Biophysical Reviews

, Volume 4, Issue 2, pp 125–135 | Cite as

The use of biophysical proteomic techniques in advancing our understanding of diseases

  • Qian Xu
  • Ziyou Cui
  • Gayathi Venkatraman
  • Aldrin V. GomesEmail author


The use of proteomic approaches in investigating diseases is continuing to expand and has started to provide answers to substantial gaps in our understanding of disease pathogenesis as well as in the development of effective strategies for the early diagnosis and treatment of diseases. Biophysical techniques form a crucial part of the advanced proteomic techniques currently used and include mass spectrometry and protein separation techniques, such as two-dimensional gel electrophoresis and liquid chromatography. The application of biophysical proteomic techniques in the study of disease includes delineation of altered protein expression, not only at the whole-cell or tissue levels, but also in subcellular structures, protein complexes, and biological fluids. These techniques are also being used for the discovery of novel disease biomarkers, exploration of the pathogenesis of diseases, development of new diagnostic methodologies, and identification of new targets for therapeutics. Proteomic techniques also have the potential for accelerating drug development through more effective strategies for evaluating a specific drug’s therapeutic effects and toxicity. This article discusses the application of biophysical proteomic techniques in delineating cardiovascular disease and other diseases, as well as the limitations and future research directions required for these techniques to gain greater acceptance and have a larger impact.


Proteomics Liquid chromatography Mass spectrometry Gel electrophoresis Diseases Biophysical techniques 



The authors' work was supported by NIH grant HL096819 (AVG) and American Heart Association grant 0835335N (AVG).

Conflict of interest



  1. Alzheimer’s Association (2010) 2010 Alzheimer's disease facts and figures. Alzheimers Dement 6(2):158–194. doi: 10.1016/j.jalz.2010.01.009 Google Scholar
  2. Addona TA, Shi X, Keshishian H, Mani DR, Burgess M, Gillette MA, Clauser KR, Shen D, Lewis GD, Farrell LA, Fifer MA, Sabatine MS, Gerszten RE, Carr SA (2011) A pipeline that integrates the discovery and verification of plasma protein biomarkers reveals candidate markers for cardiovascular disease. Nat Biotechnol 29(7):635–643. doi: 10.1038/nbt.1899 Google Scholar
  3. Appel RD, Bairoch A, Sanchez JC, Vargas JR, Golaz O, Pasquali C, Hochstrasser DF (1996) Federated two-dimensional electrophoresis database: a simple means of publishing two-dimensional electrophoresis data. Electrophoresis 17(3):540–546. doi: 10.1002/elps.1150170324 PubMedCrossRefGoogle Scholar
  4. Bennett MR, Devarajan P (2011) Proteomic analysis of acute kidney injury: biomarkers to mechanisms. Proteomics Clin Appl 5(1–2):67–77. doi: 10.1002/prca.201000066 PubMedCrossRefGoogle Scholar
  5. Bisson N, James DA, Ivosev G, Tate SA, Bonner R, Taylor L, Pawson T (2011) Selected reaction monitoring mass spectrometry reveals the dynamics of signaling through the GRB2 adaptor. Nat Biotechnol 29(7):653–658. doi: 10.1038/nbt.1905 Google Scholar
  6. Botre F (2008) Mass spectrometry and illicit drug testing: analytical challenges of the anti-doping laboratories. Expert Rev Proteomics 5(4):535–539. doi: 10.1586/14789450.5.4.535 PubMedCrossRefGoogle Scholar
  7. Breadmore MC, Dawod M, Quirino JP (2011) Recent advances in enhancing the sensitivity of electrophoresis and electrochromatography in capillaries and microchips (2008–2010). Electrophoresis 32(1):127–148. doi: 10.1002/elps.201000412 PubMedCrossRefGoogle Scholar
  8. Brewis IA, Brennan P (2010) Proteomics technologies for the global identification and quantification of proteins. Adv Protein Chem Struct Biol 80:1–44. doi: 10.1016/B978-0-12-381264-3.00001-1 PubMedCrossRefGoogle Scholar
  9. Chi A, Huttenhower C, Geer LY, Coon JJ, Syka JE, Bai DL, Shabanowitz J, Burke DJ, Troyanskaya OG, Hunt DF (2007) Analysis of phosphorylation sites on proteins from Saccharomyces cerevisiae by electron transfer dissociation (ETD) mass spectrometry. Proc Natl Acad Sci USA 104(7):2193–2198. doi: 10.1073/pnas.0607084104 PubMedCrossRefGoogle Scholar
  10. Choong LY, Lim S, Chong PK, Wong CY, Shah N, Lim YP (2010) Proteome-wide profiling of the MCF10AT breast cancer progression model. PLoS One 5(6):e11030. doi: 10.1371/journal.pone.0011030 PubMedCrossRefGoogle Scholar
  11. Chugh S, Suen C, Gramolini A (2010) Proteomics and mass spectrometry: what have we learned about the heart? Curr Cardiol Rev 6(2):124–133. doi: 10.2174/157340310791162631 PubMedCrossRefGoogle Scholar
  12. Coon JJ, Ueberheide B, Syka JE, Dryhurst DD, Ausio J, Shabanowitz J, Hunt DF (2005) Protein identification using sequential ion/ion reactions and tandem mass spectrometry. Proc Natl Acad Sci USA 102(27):9463–9468. doi: 10.1073/pnas.0503189102 PubMedCrossRefGoogle Scholar
  13. Craig-Schapiro R, Perrin RJ, Roe CM, Xiong C, Carter D, Cairns NJ, Mintun MA, Peskind ER, Li G, Galasko DR, Clark CM, Quinn JF, D'Angelo G, Malone JP, Townsend RR, Morris JC, Fagan AM, Holtzman DM (2010) YKL-40: a novel prognostic fluid biomarker for preclinical Alzheimer's disease. Biol Psychiatry 68(10):903–912. doi: 10.1016/j.biopsych.2010.08.025 PubMedCrossRefGoogle Scholar
  14. Cui Z, Dewey S, Gomes AV (2011) Cardioproteomics: advancing the discovery of signaling mechanisms involved in cardiovascular diseases. Am J Cardiovasc Dis 1(3):274–292PubMedGoogle Scholar
  15. D'Aguanno S, Del Boccio P, Bernardini S, Ballone E, Di Ilio C, Federici G, Urbani A (2007) Electrophoretic separations of cerebrospinal fluid proteins in clinical investigations. Clin Chem Lab Med 45(4):437–449. doi: 10.1515/CCLM.2007.106 PubMedCrossRefGoogle Scholar
  16. Dammer EB, Na CH, Xu P, Seyfried NT, Duong DM, Cheng D, Gearing M, Rees H, Lah JJ, Levey AI, Rush J, Peng J (2011) Polyubiquitin linkage profiles in three models of proteolytic stress suggest the etiology of Alzheimer disease. J Biol Chem 286(12):10457–10465. doi: 10.1074/jbc.M110.149633 PubMedCrossRefGoogle Scholar
  17. Dayon L, Pasquarello C, Hoogland C, Sanchez JC, Scherl A (2010) Combining low- and high-energy tandem mass spectra for optimized peptide quantification with isobaric tags. J Proteomics 73(4):769–777. doi: 10.1016/j.jprot.2009.10.015 PubMedCrossRefGoogle Scholar
  18. de Araujo ME, Huber LA, Stasyk T (2008) Isolation of endocitic organelles by density gradient centrifugation. Methods Mol Biol 424:317–331. doi: 10.1007/978-1-60327-064-9_25 PubMedCrossRefGoogle Scholar
  19. Drews O, Wildgruber R, Zong C, Sukop U, Nissum M, Weber G, Gomes AV, Ping P (2007) Mammalian proteasome subpopulations with distinct molecular compositions and proteolytic activities. Mol Cell Proteomics 6(11):2021–2031. doi: 10.1074/mcp.M700187-MCP200 PubMedCrossRefGoogle Scholar
  20. Egerton FN (1967) Van Leeuwenhoek as a founder of animal demography. J Histol Biol 1:1–22CrossRefGoogle Scholar
  21. Englander SW (2006) Hydrogen exchange and mass spectrometry: a historical perspective.J Am Soc Mass Spectrom 17:1481–1489. doi: 10.1016/j.jasms.2006.06.006 Google Scholar
  22. Evans G, Wheeler CH, Corbett JM, Dunn MJ (1997) Construction of HSC-2DPAGE: a two-dimensional gel electrophoresis database of heart proteins. Electrophoresis 18(3–4):471–479. doi: 10.1002/elps.1150180322 PubMedCrossRefGoogle Scholar
  23. Friedman DB, Hoving S, Westermeier R (2009) Isoelectric focusing and two-dimensional gel electrophoresis. Methods Enzymol 463:515–540. doi: 10.1016/S0076-6879(09)63030-5 PubMedCrossRefGoogle Scholar
  24. Gerber SA, Rush J, Stemman O, Kirschner MW, Gygi SP (2003) Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS. Proc Natl Acad Sci USA 100(12):6940–6945. doi: 10.1073/pnas.0832254100 PubMedCrossRefGoogle Scholar
  25. Gottfried L (1997) Röntgen centennial: X-rays in Natural and Life Sciences. World Scientific, Singapore, pp 7–8Google Scholar
  26. Gygi SP, Rist B, Gerber SA, Turecek F, Gelb MH, Aebersold R (1999) Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat Biotechnol 17(10):994–999. doi: 10.1038/13690 PubMedCrossRefGoogle Scholar
  27. Jaffe JD, Keshishian H et al. (2008) Accurate inclusion mass screening: a bridge from unbiased discovery to targeted assay development for biomarker verification. Mol Cell Proteomics 7:1952–1962. doi: 10.1074/mcp.M800218-MCP200 Google Scholar
  28. James P (1997) Protein identification in the post-genome era: the rapid rise of proteomics. Q Rev Biophys 30(4):279–331PubMedCrossRefGoogle Scholar
  29. Jeannot R, Sabik H, Sauvard E, Genin E (2000) Application of liquid chromatography with mass spectrometry combined with photodiode array detection and tandem mass spectrometry for monitoring pesticides in surface waters. J Chromatogr A 879(1):51–71PubMedCrossRefGoogle Scholar
  30. Johnson MD, Floyd JL, Caprioli RM (2006) Proteomics in diagnostic neuropathology. J Neuropathol Exp Neurol 65(9):837–845. doi: 10.1097/01.jnen.0000235116.67558.24 PubMedCrossRefGoogle Scholar
  31. Jorgenson JW (2010) Capillary liquid chromatography at ultrahigh pressures. Annu Rev Anal Chem (Palo Alto Calif) 3:129–150. doi: 10.1146/annurev.anchem.1.031207.113014 CrossRefGoogle Scholar
  32. Katan AJ, Dekker C (2011) High-speed AFM reveals the dynamics of single biomolecules at the nanometer scale. Cell 147(5):979–982. doi: 10.1016/j.cell.2011.11.017 PubMedCrossRefGoogle Scholar
  33. Kleinert P, Schmid M, Zurbriggen K, Speer O, Schmugge M, Roschitzki B, Durka SS, Leopold U, Kuster T, Heizmann CW, Frischknecht H, Troxler H (2008) Mass spectrometry: a tool for enhanced detection of hemoglobin variants. Clin Chem 54(1):69–76. doi: 10.1373/clinchem.2007.089961 PubMedCrossRefGoogle Scholar
  34. Kocher T, Pichler P, Schutzbier M, Stingl C, Kaul A, Teucher N, Hasenfuss G, Penninger JM, Mechtler K (2009) High precision quantitative proteomics using iTRAQ on an LTQ Orbitrap: a new mass spectrometric method combining the benefits of all. J Proteome Res 8(10):4743–4752. doi: 10.1021/pr900451u PubMedCrossRefGoogle Scholar
  35. Merchant ML, Klein JB (2010) Proteomic discovery of diabetic nephropathy biomarkers. Adv Chronic Kidney Dis 17(6):480–486. doi: 10.1053/j.ackd.2010.09.001 PubMedCrossRefGoogle Scholar
  36. Minden JS, Dowd SR, Meyer HE, Stuhler K (2009) Difference gel electrophoresis. Electrophoresis 30[Suppl 1]:S156–161. doi: 10.1002/elps.200900098 PubMedCrossRefGoogle Scholar
  37. Molina H, Horn DM, Tang N, Mathivanan S, Pandey A (2007) Global proteomic profiling of phosphopeptides using electron transfer dissociation tandem mass spectrometry. Proc Natl Acad Sci USA 104(7):2199–2204. doi: 10.1073/pnas.0611217104 PubMedCrossRefGoogle Scholar
  38. Moon PG, Lee JE, You S, Kim TK, Cho JH, Kim IS, Kwon TH, Kim CD, Park SH, Hwang D, Kim YL, Baek MC (2011) Proteomic analysis of urinary exosomes from patients of early IgA nephropathy and thin basement membrane nephropathy. Proteomics 11(12):2459–2475. doi: 10.1002/pmic.201000443 PubMedCrossRefGoogle Scholar
  39. Muller EC, Thiede B, Zimny-Arndt U, Scheler C, Prehm J, Muller-Werdan U, Wittmann-Liebold B, Otto A, Jungblut P (1996) High-performance human myocardial two-dimensional electrophoresis database: edition 1996. Electrophoresis 17(11):1700–1712. doi: 10.1002/elps.1150171107 PubMedCrossRefGoogle Scholar
  40. O'Riordan E, Orlova TN, Mei JJ, Butt K, Chander PM, Rahman S, Mya M, Hu R, Momin J, Eng EW, Hampel DJ, Hartman B, Kretzler M, Delaney V, Goligorsky MS (2004) Bioinformatic analysis of the urine proteome of acute allograft rejection. J Am Soc Nephrol 15(12):3240–3248. doi: 10.1097/01.ASN.0000145241.83482.68 PubMedCrossRefGoogle Scholar
  41. Ong SE, Blagoev B, Kratchmarova I, Kristensen DB, Steen H, Pandey A, Mann M (2002) Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol Cell Proteomics 1(5):376–386PubMedCrossRefGoogle Scholar
  42. Oppenheimer SR, Mi D, Sanders ME, Caprioli RM (2010) Molecular analysis of tumor margins by MALDI mass spectrometry in renal carcinoma. J Proteome Res 9(5):2182–2190. doi: 10.1021/pr900936z PubMedCrossRefGoogle Scholar
  43. Pichler P, Kocher T, Holzmann J, Mazanek M, Taus T, Ammerer G, Mechtler K (2010) Peptide labeling with isobaric tags yields higher identification rates using iTRAQ 4-plex compared to TMT 6-plex and iTRAQ 8-plex on LTQ Orbitrap. Anal Chem 82(15):6549–6558. doi: 10.1021/ac100890k PubMedCrossRefGoogle Scholar
  44. Picotti P, Bodenmiller B, Mueller LN, Domon B, Aebersold R (2009) Full dynamic range proteome analysis of S. cerevisiae by targeted proteomics. Cell 138(4):795–806. doi: 10.1016/j.cell.2009.05.051 PubMedCrossRefGoogle Scholar
  45. Pleissner KP, Sander S, Oswald H, Regitz-Zagrosek V, Fleck E (1996) The construction of the World Wide Web-accessible myocardial two-dimensional gel electrophoresis protein database "HEART-2DPAGE": a practical approach. Electrophoresis 17(8):1386–1392. doi: 10.1002/elps.1150170818 PubMedCrossRefGoogle Scholar
  46. Raczynska ED, Gal JF, Maria PC, Zientara K, Szelag M (2007) Application of FT-ICR-MS for the study of proton-transfer reactions involving biomolecules. Anal Bioanal Chem 389(5):1365–1380. doi: 10.1007/s00216-007-1508-4 PubMedCrossRefGoogle Scholar
  47. Razgulin A, Ma N, Rao J (2011) Strategies for in vivo imaging of enzyme activity: an overview and recent advances. Chem Soc Rev 40(7):4186–4216. doi: 10.1039/c1cs15035a PubMedCrossRefGoogle Scholar
  48. Roepstorff P, Fohlman J (1984) Proposal for a common nomenclature for sequence ions in mass spectra of peptides. Biomed Mass Spectrom 11(11):601. doi: 10.1002/bms.1200111109 PubMedCrossRefGoogle Scholar
  49. Ross PL, Huang YN, Marchese JN, Williamson B, Parker K, Hattan S, Khainovski N, Pillai S, Dey S, Daniels S, Purkayastha S, Juhasz P, Martin S, Bartlet-Jones M, He F, Jacobson A, Pappin DJ (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3(12):1154–1169. doi: 10.1074/mcp.M400129-MCP200 PubMedCrossRefGoogle Scholar
  50. Rudrabhatla P, Grant P, Jaffe H, Strong MJ, Pant HC (2010) Quantitative phosphoproteomic analysis of neuronal intermediate filament proteins (NF-M/H) in Alzheimer's disease by iTRAQ. FASEB J 24(11):4396–4407. doi: 10.1096/fj.10-157859 PubMedCrossRefGoogle Scholar
  51. Schafer KC, Szaniszlo T, Gunther S, Balog J, Denes J, Keseru M, Dezso B, Toth M, Spengler B, Takats Z (2011) In situ, real-time identification of biological tissues by ultraviolet and infrared laser desorption ionization mass spectrometry. Anal Chem 83(5): 1632–1640 .doi: 10.1021/ac102613m Google Scholar
  52. Schaub S, Rush D, Wilkins J, Gibson IW, Weiler T, Sangster K, Nicolle L, Karpinski M, Jeffery J, Nickerson P (2004) Proteomic-based detection of urine proteins associated with acute renal allograft rejection. J Am Soc Nephrol 15(1):219–227PubMedCrossRefGoogle Scholar
  53. Schaub S, Wilkins JA, Antonovici M, Krokhin O, Weiler T, Rush D, Nickerson P (2005) Proteomic-based identification of cleaved urinary beta2-microglobulin as a potential marker for acute tubular injury in renal allografts. Am J Transplant 5(4 Pt 1):729–738. doi: 10.1111/j.1600-6143.2005.00766.x PubMedCrossRefGoogle Scholar
  54. Schiffer E, Liabeuf S, Lacroix C, Temmar M, Renard C, Monsarrat B, Choukroun G, Lemke HD, Vanholder R, Mischak H, Massy ZA (2011) Markers of vascular disease in plasma from patients with chronic kidney disease identified by proteomic analysis. J Hypertens 29(4):783–790. doi: 10.1097/HJH.0b013e3283441129 PubMedCrossRefGoogle Scholar
  55. Schulze A, Lindner M, Kohlmuller D, Olgemoller K, Mayatepek E, Hoffmann GF (2003) Expanded newborn screening for inborn errors of metabolism by electrospray ionization-tandem mass spectrometry: results, outcome, and implications. Pediatrics 111(6 Pt 1):1399–1406PubMedCrossRefGoogle Scholar
  56. Schwamborn K, Krieg RC, Reska M, Jakse G, Knuechel R, Wellmann A (2007) Identifying prostate carcinoma by MALDI-Imaging. Int J Mol Med 20(2):155–159PubMedGoogle Scholar
  57. Selvaraju S, El Rassi Z (2011) Liquid-phase-based separation systems for depletion, prefractionation and enrichment of proteins in biological fluids and matrices for in-depth proteomics analysis—an update covering the period 2008–2011. Electrophoresis. doi:  10.1002/elps.201100431
  58. Semaan SM, Wang X, Stewart PA, Marshall AG, Sang QX (2011) Differential phosphopeptide expression in a benign breast tissue, and triple-negative primary and metastatic breast cancer tissues from the same African-American woman by LC-LTQ/FT-ICR mass spectrometry. Biochem Biophys Res Commun 412(1):127–131. doi: 10.1016/j.bbrc.2011.07.057 PubMedCrossRefGoogle Scholar
  59. Skorobogatko YV, Deuso J, Adolf-Bergfoyle J, Nowak MG, Gong Y, Lippa CF, Vosseller K (2011) Human Alzheimer's disease synaptic O-GlcNAc site mapping and iTRAQ expression proteomics with ion trap mass spectrometry. Amino Acids 40(3):765–779. doi: 10.1007/s00726-010-0645-9 PubMedCrossRefGoogle Scholar
  60. Syka JE, Coon JJ, Schroeder MJ, Shabanowitz J, Hunt DF (2004) Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. Proc Natl Acad Sci USA 101(26):9528–9533. doi: 10.1073/pnas.0402700101 PubMedCrossRefGoogle Scholar
  61. Thakur SS, Geiger T, Chatterjee B, Bandilla P, Frohlich F, Cox J, Mann M (2011) Deep and highly sensitive proteome coverage by LC-MS/MS without prefractionation. Mol Cell Proteomics 10(8):M110 003699. doi: 10.1074/mcp.M110.003699 PubMedGoogle Scholar
  62. Thompson A, Schafer J, Kuhn K, Kienle S, Schwarz J, Schmidt G, Neumann T, Johnstone R, Mohammed AK, Hamon C (2003) Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal Chem 75(8):1895–1904PubMedCrossRefGoogle Scholar
  63. Vilasi A, Capasso G (2010) Proteomics and tubulopathies. J Nephrol 23(Suppl 16):S221–227PubMedGoogle Scholar
  64. Wales TE, Engen JR (2006) Hydrogen exchange mass spectrometry for the analysis of protein dynamics. Mass Spectrom Rev 25(1):158–170. doi: 10.1002/mas.20064 PubMedCrossRefGoogle Scholar
  65. Wang X, Venable J, LaPointe P, Hutt DM, Koulov AV, Coppinger J, Gurkan C, Kellner W, Matteson J, Plutner H, Riordan JR, Kelly JW, Yates JR 3rd, Balch WE (2006) Hsp90 co-chaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127(4):803–815. doi: 10.1016/j.cell.2006.09.043 PubMedCrossRefGoogle Scholar
  66. Wang Z, Udeshi ND, O'Malley M, Shabanowitz J, Hunt DF, Hart GW (2010) Enrichment and site mapping of O-linked N-acetylglucosamine by a combination of chemical/enzymatic tagging, photochemical cleavage, and electron transfer dissociation mass spectrometry. Mol Cell Proteomics 9(1):153–160. doi: 10.1074/mcp.M900268-MCP200 Google Scholar
  67. Weissinger EM, Wittke S, Kaiser T, Haller H, Bartel S, Krebs R, Golovko I, Rupprecht HD, Haubitz M, Hecker H, Mischak H, Fliser D (2004) Proteomic patterns established with capillary electrophoresis and mass spectrometry for diagnostic purposes. Kidney Int 65(6):2426–2434. doi: 10.1111/j.1523-1755.2004.00659.x PubMedCrossRefGoogle Scholar
  68. Whiteaker JR, Lin C, Kennedy J, Hou L, Trute M, Sokal I, Yan P, Schoenherr RM, Zhao L, Voytovich UJ, Kelly-Spratt KS, Krasnoselsky A, Gafken PR, Hogan JM, Jones LA, Wang P, Amon L, Chodosh LA, Nelson PS, McIntosh MW, Kemp CJ, Paulovich AG (2011) A targeted proteomics-based pipeline for verification of biomarkers in plasma. Nat Biotechnol 29(7):625–634. doi: 10.1038/nbt.1900 Google Scholar
  69. Wittke S, Haubitz M, Walden M, Rohde F, Schwarz A, Mengel M, Mischak H, Haller H, Gwinner W (2005) Detection of acute tubulointerstitial rejection by proteomic analysis of urinary samples in renal transplant recipients. Am J Transplant 5(10):2479–2488. doi: 10.1111/j.1600-6143.2005.01053.xAJT1053 Google Scholar
  70. Wu WW, Wang G, Baek SJ, Shen RF (2006) Comparative study of three proteomic quantitative methods, DIGE, cICAT, and iTRAQ, using 2D gel- or LC-MALDI TOF/TOF. J Proteome Res 5(3):651–658. doi: 10.1021/pr050405o PubMedCrossRefGoogle Scholar
  71. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79. doi: 10.1146/annurev-bioeng-061008-124934 PubMedCrossRefGoogle Scholar
  72. Zhou Y, Dong J, Vachet RW (2011) Electron transfer dissociation of modified peptides and proteins. Curr Pharm Biotechnol 12(10):1558–1567. doi: BSP/CPB/E-Pub/000212-12-15 [pii] Google Scholar

Copyright information

© International Union for Pure and Applied Biophysics (IUPAB) and Springer 2012

Authors and Affiliations

  • Qian Xu
    • 1
  • Ziyou Cui
    • 1
  • Gayathi Venkatraman
    • 1
  • Aldrin V. Gomes
    • 1
    Email author
  1. 1.Department of Neurobiology, Physiology and BehaviorUniversity of California, DavisDavisUSA

Personalised recommendations