Skip to main content
Log in

MOLS sampling and its applications in structural biophysics

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

This review describes the MOLS method and its applications. This computational method has been developed in our laboratory primarily to explore the conformational space of small peptides and identify features of interest, particularly the minima, i.e., the low energy conformations. A systematic “brute-force” search through the vast conformational space for such features faces the insurmountable problem of combinatorial explosion, whilst other techniques, e.g., Monte Carlo searches, are somewhat limited in their region of exploration and may be considered inexhaustive. The MOLS method, on the other hand, uses a sampling technique commonly employed in experimental design theory to identify a small sample of the conformational space that nevertheless retains information about the entire space. The information is extracted using a technique that is a variant of the self-consistent mean field technique, which has been used to identify, for example, the optimal set of side-chain conformations in a protein. Applications of the MOLS method to understand peptide structure, predict the structures of loops in proteins, predict three-dimensional structures of small proteins, and arrive at the best conformation, orientation, and positions of a small molecule ligand in a protein receptor site have all yielded satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdali S, Jensen MØ, Bohr H (2003) Energy levels and quantum states of [Leu] enkephalin conformations based on theoretical and experimental investigations. J Phys Condens Matter 15:S1853–S1860

    Article  CAS  Google Scholar 

  • Abel RJR, Colbourn CJ, Dinitz JH (2006) Mutually orthogonal Latin squares (MOLS). In: Colbourn CJ, Dinitz JH (eds) The CRC handbook of combinatorial designs, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Arun Prasad P, Gautham N (2008) A new peptide docking strategy using a mean field technique with mutually orthogonal Latin square sampling. J Comput Aided Mol Des 22:815–829

    Article  CAS  PubMed  Google Scholar 

  • Arunachalam J, Kanagasabai K, Gautham N (2006) Protein structure prediction using mutually orthogonal Latin squares and a genetic algorithm. Biochem Biophys Res Commun 342:424–433

    Article  CAS  PubMed  Google Scholar 

  • Becker OM, Levy Y, Ravitz O (2000) Flexibility, conformation spaces and bioactivity. J Phys Chem B 104:2123–2135

    Article  CAS  Google Scholar 

  • Ben-David M, Noivirt-Brik O, Paz A, Prilusky J, Sussman JL, Levy Y (2009) Assessment of CASP8 structure predictions for template free targets. Proteins 77:50–65

    CAS  PubMed  Google Scholar 

  • Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  PubMed  Google Scholar 

  • Blundell TL, Pitts JE, Tickle IJ (1981) X-ray analysis (1.4 Å resolution) of avian pancreatic polypeptide: small globular protein hormone. Proc Natl Acad Sci USA 78:4175–4179

    Article  CAS  PubMed  Google Scholar 

  • Bowie JU, Eisenberg D (1994) An evolutionary approach to folding small α-helical proteins that uses sequence information and an empirical guiding fitness function. Proc Natl Acad Sci USA 91:4436–4440

    Article  CAS  PubMed  Google Scholar 

  • Brooijmans N, Kuntz ID (2003) Molecular recognition and docking algorithms. Annu Rev Biophys Biomol Struct 32:335–373

    Article  CAS  PubMed  Google Scholar 

  • Cheng J, Wang Z, Tegge AN, Eickholt J (2009) Prediction of global and local quality of CASP8 models by MULTICOM series. Proteins 77:181–184

    Article  CAS  PubMed  Google Scholar 

  • Clarke ND, Kissinger CR, Desjarlais J, Gilliland GL, Pabo CO (1994) Structural studies of the engrailed homeodomain. Protein Sci 3:1779–1787

    Article  CAS  PubMed  Google Scholar 

  • Cochran WG (1977) Sampling techniques. Wiley, New York

    Google Scholar 

  • Cochran WG, Cox G (1957) Experimental designs, 2nd edn. Wiley, New York, pp 117–133

    Google Scholar 

  • Cochran AG, Skelton NJ, Starovasnik MA (2001) Tryptophan zippers: stable, monomeric β-hairpins. Proc Natl Acad Sci USA 98:5578–5583

    Article  CAS  PubMed  Google Scholar 

  • Colbourn J (1995) Construction techniques for mutually orthogonal Latin squares. In: Colbourn CJ, Mahmoodian ES (eds) Combinatorics advances. Kluwer Academic, Amsterdam, pp 27–48

    Google Scholar 

  • Colbourn CJ, Dinitz JH (2001) Mutually orthogonal Latin squares: a brief survey of constructions. J Stat Plan Inference 95:9–48

    Article  Google Scholar 

  • Cox DR (1958) Planning of experiments. Wiley, New York

    Google Scholar 

  • Crivelli S, Eskow E, Bader B, Lamberti V, Byrd R, Schnabel R, Head GT (2002) A physical approach to protein structure prediction. Biophys J 82:36–49

    Article  CAS  PubMed  Google Scholar 

  • Dandekar T, Argos P (1994) Folding the main chain of small proteins with the genetic algorithm. J Mol Biol 236:844–861

    Article  CAS  PubMed  Google Scholar 

  • Dandekar T, Argos P (1996) Identifying the tertiary fold of small proteins with different topologies from sequence and secondary structure using the genetic algorithm and extended criteria for strand regions. J Mol Biol 256:645–660

    Article  CAS  PubMed  Google Scholar 

  • Deane CM, Blundell TL (2000) A novel exhaustive search algorithm for predicting the conformation of polypeptide segments in proteins. Proteins Struct Funct Genet 40:135–144

    Article  CAS  PubMed  Google Scholar 

  • DePristo MA, DeBakker PIW, Lovell SC, Blundell TL (2003) Ab initio construction of polypeptide fragments: efficient generation of accurate, representative ensembles. Proteins Struct Funct Genet 51:41–55

    Article  CAS  PubMed  Google Scholar 

  • Efimov AV (1993) Patterns of loop regions in proteins. Curr Opin Struct Biol 3:379–384

    Article  CAS  Google Scholar 

  • Ethiraj S, Pan X, Ritacco C, Lambright DG (2005) Structural basis of family-wide Rab GTPase recognition by rabenosyn-5. Nature 436:415–419

    Article  Google Scholar 

  • Finkelstein AV, Reva BA (1996) Search for the most stable folds of protein chains. I. Application of a self-consistent molecular field theory to a problem of protein three-dimensional structure prediction. Protein Eng 9:387–397

    Article  CAS  PubMed  Google Scholar 

  • Finney DJ (1955) Randomized blocks and Latin squares. In: Experimental design and its statistical basis. Cambridge University Press, London, pp 45–67

  • Fiser A, Gian Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9:1753–1773

    Article  CAS  PubMed  Google Scholar 

  • Fisher RA (1951) The design of experiments, 6th edn. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Gautham N, Rafi ZA (1992) Global search for optimal biomolecular structures using mutually orthogonal Latin squares. Curr Sci 63:560–564

    CAS  Google Scholar 

  • Goldberg DE (1999) Genetic algorithms, in search, optimization and machine learning. Pearson Education, Singapore

    Google Scholar 

  • Griffin JF, Langs DA, Smith GD, Blundell TL, Tickle IJ, Bedarkar S (1986) The crystal structures of [Met5] enkephalin and a third form of [Leu5] enkephalin: observations of a novel pleated β-sheet. Proc Natl Acad Sci USA 83:3272–3276

    Article  CAS  PubMed  Google Scholar 

  • Hansmann UHE, Okamoto Y, Onuchic JN (1999) The folding funnel landscape for the peptide Met-enkephalin. Prot Struct Funct Genet 34:472–483

    Article  CAS  Google Scholar 

  • Isogai Y, Nemethy G, Scheraga HA (1977) Enkephalin: conformational analysis by means of empirical energy calculations. Proc Natl Acad Sci USA 74:414–418

    Article  CAS  PubMed  Google Scholar 

  • Ito K (1987) Latin squares. In: Encyclopedic dictionary of mathematics. MIT Press, Cambridge, MA, pp 891-892

  • Jones G, Willett P, Glen RC, Leach AR, Taylor R (1997) Development and validation of a genetic algorithm for flexible docking. J Mol Biol 267:727–748

    Article  CAS  PubMed  Google Scholar 

  • Kanagasabai V (2008) Applications of mutually orthogonal latin squares in exploring the conformational space of peptides and proteins. Ph.D Thesis, University of Madras, Chennai

  • Kanagasabai V, Gautham N (2008) An estimate of the numbers and density of low-energy structures (or decoys) in the conformational landscape of proteins. PLoS ONE 4(4):e5148

    Google Scholar 

  • Kanagasabai V, Arunachalam J, Arun Prasad P, Gautham N (2007) Exploring the conformational space of protein loops using a mean field technique with MOLS sampling. Proteins 67:908–921

    Article  CAS  PubMed  Google Scholar 

  • Koehl P, Delarue M (1994) Application of a self-consistent mean field theory to predict protein side-chains conformation and estimate their conformational entropy. J Mol Biol 239:249–275

    Article  CAS  PubMed  Google Scholar 

  • Koehl P, Delarue M (1995) A self consistent mean field approach to simultaneous gap closure and side-chain positioning in homology modelling. Nat Struct Biol 2:163–170

    Article  CAS  PubMed  Google Scholar 

  • Koehl P, Delarue M (1996) Mean-field minimization methods for biological macromolecules. Curr Opin Struct Biol 6:222–226

    Article  CAS  PubMed  Google Scholar 

  • Kříž Z, Carlsen PHJ, Koca J (2001) Conformational features of linear and cyclic enkephalins. A computational study. J Mol Struct THEOCHEM 540:231–250

    Article  Google Scholar 

  • Kryshtafovych A, Krysko O, Daniluk P, Dmytriv Z, Fidelis K (2009) Protein structure prediction center in CASP8. Proteins 77:5–9

    CAS  PubMed  Google Scholar 

  • Leszczynski JF, Rose GD (1986) Loops in globular proteins: a novel category of secondary structure. Science 234:849–855

    Article  CAS  PubMed  Google Scholar 

  • Levy Y, Becker OM (2001) Energy landscapes of conformationally constrained peptides. J Chem Phys 114:993–1009

    Article  CAS  Google Scholar 

  • Lindman HR (1974) Analysis of variance in complex experimental designs. W. H. Freeman, San Francisco

  • Liu Z, Dominy BN, Shakhnovich EI (2004) Structural mining: self-consistent design on flexible protein-peptide docking and transferable binding affinity potential. J Am Chem Soc 126:8515–8528

    Article  CAS  PubMed  Google Scholar 

  • MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S, Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R, Straub J, Watanabe M, Wiorkiewicz-Kuczera J, Yin D, Karplus M (1998) All-atom empirical potential for molecular modeling and dynamics studies of proteins. J Phys Chem B 102:3586–3616

    Article  CAS  Google Scholar 

  • Makino S, Kuntz ID (1997) Automated flexible ligand docking method and its application for database search. J Comput Chem 18(14):1812–1825

    Article  CAS  Google Scholar 

  • Mandl R (1985) Orthogonal Latin squares: an application of experimental design to compiler testing. Commun ACM 28:1054–1058

    Article  Google Scholar 

  • Marcotte I, Separovic F, Auger M, Gagne SM (2004) A multidimensional 1 H NMR investigation of the conformation of methionine-enkephalin in fast-tumbling. Biophys J 86:1587–1600

    Article  CAS  PubMed  Google Scholar 

  • McKnight CJ, Matsudaira PT, Kim PS (1997) NMR structure of the 35-residue villin headpiece subdomain. Nat Struct Biol 4:180–184

    Article  CAS  PubMed  Google Scholar 

  • Mead R (1988) The design of experiments. Cambridge University Press, Cambridge

    Google Scholar 

  • Meinert CL (1986) Clinincal trials: design, conduct and analysis. Oxford University Press, New York

    Google Scholar 

  • Montgomery DC (2000) Design and analysis of experiments, 5th edn. Wiley, New York

    Google Scholar 

  • Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ (1998) Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J Comput Chem 19:1639–1662

    Article  CAS  Google Scholar 

  • Némethy G, Gibson KD, Palmer KA, Yoon CN, Paterlini G, Zagari A, Rumsey S, Scheraga HA (1992) Energy parameters in polypeptides. 10. Improved geometrical parameters and nonbonded interactions for use in the ECEPP/3 algorithm, with application to proline-containing peptides. J Phys Chem 96:6472–6484

    Article  Google Scholar 

  • Pearce SC (1983) The agricultural field experiment: a statistical examination of theory and practice. Wiley, New York

    Google Scholar 

  • Piela L, Kostrowicki J, Scheraga HA (1989) The multiple-minima problem in the conformational analysis of molecules. Deformation of the potential energy hypersurface by the diffusion equation method. J Phys Chem 93:3339–3346

    Article  CAS  Google Scholar 

  • Raghavarao D (1971) Construction and combinatorial problems in design of experiments. Wiley, New York

    Google Scholar 

  • Raman S, Vernon R, Thompson J, Tyka M, Sadreyev R, Pei J, Kim D, Kellogg E, Di Maio F, Lange O, Kinch L, Sheffler W, Kim B, Das R, Grishin NV, Baker D (2009) Structure prediction for CASP8 with all-atom refinement using Rosetta. Proteins 77:89–99

    CAS  PubMed  Google Scholar 

  • Ramya L, Gautham N (2009) Effects of hydration on the conformational energy landscape of the pentapeptide Met-enkephalin. J Chem Theory Comput 5:2180–2190

    Article  CAS  Google Scholar 

  • Rarey M, Kramer B, Lengauer T, Klebe G (1996) A fast flexible docking method using an incremental construction algorithm. J Mol Biol 261:470–489

    Article  CAS  PubMed  Google Scholar 

  • Ring CS, Kneller DG, Langridge R, Cohen FE (1992) Taxonomy and conformational analysis of loops in proteins. J Mol Biol 224:685–699

    Article  CAS  PubMed  Google Scholar 

  • Ryser HJ (1963) Combinatorial mathematics. Mathematical Association of America, Washington, DC pp 79–84

  • Schulze-Kremer S (2000) Genetic algorithms and protein folding. In: Webster D (ed) Methods in molecular biology, protein structure prediction: methods and protocols. Humana, New Jersey, pp 175–222, 143

    Google Scholar 

  • Sippl MJ (1995) Knowledge-based potentials for proteins. Curr Opin Struct Biol 5:229–235

    Article  CAS  PubMed  Google Scholar 

  • Sudarsanam S, DuBose RF, March CJ, Srinivasan S (1995) Modelling protein loops using a φi + 1, ψi dimer database. Protein Sci 4:1412–1420

    Article  CAS  PubMed  Google Scholar 

  • Sun S (1995) A genetic algorithm that seeks native states of proteins. Biophys J 69:340–355

    Article  CAS  PubMed  Google Scholar 

  • Tahirov TH, Sato K, Ichikawa-Iwata E, Sasaki M, Inoue-Bungo T, Shiina M, Kimura K, Takata S, Fujikawa A, Morii H, Kumasaka T, Yamamoto M, Ishii S, Ogata K (2002) Mechanism of c-Myb-C/EBPβ cooperation from separated sites on a promoter. Cell 108:57–70

    Article  CAS  PubMed  Google Scholar 

  • Taylor RD, Jewsbury PJ, Essex JW (2002) A review of protein-small molecule docking methods. J Comput Aided Mol Des 16:151–166

    Article  CAS  PubMed  Google Scholar 

  • Terwilliger TC, Eisenberg D (1982) The structure of mellittin. I. Structure determination and partial refinement. J Biol Chem 257:6010–6015

    CAS  PubMed  Google Scholar 

  • Unger R, Moult J (1993) Genetic algorithms for protein folding simulations. J Mol Biol 231:75–81

    Article  CAS  PubMed  Google Scholar 

  • van Vlijmen HWT, Karplus M (1997) PDB based protein loop prediction: parameters for selection and methods for optimization. J Mol Biol 267:975–1001

    Article  PubMed  Google Scholar 

  • Vengadesan K (2004) Sampling the molecular potential energy surface using mutually orthogonal Latin squares and application to peptide sequences. Ph.D Thesis, University of Madras, Chennai

  • Vengadesan K, Gautham N (2003) Enhanced sampling of the molecular potential energy surface using mutually orthogonal Latin squares: application to peptide structures. Biophys J 84:2897–2906

    Article  CAS  PubMed  Google Scholar 

  • Vengadesan K, Gautham N (2004a) Conformational studies on enkephalins using the MOLS technique. Biopolymers 74:476–494

    Article  CAS  PubMed  Google Scholar 

  • Vengadesan K, Gautham N (2004b) Energy landscape of Met-enkephalin and Leu-enkephalin drawn using mutually orthogonal Latin squares sampling. J Phys Chem B 108:11196–11205

    Article  CAS  Google Scholar 

  • Viji SN, Arun Prasad P, Gautham N (2009) Protein-ligand docking using mutually orthogonal latin squares (MOLSDOCK). J Chem Inf Model 49:2687–2694

    Article  CAS  PubMed  Google Scholar 

  • Weiner SJ, Kollman PA, Nguyen DT, Case DA (1986) An all atom force field for simulations of proteins and nucleic acids. J Comput Chem 7:230–252

    Article  CAS  Google Scholar 

  • Wojcik J, Mornon J, Chomilier J (1999) New efficient statistical sequence dependant structure prediction of short to medium sized protein loops based on an exhaustive loop classification. J Mol Biol 289:1469–1490

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Wang Q, Barz B, He Z, Kosztin I, Shang Y, Xu D (2010) MUFOLD: A new solution for protein 3D structure prediction. Proteins 78:1137–1152

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

We thank the Department of Science and Technology, Government of India and UGC, Government of India under Centre of Advanced Study program, for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namasivayam Gautham.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramya, L., Nehru Viji, S., Arun Prasad, P. et al. MOLS sampling and its applications in structural biophysics. Biophys Rev 2, 169–179 (2010). https://doi.org/10.1007/s12551-010-0039-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-010-0039-y

Keywords

Navigation