Relationship between cyclopiazonic acid production and gene expression in Penicillium griseofulvum under dry-cured ham processing environmental conditions

Abstract

Cyclopiazonic acid (CPA)-producing Penicillium griseofulvum is usually found on the dry-cured ham surface during its ripening. The objective of this work was to evaluate the effect of temperature and water activity (aw) of dry-cured ham processing on growth, CPA production, and temporal relative expression of genes involved in CPA biosynthesis on dry-cured meat-based media. P. griseofulvum CECT 2919 grew faster than P. griseofulvum IBT 14319 in all conditions tested, although no growth occurred at 0.85 aw. Besides, the dry-cured ham-based medium favoured CPA synthesis for both strains compared to the meat-based medium. For the strain CECT 2919, the expression of the mfs-1 and pks-nrps genes were stimulated at 0.90 and 0.95 aw, respectively, while the dmaT gene expression was inhibited during the incubation time. By contrast, the strain IBT 14319 showed that the dmaT gene expression was stimulated at 0.90 aw, while the pks-nrps and mfs-1 genes were repressed throughout incubation time. In conclusion, it is necessary to reduce aw on the surface of the hams below 0.85 during ripening before to increase temperature to reduce growth of P. griseofulvum and CPA production. This information may be useful to design preventive and corrective actions to minimise risks associated with the presence of CPA in dry-cured ham.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Alapont C, López-Mendoza MC, Gil JV, Martínez-Culebras PV (2014) Mycobiota and toxigenic Penicillium species on two Spanish dry-cured ham manufacturing plants. Food Addit Contam Part A 3:93–104. https://doi.org/10.1080/19440049.2013.849007

    CAS  Article  Google Scholar 

  2. Ansari P, Häubl G (2016) Determination of cyclopiazonic acid in white mould cheese by liquid chromatography–tandem mass spectrometry (HPLC–MS/MS) using a novel internal standard. Food Chem 221:978–982. https://doi.org/10.1016/j.foodchem.2016.05.063

    CAS  Article  Google Scholar 

  3. Astoreca A, Vaamonde G, Dalcero A, Marín S, Ramos A (2014) Abiotic factors and their interactions influence on the co-production of aflatoxin B1 and cyclopiazonic by Aspergillus flavus isolated from corn. Food Microbiol 38:276–283. https://doi.org/10.1016/j.fm.2013.07.012

    CAS  Article  PubMed  Google Scholar 

  4. Bailly JD, Tabuc C, Quérin A, Guerre P (2005) Production and stability of patulin, ochratoxin A, citrinin, and cyclopiazonic acid on dry-cured ham. J Food Prot 68:1516–1520. https://doi.org/10.4315/0362-028X-68.7.1516

    CAS  Article  PubMed  Google Scholar 

  5. Banani H, Marcet-Houben M, Ballester AR, Abbruscato P, González-Candelas L, Gabaldón T, Spadaro D (2016) Genome sequencing and secondary metabolism of the postharvest pathogen Penicillium griseofulvum. BMC Genomics 17(19). https://doi.org/10.1186/s12864-015-2347-x

  6. Baquião AC, Lopes EL, Corrêa B (2016) Molecular and mycotoxigenic biodiversity of Aspergillus flavus isolated from Brazil nuts. Food Res Int 89:266–271. https://doi.org/10.1016/j.foodres.2016.08.005

    CAS  Article  PubMed  Google Scholar 

  7. Berni E, Cacchioli C, Diaferia C, Spotti E (2007) Microbial surface colonization in Nebrodi salame. Proceedings of the 6th International Symposium on the Mediterranean Pig. Messina, Capo d’Orlando, pp 253–257

    Google Scholar 

  8. Berni E, Cacchioli C, Diaferia C (2012) Characterization of surface mycoflora in Nebrodi hams. De Pedro E.J. (ed.), Cabezas A.B. (ed.) 7th International Symposium on the Mediterranean Pig. Zaragoza. CIHEAM (pp. 437–440). (Options Méditerranéennes: Série A. Séminaires Méditerranéens; n. 101)

  9. Chang PK, Ehrlich KC, Fujii I (2009a) Cyclopiazonic acid biosynthesis of Aspergillus flavus and Aspergillus oryzae. Toxins 1:74–99. https://doi.org/10.3390/toxins1020074

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. Chang PK, Horn BW, Dorner JW (2009b) Clustered genes involved in cyclopiazonic acid production are next to the aflatoxin biosynthesis gene cluster in Aspergillus flavus. Fungal Genet Biol 46:176–182. https://doi.org/10.1016/j.fgb.2008.11.002

    CAS  Article  PubMed  Google Scholar 

  11. Córdoba JJ, Antequera T, García C, Ventanas J, López-Bote C, Asensio MA (1994) Evolution of free amino acids and amines during ripening of Iberian cured ham. J Agric Food Chem 42:2296–2301. https://doi.org/10.1021/jf00046a040

    Article  Google Scholar 

  12. Da Motta S, Valente Soares L (2000) Analytical, nutritional and clinical methods section: simultaneous determination of tenuazonic and cyclopiazonic acids in tomato products. Food Chem 71:111–116. https://doi.org/10.1016/S0308-8146(00)00040-6

    Article  Google Scholar 

  13. Díaz GJ, Thompson W, Martos PA (2010) Stability of cyclopiazonic acid in solution. World Mycotoxin J 3:25–33. https://doi.org/10.3920/WMJ2009.1170

    CAS  Article  Google Scholar 

  14. Fernández-Pinto V, Patriarca A, Locani O, Vaamonde G (2001) Natural co-occurrence of aflatoxin and cyclopiazonic acid in peanuts grown in Argentina. Food Addit Contam 18:1017–1020. https://doi.org/10.1080/02652030110057125

    Article  PubMed  Google Scholar 

  15. Ferrara M, Magistà D, Lippolis V, Cervellieri S, Susca A, Perrone G (2016) Effect of Penicillium nordicum contamination rates on ochratoxin A accumulation in dry-cured salami. Food Control 67:235–239. https://doi.org/10.1016/j.foodcont.2016.03.010

    CAS  Article  Google Scholar 

  16. Frisvad JC, Smedsgaard J, Larsen TO, Samson RA (2004) Mycotoxins, drugs and other extrolites produced by species in Penicillium subgenus Penicillium. Stud Mycol 49:201–241

    Google Scholar 

  17. Galvalisi U, Lupo S, Piccini J, Bettucci L (2012) Penicillium species present in Uruguayan salami. Rev Argent Microbiol 44:36–42. https://doi.org/10.1590/S0325-75412012000100008

    Article  PubMed  Google Scholar 

  18. García D, Ramos AJ, Sanchís V, Marín S (2009) Predicting mycotoxins in foods: a review. Food Microbiol 26:757–769. https://doi.org/10.1016/j.fm.2009.05.014

    CAS  Article  PubMed  Google Scholar 

  19. Gqaleni N, Smith JE, Lacey J (1996) Coproduction of aflatoxins and cyclopiazonic acid in isolates of Aspergillus flavus. Food Addit Contam 13:677–685. https://doi.org/10.1080/02652039609374453

    CAS  Article  PubMed  Google Scholar 

  20. Kato N, Tokuoka M, Shinohara Y, Kawatani M, Uramoto M, Seshime Y, Fujii I, Kitamoto K, Takahashi T, Takahashi S, Koyama Y, Osada H (2011) Genetic safeguard against mycotoxin cyclopiazonic acid production in Aspergillus oryzae. Chem Bio Chem 12:1376–1382. https://doi.org/10.1002/cbic.201000672

    CAS  Article  PubMed  Google Scholar 

  21. Lazzaro I, Susca A, Mula G, Ritieni A, Ferracane R, Marruecos A, Battilani P (2012) Effects of temperature and water activity on FUM2 and FUM21 gene expression and fumonisin B production in Fusarium verticillioides. Eur J Plant Pathol 134:685–695. https://doi.org/10.1007/s10658-012-0045-y

    CAS  Article  Google Scholar 

  22. Le Bars J (1979) Cyclopiazonic acid production by Penicillium camemberti Thom and natural occurrence of this mycotoxin in cheese. Appl Environ Microbiol 38:1052–1055

    Article  Google Scholar 

  23. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−ΔΔCT) method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  Article  Google Scholar 

  24. Ludemann V, Pose G, Pollio ML, Segura J (2004) Determination of growth characteristics and lipolytic and proteolytic activities of Penicillium strains isolated from Argentinean salami. Int J Food Microbiol 96:13–18. https://doi.org/10.1016/j.ijfoodmicro.2004.03.003

    CAS  Article  PubMed  Google Scholar 

  25. Medina A, Gilbert MK, Mack BM, O’Brian GR, Rodríguez A, Bhatnagar D, Payne G, Magan N (2017) Interactions between water activity and temperature on the Aspergillus flavus transcriptome and aflatoxin B1 production. Int J Food Microbiol 256: 36–44. https://doi.org/10.1016/j.ijfoodmicro.2017.05.020

  26. Núñez F, Rodríguez MM, Bermúdez E, Córdoba JJ, Asensio MA (1996) Composition and toxigenic potential of the mould population on dry-cured Iberian ham. Int J Food Microbiol 32:185–197. https://doi.org/10.1016/0168-1605(96)01126-9

    Article  PubMed  Google Scholar 

  27. Núñez F, Westphal CD, Bermúdez E, Asensio MA (2007) Production of secondary metabolites by some terverticillate Penicillia on carbohydrate-rich and meat substrates. J Food Prot 70:2829–2836. https://doi.org/10.4315/0362-028X-70.12.2829

    Article  PubMed  Google Scholar 

  28. Oliveira CA, Rosmaninho J, Rosim R (2006) Aflatoxin Ml and cyclopiazonic acid in fluid milk traded in São Paulo, Brazil. Food Addit Contam 23:196–201. https://doi.org/10.1080/02652030500398379

    CAS  Article  PubMed  Google Scholar 

  29. Ostry V, Polster M (1989) Detection of cyclopiazonic acid and its producers in food. Vet Med 34:421–430

    CAS  Google Scholar 

  30. Peromingo B, Rodríguez A, Bernáldez V, Delgado J, Rodríguez M (2016) Effect of temperature and water activity on growth and aflatoxin production by Aspergillus flavus and Aspergillus parasiticus on cured meat model systems. Meat Sci 122:76–83. https://doi.org/10.1016/j.meatsci.2016.07.024

    CAS  Article  PubMed  Google Scholar 

  31. Peromingo B, Rodríguez M, Delgado J, Andrade MJ, Rodríguez A (2017) Gene expression as a good indicator of aflatoxin contamination in dry-cured ham. Food Microbiol 67:31–40. https://doi.org/10.1016/j.fm.2017.05.008

    CAS  Article  PubMed  Google Scholar 

  32. Peromingo B, Rodríguez M, Núñez F, Silva A, Rodríguez A (2018) Sensitive determination of cyclopiazonic acid in dry-cured ham using a QuEChERS method and uHPLC-MS/MS. Food Chem 263:275–282. https://doi.org/10.1016/j.foodchem.2018.04.126

    CAS  Article  PubMed  Google Scholar 

  33. Peromingo B, Sulyok M, Lemmens M, Rodríguez A, Rodríguez M (2019) Diffusion of mycotoxins and secondary metabolites in dry-cured meat products. Food Control 111:144–150. https://doi.org/10.1016/j.foodcont.2019.02.032

    CAS  Article  Google Scholar 

  34. Pleadin J, Perši N, Kovačevic D, Vahčić N, Scortichini G, Milone S (2013) Ochratoxin A in traditional dry-cured meat products produced from sub-chronic-exposed pigs. Food Addit Contam: Part A 30:1827–1836. https://doi.org/10.1080/19440049.2013.825817

    CAS  Article  Google Scholar 

  35. Pleadin J, Staver MM, Vahčić N, Kovacevi N, Milone S, Saftić L, Scortichini G (2015) Survey of aflatoxin B1 and ochratoxin A occurrence in traditional meat products coming from Croatian households and markets. Food Control 52:71–77. https://doi.org/10.1016/j.foodcont.2014.12.027

    CAS  Article  Google Scholar 

  36. Riley RT, Goeger DE, Yoo H, Showker JL (1992) Comparison of three tetramic acids and their ability to alter membrane function in cultured skeletal muscle cells and sarcoplasmic reticulum vesicles. Toxicol Appl Pharmacol 114:261–267. https://doi.org/10.1016/0041-008X(92)90076-5

    CAS  Article  PubMed  Google Scholar 

  37. Rodríguez A, Rodríguez M, Luque MI, Justesen AF, Córdoba JJ (2012a) A comparative study of DNA extraction methods to be used in real-time PCR based quantification of ochratoxin A-producing molds in food products. Food Control 25:666–672. https://doi.org/10.1016/j.foodcont.2011.12.010

    CAS  Article  Google Scholar 

  38. Rodríguez A, Rodríguez M, Martín A, Delgado J, Córdoba JJ (2012b) Presence of ochratoxin A on the surface of dry–cured Iberian ham after initial fungal growth in the drying stage. Meat Sci 92:728–734. https://doi.org/10.1016/j.meatsci.2012.06.029

    CAS  Article  PubMed  Google Scholar 

  39. Rodríguez A, Medina A, Córdoba JJ, Magan N (2014) The influence of salt (NaCl) on ochratoxin A biosynthetic genes, growth and ochratoxin a production by three strains of Penicillium nordicum on a dry-cured ham-based medium. Int J Food Microbiol 178:113–119. https://doi.org/10.1016/j.ijfoodmicro.2014.03.007

    CAS  Article  PubMed  Google Scholar 

  40. Rodríguez A, Capela D, Medina A, Córdoba JJ, Magan N (2015) Relationship between ecophysiological factors, growth and ochratoxin A contamination of dry-cured sausage based matrices. Int J Food Microbiol 194:71–77. https://doi.org/10.1016/j.ijfoodmicro.2014.11.014

    CAS  Article  PubMed  Google Scholar 

  41. Sosa MJ, Córdoba JJ, Díaz C, Rodríguez M, Bermúdez E, Asensio MA, Núñez F (2002) Production of cyclopiazonic acid by Penicillium commune isolated from dry-cured ham on a meat extract-based substrate. J Food Prot 65:988–992. https://doi.org/10.4315/0362-028X-65.6.988

    CAS  Article  PubMed  Google Scholar 

  42. Zambonin CG, Monaci L, Aresta A (2001) Determination of cyclopiazonic acid in cheese samples using solid phase microextraction and high performance liquid chromatography. Food Chem 75:249–254. https://doi.org/10.1016/S0308-8146(01)00218-7

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical support provided by the Facility of Innovation and Analysis in Animal Source Foodstuffs of SAIUEx (financed by UEx, Junta de Extremadura, MICINN, FEDER, and FSE).

Funding

This work has been funded by the Spanish Ministry of Economy and Competitiveness, Government of Extremadura, and FEDER (AGL2013-45729-P, AGL2016-80209-P, GR15108). B. Peromingo is recipient of a pre-doctoral fellowship (BES-2014-069484) and Dr. A. Rodríguez was supported by a Juan de la Cierva-Incorporación senior research fellowship (IJCI-2014-20666), both from the Spanish Ministry of Economy and Competitiveness.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mar Rodríguez.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Peromingo, B., Rodríguez, A., Delgado, J. et al. Relationship between cyclopiazonic acid production and gene expression in Penicillium griseofulvum under dry-cured ham processing environmental conditions. Mycotoxin Res 35, 353–361 (2019). https://doi.org/10.1007/s12550-019-00357-9

Download citation

Keywords

  • Penicillium griseofulvum
  • Cyclopiazonic acid
  • Growth
  • CPA biosynthetic genes
  • Dry-cured ham