Abstract
Pathological understanding of arterial diseases is mainly attributable to histological observations based on conventional tissue staining protocols. The emerging development of nonlinear optical microscopy (NLOM), particularly in second-harmonic generation, two-photon excited fluorescence and coherent Raman scattering, provides a new venue to visualize pathological changes in the extracellular matrix caused by atherosclerosis progression. These techniques in general require minimal tissue preparation and offer rapid three-dimensional imaging. The capability of label-free microscopic imaging enables disease impact to be studied directly on the bulk artery tissue, thus minimally perturbing the sample. In this review, we look at recent progress in applications related to arterial disease imaging using various forms of NLOM.
This is a preview of subscription content, access via your institution.








References
Barad Y, Eisenberg H, Horowitz M, Silberberg Y (1997) Nonlinear scanning laser microscopy by third harmonic generation. Appl Phys Lett 70(8):922–924
Barlis P, Schmitt JM (2009) Current and future developments in intracoronary optical coherence tomography imaging. EuroIntervention 4(4):529–533
Barlis P, Serruys PW, Devries A, Regar E (2008a) Optical coherence tomography assessment of vulnerable plaque rupture: predilection for the plaque ‘shoulder’. Eur Heart J 29(16):2023
Barlis P, Ferrante G, Del Furia F, Di Mario C (2008b) In-vivo characterisation of coronary atherosclerosis with optical coherence tomography. Med J Aust 188(12):728
Boulesteix T, Pena AM, Pages N, Godeau G, Sauviat MP, Beaurepaire E, Schanne-Klein MC (2005) Micrometer scale ex vivo multiphoton imaging of unstained arterial wall structure. Cytometry A 69A:20–26
Delaney P, Harris M (2006) Fiber-optics in scanning optical microscopy. In: Pawley JB (ed) Handbook of biological confocal microscopy, 3rd edn. Springer, New York, pp 501–515
Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76
Doras C, Taupier G, Barsella A, Mager L, Boeglin A, Bulou H, Bousquet P, Dorkenoo KD (2011) Polarization state studies in second harmonic generation signals to trace atherosclerosis lesions. Opt Express 19:15062–15068
Dudovich N, Oron D, Silberberg Y (2002) Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy. Nature 418:512–514
Duncan MD, Reintjes J, Manuccia TJ (1982) Scanning coherent anti-Stokes Raman microscope. Opt Lett 7(8):350–352
Freudiger CW, Min W, Saar BG, Lu S, Holtom GR, He C, Tsai JC, Kang JX, Xie XS (2008) Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322:1857–1861
Ganikhanov F, Carrasco S, Xie XS, Katz M, Seitz W, Kopf D (2006) Broadly tunable dual-wavelength light source for coherent anti-Stokes Raman scattering microscopy. Opt Lett 31:1292–1294
Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16):1685–1695
Hodgson JM, Reddy KG, Suneja R, Nair RN, Lesnefsky EJ, Sheehan HM (1993) Intracoronary ultrasound imaging: correlation of plaque morphology with angiography, clinical syndrome and procedural results in patients undergoing coronary angioplasty. J Am Coll Cardiol 21(1):35–44
Jang IK, Tearney GJ, MacNeill B, Takano M, Moselewski F, Iftima N, Shishkov M, Houser ST, Aretz H, Halpern EF, Bouma BE (2005) In vivo characterization of coronary atherosclerotic plaque by use of optical coherence tomography. Circulation 111(12):1551–1555
Jo JA, Fang Q, Papaioannou T, Baker JD, Dorafshar AH, Reil T, Qiao JH, Fishbein MC, Freischlag JA, Marcu L (2006) Laguerre-based method for analysis of time-resolved fluorescence data: Application to in-vivo characterization and diagnosis of atherosclerotic lesions. J Biomed Opt 11(2):021004
Kim S-H, Lee E-S, Lee JY, Lee ES, Lee BS, Park JE, Moon DW (2010) Multiplex coherent anti-stokes raman spectroscopy images intact atheromatous lesions and concomitantly identifies distinct chemical profiles of atherosclerotic lipids. Circ Res 106:1332–1341
Ko ACT, Ridsdale A, Smith MSD, Mostaço-Guidolin LB, Hewko MD, Pegoraro AF, Kohlenberg EK, Schattka B, Shiomi M, Stolow A, Sowa MG (2010) Multimodal nonlinear optical imaging of atherosclerotic plaque development in myocardial infarction-prone rabbits. J Biomed Opt 15(2):020501
Le TT, Langohr IM, Locker MJ, Sturek M, Cheng J-X (2007) Label-free molecular imaging of atherosclerotic lesions using multimodal nonlinear optical microscopy. J Biomed Opt 12(5):054007
Lee JY, Kim SH, Moon DV, Lee ES (2009) Three-color multiplex CARS for fast imaging and microspectroscopy in the entire CH stretching vibrational region. Opt Express 17(25):22281
Libby P (2006) Atherosclerosis: disease biology affecting the coronary vasculature. Am J Cardiol 98(12):S3–S9
Lilledahl MB, Haugen OA, Davies de Lange C, Svaasand LO (2007) Characterization of vulnerable plaques by multiphoton microscopy. J Biomed Opt 12(4):044005
Maffia P, Zinselmeyer BH, Ialenti A, Kennedy S, Baker AH, McInnes IB, Brewer JM, Garside P (2007) Into apolipoprotein-E–deficient mouse carotid artery multiphoton microscopy for 3-dimensional imaging of lymphocyte recruitment. Circulation 115:e326–e328
Major A, Sandkuijl D, Barzda V (2009) Efficient frequency doubling of a femtosecond Yb:KGW laser in a BiB3O6 crystal. Opt Express 17:12039–12042
Marcu L, Jo JA, Fang Q, Papaioannou T, Reil T, Qiao JH, Baker JD, Freischlag JA, Fishbein MC (2009) Detection of rupture-prone atherosclerotic plaques by time-resolved laser-induced fluorescence spectroscopy. Atherosclerosis 204(1):156–164
Megens RTA, Reitsma S, Schiffers PHM, Hilgers RHP, De Mey JGR, Slaaf DW, Oude Egbrink MGA, van Zandvoort MAMJ (2007) Two-photon microscopy of vital murine elastic and muscular arteries. J Vasc A 24(5):1337–1348
Megens RTA, oude Egbrink MGA et al (2008) Two-photon microscopy on vital carotid arteries: imaging the relationship between collagen and inflammatory cells in atherosclerotic plaques. J Biomed Opt 13(04):044022
Millard AC, Wiseman PW, Fittinghoff DN, Wilson KR, Squier JA, Müller M (1999) Third-harmonic generation microscopy by use of a compact, femtosecond fiber laser source. Appl Opt 38(36):7393–7397
Miyata K, Rotermund F, Petrov V (2009) Efficient frequency doubling of a low-power femtosecond Er-fiber laser in BiB3O6. IEEE Photo Technol Lett 21(19):1417–1419
Mizutani G, Koyama T, Tomizawa S, Sano H (2005) Distinction between some saccharides in scattered optical sum frequency intensity images. Spectrochim Acta A Mol Biomol Spectrosc 62(4–5):845–849
Mostaço-Guidolin LB, Sowa MG, Ridsdale A, Pegoraro AF, Smith MSD, Hewko MD, Kohlenberg EK, Schattka B, Shiomi M, Stolow A, Ko ACT (2010) Differentiating atherosclerotic plaque burden in arterial tissues using femtosecond CARS-based multimodal nonlinear optical imaging. Biomed Opt Express 1:59–73
Mostaço-Guidolin LB, Ko AC-T, Popescu DP, Smith MSD, Kohlenberg EK, Shiomi M, Major A, Sowa MG (2011) Evaluation of texture parameters for the quantitative description of multimodal nonlinear optical images from atherosclerotic rabbit arteries. Phys Med Biol 56:5319. doi:10.1088/0031-9155/56/16/016
Murugkar S, Brideau C, Ridsdale A, Naji M, Stys PK, Anis H (2007) Coherent anti-Stokes Raman scattering microscopy using photonic crystal fiber with two closely lying zero dispersion wavelengths. Opt Express 15:14028–14037
Naghavi M, Libby P, Falk E et al (2003) Review: current perspective: from vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 108:1664–1672. doi:10.1161/01.CIR.0000087480.94275.97
Parasassi T, Yu W, Durbin D, Kuriashkina L, Gratton E, Maeda N, Ursini F (2000) Two-photon microscopy of aorta fibers shows proteolysis induced by LDL hydroperoxides. Free Radic Biol Med 28:1589–1597
Paulsen HN, Hilligse KM, Thøgersen J, Keiding SR, Larsen JJ (2003) Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source. Opt Lett 28:1123–1125
Pegoraro AF, Ridsdale A, Moffatt DJ, Jia Y, Pezacki JP, Stolow A (2009a) Optimally chirped multimodal CARS microscopy based on a single Ti:sapphire oscillator. Opt Express 17:2984–2996
Pegoraro AF, Ridsdale A, Moffatt DJ, Pezacki JP, Thomas BK, Fu L, Dong L, Fermann ME, Stolow A (2009b) All-fiber CARS microscopy of live cells. Opt Express 17(23):20700–20706
Phipps J, Sun Y, Saroufeem R, Hatami N, Marcu L (2009) Fluorescence lifetime imaging microscopy for the characterization of atherosclerotic plaques. Proc Soc Photo Opt Instrum Eng 7161:71612G
Prent N, Green C, Greenhalgh C, Cisek R, Major A, Stewart B, Barzda V (2008) Inter-myofilament dynamics of myocytes revealed by second harmonic generation microscopy. J Biomed Opt 13(4):041318–1–041318–7
Rinia HA, Burger KNJ, Bonn M, Müller M (2008) Quantitative label-free imaging of lipid composition and packing of individual cellular lipid droplets using multiplex CARS microscopy. Biophys J 95(10):4908–4914
Schenke-Layland K, König K, Riemann I, Stock UA (2005) Imaging of cardiovascular structures using near-infrared femtosecond multiphoton laser scanning microscopy. J Biomed Opt 10:024017. doi:10.1117/1.1896966
Schenke-Layland K, Madershahian N, Riemann I, Starcher B, Halbhuber KJ, König K, Stock UA (2006) Impact of cryopreservation on extracellular matrix structures of heart valve leaflets. Ann Thorac Surg 81(3):918–926
Sheppard CJR, Gannaway JN, Kompfner R, Walsh D (1977) Scanning harmonic optical microscope. IEEE J Q Electron 13(9):100D
Smith MSD, Ko ACT, Ridsdale A, Schattka B, Pegoraro A, Hewko MD, Shiomi M, Stolow A, Sowa MG (2009) A single-photon fluorescence and multi-photon spectroscopic study of atherosclerotic lesions. Proc SPIE 7386:73860I
Spence DE, Kean PN, Sibbett W (1991) 60-fsec pulse generation from a self-mode-locked Ti:sapphire laser. Opt Lett 16(1):42–44
Strupler M, Pena AM, Hernest M, Tharaux PL, Martin JL, Beaurepaire E, Schanne-Klein MC (2007) Second harmonic imaging and scoring of collagen in fibrotic tissues. Opt Express 15(7):4054–4065
Strupler M, Hernest M, Fligny C, Martin J-L, Tharaux P-L, Schanne-Klein MC (2008) Second harmonic microscopy to quantify renal interstitial fibrosis and arterial remodeling. J Biomed Opt 13(5):054041
Sun J, Zhang Z, Lu B, Yu W, Yang Y, Zhou Y, Wang Y, Fan Z (2008) Identification and quantification of coronary atherosclerotic plaques: a comparison of 64-MDCT and intravascular ultrasound. Am J Roentgenol 190(3):748–754
Suhling K, French PM, Phillips D (2005) Time-resolved fluorescence microscopy. Photochem Photobiol Sci 4(1):13–22
Timmins LH, Wu Q, Yeh AT, Moore JE Jr, Greenwald SE (2010) Structural inhomogeneity and fiber orientation in the inner arterial media. Am J Physiol Heart Circ Physiol 298:H1537–H1545
Thomas P, Pande P, Clubb F, Adame J, Jo JA (2010) Biochemical imaging of human atherosclerotic plaques with fluorescence lifetime angioscopy. Photochem Photobiol 86:727–731
Van Zandvoort M, Engels W, Douma K, Beckers L, Oude Egbrink M, Daemen M, Slaaf DW (2004) Two-photon microscopy for imaging of the (atherosclerotic) vascular wall: a proof of concept study. J Vasc Res 41(1):54–63
Yock PG, Fitzgerald PJ (1998) Optimal directional coronary atherectomy final results of the Optimal Atherectomy Restenosis Study (OARS). Am J Cardiol 81:27E–32E
Yu W, Braz JC, Dutton AM, Prusakov P, Rekhter M (2007) In vivo imaging of atherosclerotic plaques in apolipoprotein E deficient mice using nonlinear microscopy. J Biomed Opt 12(5):054008
Wang H-W, Langohr IM, Sturek M, Cheng J-X (2009) Imaging and quantitative analysis of atherosclerotic lesions by CARS-based multimodal nonlinear optical microscopy. Arterioscler Thromb Vasc Biol 29(9):1342–1348
Wang H-W, Simianu V, Locker MJ, Cheng J-X, Sturek M (2011) Stent-induced coronary artery stenosis characterized by multimodal nonlinear optical microscopy. J Biomed Opt 16(2):021110
Zoumi A, Lu XA, Kassab GS, Tromberg BJ (2004) Imaging coronary artery microstructure using second-harmonic and two-photon fluorescence microscopy. Biophys J 87:2778–2786
Zumbusch A, Holtom GR, Xie XS (1999) Three-dimensional vibrational imaging by coherent anti-Stokes Raman scattering. Phys Rev Lett 82(20):4142–4145
Conflicts of interest
None.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ko, A.CT., Ridsdale, A., Mostaço-Guidolin, L.B. et al. Nonlinear optical microscopy in decoding arterial diseases. Biophys Rev 4, 323–334 (2012). https://doi.org/10.1007/s12551-012-0077-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12551-012-0077-8