR data reveals that proteins local structures are stabilized by electronic polarization. J Am Chem Soc 131(24):8636–8641PubMedCrossRefGoogle Scholar
  161. Torda A, Scheek R, van Gunsteren WF (1989) Time-dependent distance restraints in molecular dynamics simulations. Chem Phys Lett 157(4):289–294CrossRefGoogle Scholar
  162. Torda AE, Scheek RM, van Gunsteren WF (1990) Time-averaged nuclear overhauser effect distance restraints applied to tendamistat. J Mol Biol 214(1):223–235PubMedCrossRefGoogle Scholar
  163. Torda AE, Brunne RM, Huber T, Kessler H, van Gunsteren WF (1993) Structure refinement using time-averaged J-coupling constant restraints. J Biomol NMR 3(1):55–66PubMedCrossRefGoogle Scholar
  164. Trbovic N, Kim B, Friesner RA, Palmer AG (2008) Structural analysis of protein dynamics by MD simulations and NMR spin-relaxation. Proteins Struct Funct Bioinform 71(2):684–694CrossRefGoogle Scholar
  165. Tropp J (1980) Dipolar relaxation and nuclear Overhauser effects in nonrigid molecules: the effect of fluctuating internuclear distances. J Chem Phys 72(11):6035–6043CrossRefGoogle Scholar
  166. Trzesniak D, Glättli A, Jaun B, van Gunsteren WF (2005) Interpreting NMR data for β-peptides using molecular dynamics simulations. J Am Chem Soc 127(41):14,320–14,329CrossRefGoogle Scholar
  167. Tycko R, Blanco F, Ishii Y (2000) Alignment of biopolymers in strained gels: a new way to create detectable dipole-dipole couplings in high-resolution biomolecular NMR. J Am Chem Soc 122(38):9340–9341CrossRefGoogle Scholar
  168. Van Melckebeke H, Wasmer C, Lange A, Ab E, Loquet A, Bockmann A, Meier BH (2010) Atomic-resolution three-dimensional structure of HET-s(218–289) amyloid fibrils by solid-state NMR spectroscopy. J Am Chem Soc 132(39):13,765–13,775CrossRefGoogle Scholar
  169. Vendruscolo M, Paci E, Dobson CM, Karplus M (2001) Three key residues form a critical contact network in a protein folding transition state. Nature 409(6820):641–645PubMedCrossRefGoogle Scholar
  170. Vögeli B, Ying J, Grishaev A, Bax A (2007) Limits on variations in protein backbone dynamics from precise measurements of scalar couplings. J Am Chem Soc 129(30):9377–9385PubMedCrossRefGoogle Scholar
  171. Wagner G, Pardi A, Wüthrich K (1983) Hydrogen bond length and proton NMR chemical shifts in proteins. J Am Chem Soc 105(18):5948–5949CrossRefGoogle Scholar
  172. Wang Y, Jardetzky O (2002) Investigation of the neighboring residue effects on protein chemical shifts. J Am Chem Soc 124(47):14,075–14,084CrossRefGoogle Scholar
  173. Williamson MP, Asakura T (1993) Empirical comparisons of models for chemical-shift calculation in proteins. J Magn Reson B 101(1):63–71CrossRefGoogle Scholar
  174. Wishart DS, Sykes BD, Richards FM (1991) Relationship between nuclear magnetic resonance chemical shift and protein secondary structure. J Mol Biol 222(2):311–333PubMedCrossRefGoogle Scholar
  175. Wishart DS, Sykes BD, Richards FM (1992) The chemical shift index: a fast and simple method for the assignment of protein secondary structure through NMR spectroscopy. Biochemistry 31(6):1647–1651PubMedCrossRefGoogle Scholar
  176. Wishart D, Bigam C, Holm A, Hodges R, Sykes B (1995) 1H, 13C and 15N random coil NMR chemical shifts of the common amino acids. I. Investigations of nearest-neighbor effects. J Biomol NMR 5(1):67–81PubMedCrossRefGoogle Scholar
  177. Wrabl JO, Shortle D, Woolf TB (2000) Correlation between changes in nuclear magnetic resonance order parameters and conformational entropy: molecular dynamics simulations of native and denatured staphylococcal nuclease. Proteins Struct Funct Bioinform 38(2):123–133CrossRefGoogle Scholar
  178. Wüthrich K (1986) NMR of proteins and nucleic acids. Wiley, New YorkGoogle Scholar
  179. Xu XP, Case D (2001) Automated prediction of 15N, 13Cα, 13Cβ and 13C’ chemical shifts in proteins using a density functional database. J Biomol NMR 21(4):321–333PubMedCrossRefGoogle Scholar
  180. Yao J, Chung J, Eliezer D, Wright PE, Dyson HJ (2001) NMR structural and dynamic characterization of the acid-unfolded state of apomyoglobin provides insights into the early events in protein folding. Biochemistry 40(12):3561–3571PubMedCrossRefGoogle Scholar
  181. Yip P, Case DA (1989) A new method for refinement of macromolecular structures based on nuclear overhauser effect spectra. J Magn Reson 83(3):643–648Google Scholar
  182. Zagrovic B, van Gunsteren WF (2006) Comparing atomistic simulation data with the NMR experiment: how much can NOEs actually tell us? Proteins Struct Funct Bioinform 63(1):210–8CrossRefGoogle Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer 2012

Authors and Affiliations

  1. 1.Centre for Theoretical Chemistry and Physics, Institute of Natural SciencesMassey University AlbanyAucklandNew Zealand

Personalised recommendations