Skip to main content

Contributions of fluorescence techniques to understanding G protein-coupled receptor dimerisation

Abstract

G protein-coupled receptors (GPCRs) are the largest class of eukaryotic cell-surface receptors and, over the last decade, it has become clear that they are capable of dimerisation. Whilst many biochemical and biophysical approaches have been used to study dimerisation, fluorescence techniques, including Förster resonance energy transfer and single molecule fluorescence, have been key players. Here we review recent contributions of fluorescence techniques to investigate GPCR dimers, including dimerisation in cell membranes and native tissues, the effect of ligand binding on dimerisation and the kinetics of dimer formation and dissociation. The challenges of studying multicomponent membrane protein systems have led to the development and refinement of many fluorescence assays, allowing the functional consequences of receptor dimerisation to be investigated and individual protein molecules to be imaged in the membranes of living cells. It is likely that the fluorescence techniques described here will be of use for investigating many other multicomponent membrane protein systems.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Albizu L, Balestre MN, Breton C, Pin JP, Manning M, Mouillac B, Barberis C, Durroux T (2006) Probing the existence of G protein-coupled receptor dimers by positive and negative ligand-dependent cooperative binding. Mol Pharmacol 70:1783–1791

    PubMed  Article  CAS  Google Scholar 

  • Albizu L, Cottet M, Kralikova M, Stoev S, Seyer R, Brabet I, Roux T, Bazin H, Bourrier E, Lamarque L, Breton C, Rives ML, Newman A, Javitch J, Trinquet E, Manning M, Pin JP, Mouillac B, Durroux T (2010) Time-resolved FRET between GPCR ligands reveals oligomers in native tissues. Nat Chem Biol 6:587–594

    PubMed  Article  CAS  Google Scholar 

  • Ambrosio M, Lohse MJ (2010) Microscopy: GPCR dimers moving closer. Nat Chem Biol 6:570–571

    PubMed  Article  CAS  Google Scholar 

  • Angers S, Salahpour A, Joly E, Hilairet S, Chelsky D, Dennis M, Bouvier M (2000) Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc Natl Acad Sci USA 97:3684–3689

    PubMed  CAS  Google Scholar 

  • Birdsall NJ (2010) Class A GPCR heterodimers: evidence from binding studies. Trends Pharmacol Sci 31:499–508

    PubMed  Article  CAS  Google Scholar 

  • Biteen J (2011) Moving toward the future of single-molecule-based super-resolution imaging. Biopolymers 95:287–289

    PubMed  Article  CAS  Google Scholar 

  • Boyer SB, Slesinger PA (2010) Probing novel GPCR interactions using a combination of FRET and TIRF. Commun Integr Biol 3:343–346

    PubMed  Article  Google Scholar 

  • Boyer SB, Clancy SM, Terunuma M, Revilla-Sanchez R, Thomas SM, Moss SJ, Slesinger PA (2009) Direct interaction of GABAB receptors with M2 muscarinic receptors enhances muscarinic signaling. J Neurosci 29:15796–15809

    PubMed  Article  CAS  Google Scholar 

  • Ciruela F, Vallano A, Arnau JM, Sanchez S, Borroto-Escuela DO, Agnati LF, Fuxe K, Fernandez-Duenas V (2010a) G protein-coupled receptor oligomerization for what? J Recept Signal Transduct Res 30:322–330

    PubMed  Article  CAS  Google Scholar 

  • Ciruela F, Vilardaga JP, Fernandez-Duenas V (2010b) Lighting up multiprotein complexes: lessons from GPCR oligomerization. Trends Biotechnol 28:407–415

    PubMed  Article  CAS  Google Scholar 

  • Dinger MC, Bader JE, Kobor AD, Kretzschmar AK, Beck-Sickinger AG (2003) Homodimerization of neuropeptide y receptors investigated by fluorescence resonance energy transfer in living cells. J Biol Chem 278:10562–10571

    PubMed  Article  CAS  Google Scholar 

  • Dorsch S, Klotz KN, Engelhardt S, Lohse MJ, Bunemann M (2009) Analysis of receptor oligomerization by FRAP microscopy. Nat Methods 6:225–230

    PubMed  Article  CAS  Google Scholar 

  • Eggeling C, Ringemann C, Medda R, Schwarzmann G, Sandhoff K, Polyakova S, Belov VN, Hein B, von Middendorff C, Schonle A, Hell SW (2009) Direct observation of the nanoscale dynamics of membrane lipids in a living cell. Nature 457:1159–1162

    PubMed  Article  CAS  Google Scholar 

  • Franco R, Casado V, Cortes A, Ferrada C, Mallol J, Woods A, Lluis C, Canela EI, Ferre S (2007) Basic concepts in G-protein-coupled receptor homo- and heterodimerization. ScientificWorldJournal 7:48–57

    PubMed  Article  Google Scholar 

  • Fung JJ, Deupi X, Pardo L, Yao XJ, Velez-Ruiz GA, Devree BT, Sunahara RK, Kobilka BK (2009) Ligand-regulated oligomerization of beta(2)-adrenoceptors in a model lipid bilayer. EMBO J 28:3315–3328

    PubMed  Article  CAS  Google Scholar 

  • Fuxe K, Marcellino D, Borroto-Escuela DO, Frankowska M, Ferraro L, Guidolin D, Ciruela F, Agnati LF (2010) The changing world of G protein-coupled receptors: from monomers to dimers and receptor mosaics with allosteric receptor-receptor interactions. J Recept Signal Transduct Res 30:272–283

    PubMed  Article  CAS  Google Scholar 

  • Golebiewska U, Johnston JM, Devi L, Filizola M, Scarlata S (2011) Differential response to morphine of the oligomeric state of mu-opioid in the presence of delta-opioid receptors. Biochemistry 50:2829–2837

    PubMed  Article  CAS  Google Scholar 

  • Gurevich VV, Gurevich EV (2008) How and why do GPCRs dimerize? Trends Pharmacol Sci 29:234–240

    PubMed  Article  CAS  Google Scholar 

  • Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16:897–905

    PubMed  Article  CAS  Google Scholar 

  • Harding PJ, Attrill H, Boehringer J, Ross S, Wadhams GH, Smith E, Armitage JP, Watts A (2009) Constitutive dimerization of the G-protein coupled receptor, neurotensin receptor 1, reconstituted into phospholipid bilayers. Biophys J 96:964–973

    PubMed  Article  CAS  Google Scholar 

  • Harikumar KG, Miller LJ (2008) Monitoring the state of cholecystokinin receptor oligomerization after ligand binding using decay of time-resolved fluorescence anisotropy. Ann N Y Acad Sci 1144:21–27

    PubMed  Article  CAS  Google Scholar 

  • Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JE, Lazareno S, Molloy JE, Birdsall NJ (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci USA 107:2693–2698

    PubMed  Article  CAS  Google Scholar 

  • Herrick-Davis K, Grinde E, Weaver BA (2007) Serotonin 5-HT(2C) receptor homodimerization is not regulated by agonist or inverse agonist treatment. Eur J Pharmacol 568:45–53

    PubMed  Article  CAS  Google Scholar 

  • Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322:1211–1217

    PubMed  Article  CAS  Google Scholar 

  • Jacoby E, Bouhelal R, Gerspacher M, Seuwen K (2006) The 7 TM G-protein-coupled receptor target family. ChemMedChem 1:761–782

    PubMed  Article  Google Scholar 

  • James JR, Oliveira MI, Carmo AM, Iaboni A, Davis SJ (2006) A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nat Methods 3:1001–1006

    PubMed  Article  CAS  Google Scholar 

  • Kasai RS, Suzuki KG, Prossnitz ER, Koyama-Honda I, Nakada C, Fujiwara TK, Kusumi A (2011) Full characterization of GPCR monomer-dimer dynamic equilibrium by single molecule imaging. J Cell Biol 192:463–480

    PubMed  Article  CAS  Google Scholar 

  • Kuder K, Kiec-Kononowicz K (2008) Fluorescent GPCR ligands as new tools in pharmacology. Curr Med Chem 15:2132–2143

    PubMed  Article  CAS  Google Scholar 

  • Latif R, Graves P, Davies TF (2002) Ligand-dependent inhibition of oligomerization at the human thyrotropin receptor. J Biol Chem 277:45059–45067

    PubMed  Article  CAS  Google Scholar 

  • Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AG, Tate CG (2011) Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 474:521–525

    PubMed  Article  CAS  Google Scholar 

  • Leitz AJ, Bayburt TH, Barnakov AN, Springer BA, Sligar SG (2006) Functional reconstitution of Beta2-adrenergic receptors utilizing self-assembling nanodisc technology. Biotechniques 40:601–602, 604, 606, passim

    PubMed  Article  CAS  Google Scholar 

  • Lukasiewicz S, Blasiak E, Faron-Gorecka A, Polit A, Tworzydlo M, Gorecki A, Wasylewski Z, Dziedzicka-Wasylewska M (2007) Fluorescence studies of homooligomerization of adenosine A2A and serotonin 5-HT1A receptors reveal the specificity of receptor interactions in the plasma membrane. Pharmacol Rep 59:379–392

    PubMed  CAS  Google Scholar 

  • Luttrell LM (2008) Reviews in molecular biology and biotechnology: transmembrane signaling by G protein-coupled receptors. Mol Biotechnol 39:239–264

    PubMed  Article  CAS  Google Scholar 

  • Mattheyses AL, Simon SM, Rappoport JZ (2010) Imaging with total internal reflection fluorescence microscopy for the cell biologist. J Cell Sci 123:3621–3628

    PubMed  Article  CAS  Google Scholar 

  • Maurel D, Kniazeff J, Mathis G, Trinquet E, Pin JP, Ansanay H (2004) Cell surface detection of membrane protein interaction with homogeneous time-resolved fluorescence resonance energy transfer technology. Anal Biochem 329:253–262

    PubMed  Article  CAS  Google Scholar 

  • Maurel D, Comps-Agrar L, Brock C, Rives ML, Bourrier E, Ayoub MA, Bazin H, Tinel N, Durroux T, Prezeau L, Trinquet E, Pin JP (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5:561–567

    PubMed  Article  CAS  Google Scholar 

  • May LT, Bridge LJ, Stoddart LA, Briddon SJ, Hill SJ (2011) Allosteric interactions across native adenosine-A3 receptor homodimers: quantification using single-cell ligand-binding kinetics. FASEB J 25:3465–3476

    PubMed  Article  CAS  Google Scholar 

  • McVey M, Ramsay D, Kellett E, Rees S, Wilson S, Pope AJ, Milligan G (2001) Monitoring receptor oligomerization using time-resolved fluorescence resonance energy transfer and bioluminescence resonance energy transfer. The human delta-opioid receptor displays constitutive oligomerization at the cell surface, which is not regulated by receptor occupancy. J Biol Chem 276:14092–14099

    PubMed  CAS  Google Scholar 

  • Milligan G, Ramsay D, Pascal G, Carrillo JJ (2003) GPCR dimerisation. Life Sci 74:181–188

    PubMed  Article  CAS  Google Scholar 

  • Oldham WM, Hamm HE (2008) Heterotrimeric G protein activation by G-protein-coupled receptors. Nat Rev Mol Cell Biol 9:60–71

    PubMed  Article  CAS  Google Scholar 

  • Overton MC, Blumer KJ (2000) G-protein-coupled receptors function as oligomers in vivo. Curr Biol 10:341–344

    PubMed  Article  CAS  Google Scholar 

  • Paila YD, Kombrabail M, Krishnamoorthy G, Chattopadhyay A (2011) Oligomerization of the serotonin(1A) receptor in live cells: a time-resolved fluorescence anisotropy approach. J Phys Chem B 115:11439–11447

    PubMed  Article  CAS  Google Scholar 

  • Palczewski K (2010) Oligomeric forms of G protein-coupled receptors (GPCRs). Trends Biochem Sci 35:595–600

    PubMed  Article  CAS  Google Scholar 

  • Piehler J (2011) GPCRs: caught in a spectroscopic trap. Nat Chem Biol 7:578–579

    PubMed  Article  CAS  Google Scholar 

  • Pioszak AA, Harikumar KG, Parker NR, Miller LJ, Xu HE (2010) Dimeric arrangement of the parathyroid hormone receptor and a structural mechanism for ligand-induced dissociation. J Biol Chem 285:12435–12444

    PubMed  Article  CAS  Google Scholar 

  • Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450:383–387

    PubMed  Article  CAS  Google Scholar 

  • Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011a) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469:175–180

    PubMed  Article  CAS  Google Scholar 

  • Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011b) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477:549–555

    PubMed  Article  CAS  Google Scholar 

  • Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK, Chae PS, Gellman SH, Dror RO, Shaw DE, Weis WI, Caffrey M, Gmeiner P, Kobilka BK (2011) Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 469:236–240

    PubMed  Article  CAS  Google Scholar 

  • Stryer L (1978) Fluorescence energy transfer as a spectroscopic ruler. Annu Rev Biochem 47:819–846

    PubMed  Article  CAS  Google Scholar 

  • Stryer L, Haugland RP (1967) Energy transfer: a spectroscopic ruler. Proc Natl Acad Sci USA 58:719–726

    PubMed  Article  CAS  Google Scholar 

  • Urizar E, Yano H, Kolster R, Gales C, Lambert N, Javitch JA (2011) CODA-RET reveals functional selectivity as a result of GPCR heteromerization. Nat Chem Biol 7:624–630

    PubMed  Article  CAS  Google Scholar 

  • Warne T, Moukhametzianov R, Baker JG, Nehme R, Edwards PC, Leslie AG, Schertler GF, Tate CG (2011) The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor. Nature 469:241–244

    PubMed  Article  CAS  Google Scholar 

  • Whorton MR, Bokoch MP, Rasmussen SG, Huang B, Zare RN, Kobilka B, Sunahara RK (2007) A monomeric G protein-coupled receptor isolated in a high-density lipoprotein particle efficiently activates its G protein. Proc Natl Acad Sci USA 104:7682–7687

    PubMed  Article  CAS  Google Scholar 

  • Wurch T, Matsumoto A, Pauwels PJ (2001) Agonist-independent and -dependent oligomerization of dopamine D(2) receptors by fusion to fluorescent proteins. FEBS Lett 507:109–113

    PubMed  Article  CAS  Google Scholar 

  • Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao ZG, Cherezov V, Stevens RC (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332:322–327

    PubMed  Article  CAS  Google Scholar 

  • Yanagawa M, Yamashita T, Shichida Y (2011) Comparative fluorescence resonance energy transfer analysis of metabotropic glutamate receptors: implications about the dimeric arrangement and rearrangement upon ligand bindings. J Biol Chem 286:22971–22981

    PubMed  Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Biotechnology and Biological Sciences Research Council (BBSRC; grant number BB/G019738/1).

Conflict of interest

None

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony Watts.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goddard, A.D., Watts, A. Contributions of fluorescence techniques to understanding G protein-coupled receptor dimerisation. Biophys Rev 4, 291–298 (2012). https://doi.org/10.1007/s12551-012-0073-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-012-0073-z

Keywords

  • G protein-coupled receptor
  • Dimer
  • Oligomerisation
  • FRET
  • Fluorescence
  • Single molecule fluorescence