Skip to main content

Advertisement

Log in

Biophysical aspects and biological implications of the interaction of benzophenanthridine alkaloids with DNA

  • Review
  • Published:
Biophysical Reviews Aims and scope Submit manuscript

Abstract

Benzophenanthridine alkaloids represent a very interesting and significant group of natural products that exhibit a broad range of biological and pharmacological properties. Among this group of alkaloids, sanguinarine, nitidine, fagaronine, and chelerythrine have the potential to form molecular complexes with DNA structures and have attracted recent attention for their possible clinical and pharmacological utility. This review focuses on the interaction of these alkaloids with polymorphic DNA structures (B-form, Z-form, HL-form, and triple helical form) reported by several research groups employing various physical techniques such as spectrophotometry, spectrofluorimetry, circular dichroism, NMR spectroscopy, thermal melting, viscometry as well as thermodynamic analysis by isothermal titration calorimetry and differential scanning calorimetry to elucidate the mode and mechanism of action at the molecular level to determine the structure-activity relationship. DNA binding properties of these alkaloids are interpreted in relation to their biological activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 1
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adhami VM, Aziz MH, Reagan-Shaw SR, Nihal M, Mukhtar H, Ahmad N (2004) Sanguinarine causes cell cycle blockade and apoptosis of human prostate carcinoma cells via modulation of cyclin kinase inhibitor-cyclin-cyclin-dependent kinase machinery. Mol Cancer Ther 3:933–940

    PubMed  CAS  Google Scholar 

  • Adhikari A, Hossain M, Maiti M, Kumar GS (2008) Energetics of the binding of phototoxic and cytotoxic plant alkaloid sanguinarine to DNA: isothernmal titration calorimetric studies. J Mol Struct 899:54–63

    Article  CAS  Google Scholar 

  • Ahmad N, Gupta S, Husain MM, Heiskanen KM, Mukhtar H (2000) Differential antiproliferative and apoptotic response of sanguinarine for cancer cells versus normal cells. Clin Cancer Res 6:1524–1528

    PubMed  CAS  Google Scholar 

  • Babich H, Zukerbraun HL, Barber IB, Babich SB, Borenfreund E (1996) Cytotoxicity of sanguinarine chloride to cultured human cells from oral tissue. Pharmacol Toxicol 78:397–403

    Article  PubMed  CAS  Google Scholar 

  • Bai LP, Zhao ZZ, Cai Z, Jiang ZH (2006) DNA binding affinities and sequence selectivity of quaternary benzophenanthrine alkaloids sanguinarine, chelerythrine, and nitidine. Bioorg Med Chem 14:5439–5445

    Article  PubMed  CAS  Google Scholar 

  • Bajaj NP, McLean MJ, Waring MJ, Smekal E (1990) Sequence-selective, pH-dependent binding to DNA of benzophenanthridine alkaloids. J Mol Recog 3:48–54

    Article  CAS  Google Scholar 

  • Barret Y, Samvaire Y (2006) Fagaronine a novel antileukemic alklaoid. Phytother Res 6:59–63

    Article  Google Scholar 

  • Benoist H, Comoe L, Joly P, Carpenter Y, Desplaces A, Dufer J (1989) Comparative effects of fagaronine, adriamycin and aclacinomycin on K562 cell sensitivity to natural-killer-mediated lysis. Lack of agreement between alteration of transferrin receptor and CD15 antigen expressions and induction of resistance to natural killer. Cancer Immunol Immunother 30:289–294

    Article  PubMed  CAS  Google Scholar 

  • Cabrespine A, Bay JO, Barthomeuf C, Curé H, Chollet P, Debiton E (2005) In vitro assessment of cytotoxic agent combinations for hormone-refractory prostate cancer treatment. Anticancer Drug 16:417–422

    Article  CAS  Google Scholar 

  • Chang YC, Chang FR, Khalil AT, Hsiesh PW, Wu YC (2003) Cytotoxic benzophenanthridine and benzylisoquinoline alkaloids from Argemone mexicana. Z Naturforsch 58:521–526

    CAS  Google Scholar 

  • Chen FM (1984) Base protonation facilitates B-Z interconversions of poly(dG-dC).poly(dG-dC). Biochemistry 23:6159–6165

    Article  PubMed  CAS  Google Scholar 

  • Chen WH, Qin Y, Cai Z, Chan CL, Luo GA, Jiang ZH (2005) Spectrometric studies of cytotoxic protoberberine alkaloids binding to double-stranded DNA. Bioorg Med Chem 13:1859–1866

    Article  PubMed  CAS  Google Scholar 

  • Das S (2000) Biophysical studies on the interactions of benzophenanthridine alkaloids with polymorphic nucleic acid structures. PhD Thesis, Jadavpur University, Kolkata

  • Das M, Khanna SK (1997) Clinicoepidemiological, toxicological, and safety evaluation studies on argemone oil. Crit Rev Toxicol 27:273–297

    Article  PubMed  CAS  Google Scholar 

  • Das S, Kumar GS, Maiti M (1999) Conversions of the left-handed and protonated form of DNA back to the bound right-handed form by sanguinarine and ethidium: a comparative study. Biophys Chem 76:199–218

    Article  PubMed  CAS  Google Scholar 

  • Das S, Kumar GS, Ray A, Maiti M (2003) Spectroscopic and thermodynamic studies on the binding of sanguinarine and berberine to triple and double helical DNA and RNA structures. J Biomol Struct Dyn 20:703–714

    PubMed  CAS  Google Scholar 

  • Denny WA (1989) DNA-intercalating ligands as anti-cancer drugs: prospects for future design. Anticancer Drug Des 4:241–263

    PubMed  CAS  Google Scholar 

  • Faddejeva MD, Belyaeva TN, Rosanov Yu M, Sedova M, Sokolovskaya EL (1984) Studies on the complex formation with DNA and the effect on DNA hydrolysis, RNA syhthesis and cellular membrane ATPase system of some antitumor alkaloids. Stud Biophys 104:267–269

    CAS  Google Scholar 

  • Gallagher K, Sharp K (1998) Electrostatic contributions to heat capacity changes of DNA-ligand binding. Biophys J 75:769–776

    Article  PubMed  CAS  Google Scholar 

  • Giuliana G, Pizzo G, Milici ME, Musotto GC, Giangreco R (1997) In vitro antifungal properties of mouthrinses containing antimicrobial agents. J Periodontol 68:729–733

    PubMed  CAS  Google Scholar 

  • Hélène C (1991) The anti-gene strategy: control of gene expression by triplex-forming-oligonucleotides. Anticancer Drug Des 6:569–584

    PubMed  Google Scholar 

  • Holden JA, Wall ME, Wani MC, Manikumar G (1999) Human DNA topoisomerase I: quantitative analysis of the effects of camptothecin analogs and the benzophenanthridine alkaloids nitidine and 6-ethoxydihydronitidine on DNA topoisomerase I-induced DNA strand breakage. Arch Biochem Biophys 370:66–76

    Article  PubMed  CAS  Google Scholar 

  • Holy J, Lamont G, Perkins E (2006) Disruption of nucleocytoplasmic trafficking of cyclin D1 and topoisomerase II by sanguinarine. BMC Cell Biol 7:13–26

    Article  PubMed  CAS  Google Scholar 

  • Hossain M (2009) Biophysical studies on the interaction of intercalating and groove binding molecules with deoxyribonucleic acids. PhD Thesis, Jadavpur University, Kolkata

  • Hossain M, Kumar GS (2009) DNA binding of benzophenanthridine compounds sanguinarine versus ethidium: comparative binding and thermodynamic profile of intercalation. J Chem Thermodyn 41:764–774

    Article  CAS  Google Scholar 

  • Hurley LH (2002) DNA and its associated processes as targets for cancer therapy. Nat Rev Cancer 2:188–200

    Article  PubMed  CAS  Google Scholar 

  • Hussain AR, Al-Jomah NA, Siraj AK, Manogaran P, Al-Hussein K, Abubaker J, Platanias LC, Al-Kuraya KS, Uddin S (2007) Sanguinarine-dependent induction of apoptosis in primary effusion lymphoma cells. Cancer Res 67:3888–3897

    Article  PubMed  CAS  Google Scholar 

  • Ianoul A, Fleuny F, Dural O, Waigh R, Jardiller JC, Alix AJP, Nabier I (1999) DNA binding by fagaronine and ethoxidine, inhibitors of human DNA topoisomerases I and II, probes by SERS and flow linear dichroism spectroscopy. J Phys Chem B 103:2008–2013

    Article  CAS  Google Scholar 

  • Janin YL, Croisy A, Riou JF, Bisagni E (1993) Synthesis and evaluation of new 6-amino-substituted benzo[c]phenanthridine derivatives. J Med Chem 36:3686–3692

    Article  PubMed  CAS  Google Scholar 

  • Jones RP, Harkrader RJ, Southard GL (1986) The effect of pH on sanguinarine iminium ion form. J Nat Prod 49:1109–1111

    Article  CAS  Google Scholar 

  • Jovin TM, Soumpasis DM, McIntosh LP (1987) The transition between B-DNA and Z-DNA. Annu Rev Phys Chem 38:521–558

    Article  CAS  Google Scholar 

  • Kaminskyy VO, Lin KW, Filyak Y, Stoika RS (2008) Differential effect of sanguinarine, chelerythrine and chelidonine on DNA damage and cell viability in primary mouse spleen cells and mouse leukemic cells. Cell Biol Int 32:1271–277

    Article  CAS  Google Scholar 

  • Kassim OO, Loyevsky M, Elliott B, Geall A, Amonoo H, Gordeuk VR (2005) Effects of root extracts of Fagara zanthoxyloides on the in vitro growth and stage distribution of Plasmodium falciparum. Antimicrob Agents Chemother 49:264–268

    Article  PubMed  CAS  Google Scholar 

  • Kumar GS, Maiti M (1994) DNA polymorphism under the influence of low pH and low temperature. J Biomol Struct Dyn 12:183–201

    PubMed  CAS  Google Scholar 

  • Latimer LJP, Payton N, Forsyth G, Lee JS (1995) The binding of analogues of coralyne and related heterocyclics to DNA triplexes. Biochem Cell Biol 73:11–18

    Article  PubMed  CAS  Google Scholar 

  • Maiti M (2001) Molecular aspects on the interaction of sanguinarine with B-form, Z-form and HL-form structures. Indian J Biochem Biohys 38:20–26

    CAS  Google Scholar 

  • Maiti M, Kumar GS (2007a) Molecular aspects on the interaction of protoberberine, benzophenanthridine, and aristolochia group of alkaloids with nucleic acid structures and biological perspectives. Med Res Rev 27:649–695

    Article  PubMed  CAS  Google Scholar 

  • Maiti M, Kumar GS (2007b) Protoberberine alkaloids: physicochemical and nucleic acid binding properties. Top Heterocycl Chem 10:155–209

    Article  CAS  Google Scholar 

  • Maiti M, Nandi R (1987) Circular dichroism of sanguinarine-DNA complexes: effect of base composition, pH and ionic strength. J Biomol Struct Dyn 5:159–175

    PubMed  CAS  Google Scholar 

  • Maiti M, Nandi R, Chaudhuri K (1982) Sanguinarine: a monofunctional intercalating alkaloid. FEBS Lett 142:280–284

    Article  PubMed  CAS  Google Scholar 

  • Maiti M, Nandi R, Chaudhuri K (1983) The effect of pH on the absorption and fluorescence of sanguinarine. Photochem Photobiol 38:245–249

    Article  CAS  Google Scholar 

  • Maiti M, Nandi R, Chaudhuri K (1984) Interaction of sanguinarine with natural and synthetic deoxyribonucleic acids. Indian J Biochem Biophys 21:158–165

    PubMed  CAS  Google Scholar 

  • Maiti M, Das S, Sen A, Kumar GS, Nandi R (2002) Influence of DNA structures on the conversion of sanguinarine alkanolamine form to iminium form. J Biomol Struct Dyn 20:455–464

    PubMed  CAS  Google Scholar 

  • Malikova J, Zdarilova A, Hlobikova A (2006) Effect of sanguinarine and chelerythrine on cell cycle and apoptosis. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 150:5–12

    PubMed  CAS  Google Scholar 

  • Moterich IG, Strekal ND, Nowicky JW, Maskerich SA (2007) Absorption, fluorescence and SERS spectra of sanguinarine at different pH values. J Appl Spectrosc 74:666–672

    Article  CAS  Google Scholar 

  • Nafao Y, Sano S, Miyasaka T, Ochiai M, Fiji K, Fujita E, Ishii H (1985) Evaluation of the affinity of new N atom-containing tumor inhibitors for nucleic acids. Nucleic Acids Sym Ser 16:37–40

    Google Scholar 

  • Nandi R, Maiti M (1985) Binding of sanguinarine to deoxyribonucleic acids of differing base composition. Biochem Pharmacol 34:321–324

    Article  PubMed  CAS  Google Scholar 

  • Novak RM, Keyer KA, Kinghorn AD, Pezzuto JM (1991) Antiviral activity of the plant compound fagaronine chloride, a reverse transcriptase inhibitor in HIV-infected peripheral blood mononuclear cells and T cell lines. Int Conf AIDS 7:11–12

    Google Scholar 

  • Pezzuto JM, Antosiak SK, Messmer WM, Slaytor MB, Honig GR (1983) Interaction of the antileukemic alkaloid, 2-hydroxy-3,8,9-trimethoxy-5-methylbenzo[c]phenanthridine (fagaronine), with nucleic acids. Chem Biol Interact 43:323–329

    Article  PubMed  CAS  Google Scholar 

  • Pohl FM, Jovin TM (1972) Salt-induced co-operative conformational change of a synthetic DNA: equilibrium and kinetic studies with poly (dG-dC). J Mol Biol 67:375–396

    Article  PubMed  CAS  Google Scholar 

  • Prado S, Michel S, Tillequin F, Koch M, Pfeiffer B, Pierre A, Leonce S, Colson P, Baldeyrou B, Lansiaux A, Bailly C (2004) Synthesis and cytotoxic activity of benzo[c][1,7] and [1,8]phenanthrolines analogues of nitidine and fagaronine. Bioorg Med Chem 12:3943–3953

    Article  PubMed  CAS  Google Scholar 

  • Qin Y, Pang J, Chen WH, Cai Z, Jiang ZH (2006) Synthesis, DNA-binding affinities, and binding mode of berberine dimers. Bioorg Med Chem 14:25–32

    Article  PubMed  CAS  Google Scholar 

  • Ray A, Kumar GS, Das S, Maiti M (1999) Spectroscopic studies on the interaction of aristololactam-β-D glucoside with DNA and RNA double and triple helices: a comparative study. Biochemistry 38:6239–6247

    Article  PubMed  CAS  Google Scholar 

  • Ren J, Chaires JB (1999) Sequence and structural selectivity of nucleic acid binding ligands. Biochemistry 38:16067–16075

    Article  PubMed  CAS  Google Scholar 

  • Saenger W (1984) Principles of nucleic acids structure. Springer-Verlag, New York

    Google Scholar 

  • Saran A, Srivastava S, Coutinho E, Maiti M (1995) 1H NMR investigation of the interaction of berberine and sanguinarine with DNA. Indian J Biochem Biophys 32:74–77

    PubMed  CAS  Google Scholar 

  • Segers-Nolten GM, Sijtsema NM, Otto C (1997) Evidence for Hoogsteen GC base pairs in the proton-induced transition from right-handed to left-handed poly(dG-dC).poly(dG-dC). Biochemistry 36:13241–13247

    Article  PubMed  CAS  Google Scholar 

  • Sen A, Maiti M (1994) Interaction of sanguinarine iminium and alkanolamine form with calf thymus DNA. Biochem Pharmacol 48:2097–2102

    Article  PubMed  CAS  Google Scholar 

  • Sen A, Ray A, Maiti M (1996) Thermodynamics of the interactions of sanguinarine with DNA: influence of ionic strength and base composition. Biophys Chem 59:155–170

    Article  PubMed  CAS  Google Scholar 

  • Serafim TL, Matos JAC, Sardão VA, Pereira GC, Branco AF, Pereira SL, Parke D, Perkins EL, Moreno AJM, Holy J, Oliveira PJ (2008) Sanguinarine cytotoxicity on mouse melanoma K1735–M2 cells—nuclear vs. mitochondrial effects. Biochem Pharmacol 76:1459–1475

    Article  PubMed  CAS  Google Scholar 

  • Smekal E, Kubova N, Kleinwatcher V (1984) Interaction of benzophenanthridine alkaloid sanguinarine with DNA. Stud Biophys 114:125–132

    Google Scholar 

  • Southard GL, Boulware RT, Walborn DR, Groznik WJ, Thorne EE, Yankell SL (1987) Sanguinarine, a new antiplaque agent: retention and plaque specificity. J Am Dent Assoc 108:338–341

    Google Scholar 

  • Stiborova M, Simanek V, Frei E, Hobza P, Ulrichova J (2002) DNA adduct formation from quaternary benzo[c]phenanthridine alkaloids sanguinarine and chelerythrine as revealed by the 32P-postlabeling technique. Chem Biol Interact 140:231–242

    Article  PubMed  CAS  Google Scholar 

  • Tajmir-Riahi HA, Neault JF, Naoui M (1995) Does DNA acid fixation produce left-handed Z structure? FEBS Lett 370:105–108

    Article  PubMed  CAS  Google Scholar 

  • Todor IN (2003) The effect of the antineoplastic drug Ukrain on the electrokinetic potential of malignant and normal cells. Int J Immunother 19:159–167

    CAS  Google Scholar 

  • Urbanova J, Lubal P, Slaninova I, Taborska E, Taborsky P (2009) Fluorescence properties of selected benzo[c]phenanthridine alkaloids and studies of their interaction with CT DNA. Anal Bioanal Chem. doi:10.1007/s00216-009-2601-7

  • Vogt A, Tamewitz A, Skoko J, Sikorski PP, Giuliano KA, Lazo JS (2005) The benzo[c]phenanthridine alkaloid, sanguinarine, is a selective, cell-active inhibitor of mitogen-activated protein kinase phosphatase-1. J Biol Chem 280:19078–19086

    Article  PubMed  CAS  Google Scholar 

  • Wang LK, Johnson RK, Hecht SM (1993) Inhibition of topoisomerase I function by nitidine and fagaronine. Chem Res Toxicol 6:813–818

    Article  PubMed  CAS  Google Scholar 

  • Waring MJ (1981) DNA modification and cancer. Annu Rev Biochem 50:159–192

    Article  PubMed  CAS  Google Scholar 

  • Wolff J, Knipling L (1993) Antimicrotubule properties of benzophenanthridine alkaloids. Biochemistry 32:13334–13339

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to the Council of Scientific and Industrial Research, Government of India, for the Emeritus Scientist award to M. Maiti. The authors are grateful to all the present and past colleagues at the Biophysical Chemistry Laboratory for their help and cooperation and in particular to those who have contributed over the years to the understanding of sanguinarine binding to nucleic acid structures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Motilal Maiti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maiti, M., Kumar, G.S. Biophysical aspects and biological implications of the interaction of benzophenanthridine alkaloids with DNA. Biophys Rev 1, 119–129 (2009). https://doi.org/10.1007/s12551-009-0014-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12551-009-0014-7

Keywords

Navigation