Mycotoxin Research

, Volume 35, Issue 3, pp 217–230 | Cite as

Aflatoxin production and in vitro toxicity of Aspergilli section Flavi isolated from air samples collected from different environments

  • Daniela Jakšić
  • Sándor Kocsubé
  • Ottó Bencsik
  • Anita Kecskeméti
  • András Szekeres
  • Dubravko Jelić
  • Nevenka Kopjar
  • Csaba Vágvölgyi
  • János Varga
  • Maja Šegvić KlarićEmail author
Original Article


Aspergilli section Flavi, originally isolated from air samples collected from inhabited apartments (AP), unoccupied basements (BS), and processing facilities of a grain mill (GM), were analyzed for their potential to produce aflatoxin B1 (AFB1) on solid media. The isolates were further characterized with regard to their cytotoxic, genotoxic, and pro-inflammatory properties in vitro. Aspergilli were identified based on partial calmodulin (CaM) gene sequencing; the producing capacities of isolates were analyzed by HPLC/FLD and confirmed by genes in biosynthesis (aflR, norA, omtA). In the grain mill, the Aspergilli section Flavi (up to 1.3 × 106 cfu/m3) dominated by AFB1-producing Aspergillus flavus (71%, 4.5–5254 ng/ml) which showed a serious health risk for workers. Living environments were not relevant sources of exposure. After 24 h, AFB1 (1–100 μmol/l) reduced cell viability (MTT test) in both A549 cells and THP-1 macrophage-like cells without reaching IC50. In A549 cells, the extract of the AFB1-producing A. flavus significantly decreased cell viability but not below 50%. THP-1 macrophage-like cells were more sensitive to both extracts, but IC50 was obtained only for the AFB1-producing strain (0.37 mg/ml; AFB1 2.78 μmol/l). AFB1 (1 and 10 μmol/l) induced significant DNA damage (tail intensity, alkaline comet assay) in A549 cells in contrast to Aspergilli extracts. AFB1 elevated IL-6 and IL-8, while Aspergilli extracts increased IL-1β, TNF-α, and IL-17 release in THP-1 macrophages (ELISA). Chronic exposure to AFB1 and/or other metabolites in airborne A. flavus from occupational environments may stimulate epithelial damage of airways accompanied by lowered macrophage viability.


Airborne fungi Aflatoxin B1 Cytotoxicity DNA damage Cytokines 



This work was financially supported by the University of Zagreb (Grant No. 1126). This study forms part of the project GINOP-2.3.2-15-2016-00012, supported by the European Social Fund. This work was also supported by OTKA grant Nos. K115690 and K8407 as well as through András Szekeres, who received support through the new national excellence program of the Hungarian Ministry of Human Capacities.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflict of interest.


  1. Abbès S, Ben Salah-Abbès J, Jebali R, Younes RB, Oueslati R (2016) Interaction of aflatoxin B1 and fumonisin B1 in mice causes immunotoxicity and oxidative stress: possible protective role using lactic acid bacteria. J Immunotoxicol 13:46–54. CrossRefPubMedGoogle Scholar
  2. Abdel Hameed AA, Ayesh AM, Abdel Razik Mohamed M, Abdel Mawla H (2012) Fungi and some mycotoxins producing species in the air of soybean and cotton mills: a case study. Atmos Pollut Res 3:126–131. CrossRefGoogle Scholar
  3. Altschul S, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  4. Baranyi N, Jakšić Despot D, Palágyi A, Kiss N, Kocsubé S, Szekeres A, Kecskeméti A, Bencsik O, Vágvölgyi C, Šegvić Klarić M, Varga J (2015) Identification of Aspergillus species in Central Europe able to produce G-type aflatoxins. Acta Biol Hung 66:339–347. CrossRefPubMedGoogle Scholar
  5. Bennett JW, Klich M, Mycotoxins M (2003) Mycotoxins. Clin Microbiol Rev 16:497–516. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cafarchia C, Camarda A, Iatta R, Danesi P, Favuzzi V, Di Paola G, Pugliese N, Caroli A, Montagna MT, Otranto D (2014) Environmental contamination by Aspergillus spp. in laying hen farms and associated health risks for farm workers. J Med Microbiol 63:464–470. CrossRefPubMedGoogle Scholar
  7. Campbell-Platt G (1994) Fermented foods—a world perspective. Food Res Int 27:253–257. CrossRefGoogle Scholar
  8. Carré PC, Mortenson RL, King TE, Noble PW, Sable CL, Riches DW (1991) Increased expression of the interleukin-8 gene by alveolar macrophages in idiopathic pulmonary fibrosis. A potential mechanism for the recruitment and activation of neutrophils in lung fibrosis. J Clin Invest 88:1802–1810. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26:249–261. CrossRefGoogle Scholar
  10. Collins AR, Oscoz AA, Brunborg G, Gaivão I, Giovannelli L, Kruszewski M, Smith CC, Stetina R (2008) The comet assay: topical issues. Mutagenesis 23:143–151. CrossRefPubMedGoogle Scholar
  11. Crawford JA, Rosenbaum PF, Anagnost SE, Hunt A, Abraham JL (2015) Indicators of airborne fungal concentrations in urban homes: understanding the conditions that affect indoor fungal exposures. Sci Total Environ 517:113–124. CrossRefPubMedGoogle Scholar
  12. Criseo G, Bagnara A, Bisignano G (2001) Differentiation of aflatoxin-producing and non-producing strains of Aspergillus favus group. Lett Appl Microbiol 33:291–295CrossRefPubMedGoogle Scholar
  13. Diaz-Meco MT, Moscat J (2012) The atypical PKCs in inflammation: NF-κB and beyond. Immunol Rev 246:154–167. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Duque GA, Descoteaux A (2014) Macrophage cytokines: involvement in immunity and infectious diseases. Front Microbiol 5:1–12. CrossRefGoogle Scholar
  15. Eder C (2009) Mechanisms of interleukin-1 b release. Immunobiology 214:543–553. CrossRefPubMedGoogle Scholar
  16. Fazekas B, Tar A, Kovács M (2005) Aflatoxin and ochratoxin A content of spices in Hungary. Food Addit Contam 22:856–863. CrossRefPubMedGoogle Scholar
  17. Fischer G, Dott W (2003) Relevance of airborne fungi and their secondary metabolites for environmental, occupational and indoor hygiene. Arch Microbiol 179:75–82. CrossRefPubMedGoogle Scholar
  18. Fischer G, Müller T, Schwalbe R, Ostrowski R, Dott W (2000a) Exposure to airborne fungi, MVOC and mycotoxins in biowaste-handling facilities. Int J Hyg Environ Health 203:97–104. CrossRefPubMedGoogle Scholar
  19. Fischer G, Müller T, Schwalbe R, Ostrowski R, Dott W (2000b) Species-specific profiles of mycotoxins produced in cultures and associated with conidia of airborne fungi derived from biowaste. Int J Hyg Environ Health 203:105–116. CrossRefPubMedGoogle Scholar
  20. Frisvad JC, Smedsgaard J, Samson RA, Larsen TO, Thrane U (2007) Fumonisin B production by Aspergillus niger. J Agric Food Chem 55(23):9727–9732Google Scholar
  21. Garcia-Canton C, Minet E, Anadon A, Anadon A, Meredith C (2013) Metabolic characterization of cell systems used in in vitro toxicology testing: lung cell system BEAS-2B as a working example. Toxicol in Vitro 27:1719–1727. CrossRefPubMedGoogle Scholar
  22. Geisen R (1996) Multiplex polymerase chain reaction for the detection of potential aflatoxin and sterigmatocystin producing fungi. Syst Appl Microbiol 19:388–392. CrossRefGoogle Scholar
  23. Godet M, Munaut F (2010) Molecular strategy for identification in Aspergillus section Flavi. FEMS Microbiol Lett 304:157–168. CrossRefPubMedGoogle Scholar
  24. Gu C, Wu L, Li X (2013) IL-17 family: cytokines, receptors and signaling. Cytokine 64:389–399. CrossRefGoogle Scholar
  25. Guindon KA, Foley JF, Maronpot RR, Massey TE (2008) Failure of catalase to protect against aflatoxin B1-induced mouse lung tumorigenicity. Toxicol Appl Pharmacol 227:179–183. CrossRefPubMedGoogle Scholar
  26. Hardin BD, Robbins CA, Fallah P, Kelman BJ (2009) The concentration of no toxicologic concern (CoNTC) and airborne mycotoxins. J Toxicol Environ Heal—Part A Curr Issues 72:585–598. CrossRefGoogle Scholar
  27. Hayes RB, van Nieuwenhuize JP, Raatgever JW, ten Kate FJ (1984) Aflatoxin exposures in the industrial setting: an epidemiological study of mortality. Food Chem Toxicol 22:39–43. CrossRefPubMedGoogle Scholar
  28. Hedayati MT, Pasqualotto AC, Warn PA, Bowyer P, Denning DW (2007) Aspergillus flavus: human pathogen, allergen and mycotoxin producer. Microbiology 153:1677–1692. CrossRefGoogle Scholar
  29. Hinton DM, Myers MJ, Raybourne RA, Francke-Carroll S, Sotomayor RE, Shaddock J, Warbritton A, Chou MW (2003) Immunotoxicity of aflatoxin B1 in rats: effects on lymphocytes and the inflammatory response in a chronic intermittent dosing study. Toxicol Sci 73:362–377. CrossRefPubMedGoogle Scholar
  30. Hong S-B, Go S-J, Shin H-D, Frisvad JC, Samson RA (2005) Polyphasic taxonomy of Aspergillus fumigatus and related species. Mycologia 97:1316–1329. CrossRefPubMedGoogle Scholar
  31. Hulina A, Grdić Rajković M, Jakšić Despot D, Jelić D, Dojder A, Čepelak I, Rumora L (2018) Extracellular Hsp70 induces inflammation and modulates LPS/LTA-stimulated inflammatory response in THP-1 cells. Cell Stress Chaperones 23:373–384. CrossRefGoogle Scholar
  32. Ishikawa AT, Hirooka EY, e Silva PLA, Bracarense APFRL, Flaiban KKMDC, Akagi CY, Kawamura O, Costa MCD, Itano EN (2017) Impact of a single oral acute dose of aflatoxin B1 on liver function/cytokines and the lymphoproliferative response in C57BL/6 mice. Toxins 9:1–10. doi:
  33. Jakab GJ, Hmieleski RR, Zarba A, Hemenway DR, Groopman JD (1994) Respiratory aflatoxicosis: a suppression of pulmonary and systemic host defenses in rats and mice. Toxicol Appl Pharmacol 125:198–205. CrossRefPubMedGoogle Scholar
  34. Jakšić Despot D, Šegvić Klarić M (2014) A year-round investigation of indoor airborne fungi in Croatia. Arh Hig Rada Toksikol 65:209–218. CrossRefPubMedGoogle Scholar
  35. Jakšić Despot D, Kocsubé S, Bencsik O, Kecskeméti A, Szekeres A, Jelić D, Kopjar N, Vágvölgyi C, Varga J, Šegvić Klarić M (2016) Species diversity and cytotoxic potency of airborne sterigmatocystin-producing Aspergilli from the section Versicolores. Sci Total Environ 562:296–304. CrossRefGoogle Scholar
  36. Jakšić D, Puel O, Canlet C, Kopjar N, Kosalec I, Šegvić Klarić M (2012) Cytotoxicity and genotoxicity of versicolorins and 5-methoxysterigmatocystin in A549 cells. Arch Toxicol 86:1583–1591. CrossRefPubMedGoogle Scholar
  37. Jakšić D, Kocsubé S, Bencsik O, Kecskeméti A, Szekeres A, Jelić D, Kopjar N, Vágvölgyi C, Varga J, Šegvić Klarić M (2018) Fumonisin production and toxic capacity in airborne black Aspergilli. Toxicol in Vitro 53:160–171. CrossRefPubMedGoogle Scholar
  38. Kelly JD, Eaton DL, Guengerich FP, Coulombe RA Jr (1997) Aflatoxin B1 activation in human lung. Toxicol Appl Pharmacol 144:88–95. CrossRefPubMedGoogle Scholar
  39. Lee RJ, Workman AD, Carey RM, B1 C, Rosen PL, Doghramji L, Adappa ND, Palmer JN, Kennedy DW, Cohen NA (2016) Fungal aflatoxins reduce respiratory mucosal ciliary function. Sci Rep 6:1–13.
  40. Liu BH, Yu FY, Chan MH, Yang YL (2002) The effects of mycotoxins, fumonisin B1 and aflatoxin B1, on primary swine alveolar macrophages. Toxicol Appl Pharmacol 180:197–204. CrossRefPubMedGoogle Scholar
  41. Luongo D, Russo R, Balestrieri A, Marzocco S, Bergamo P, Severino L (2014) In vitro study of AFB1 and AFM1 effects on human lymphoblastoid Jurkat T-cell model. J Immunotoxicol 11:353–358. CrossRefPubMedGoogle Scholar
  42. Manikandan P, Varga J, Kocsubé S, Anita R, Revathi R, Németh TM, Narendran V, Vágvölgyi C, Panneer Selvam K, Shobana CS, Babu Singh YR, Kredics L (2013) Epidemiology of Aspergillus keratitis at a tertiary care eye hospital in South India and antifungal susceptibilities of the causative agents. Mycoses 56:26–33. CrossRefPubMedGoogle Scholar
  43. Marchese S, Polo A, Ariano A, Velotto S, Costantini S, Severino L (2018) Aflatoxin B1 and M1: biological properties and their involvement in cancer development. Toxins 10:214. CrossRefPubMedCentralGoogle Scholar
  44. Massey TE, Smith GBJ, Tam AS (2000) Mechanisms of aflatoxin B1 lung tumorogenesis. Exp Lung Res 26:673–683CrossRefPubMedGoogle Scholar
  45. McKean C, Tang L, Tang M, Billam M, Wang Z, Theodorakis CW, Kendall RJ, Wang JS (2006) Comparative acute and combinative toxicity of aflatoxin B1 and fumonisin B1 in animals and human cells. Food Chem Toxicol 44:868–876. CrossRefPubMedGoogle Scholar
  46. Medina A, Rodriguez A, Magan N (2014) Effect of climate change on Aspergillus flavus and aflatoxin B1 production. Front Microbiol 5:348. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Meissonnier GM, Pinton P, Laffitte J, Cossalter AM, Gong YY, Wild CP, Bertin G, Galtier P, Oswald IP (2008) Immunotoxicity of aflatoxin B1: impairment of the cell-mediated response to vaccine antigen and modulation of cytokine expression. Toxicol Appl Pharmacol 231:142-149–142-149. CrossRefGoogle Scholar
  48. Murdock BJ, Falkowski NR, Shreiner AB, Sadighi Akha AA, McDonald RA, White ES, Toews GB, Huffnagle GB (2012) Interleukin-17 drives pulmonary eosinophilia following repeated exposure to Aspergillus fumigatus conidia. Infect Immun 80:1424–1436. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Olsen J, Dragsted L, Autrup H (1988) Cancer risk and occupational exposure to aflatoxins in Denmark. Br J Cancer 58:392–396. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Oppliger A, Rusca S, Charrière N, Vu Duc T, Droz PO (2005) Assessment of bioaerosols and inhalable dust exposure in Swiss sawmills. Ann Occup Hyg 49:385–391. CrossRefPubMedGoogle Scholar
  51. Palanee T, Dutton MF, Chuturgoon AA (2001) Cytotoxicity of aflatoxin B1 and its chemically synthesised epoxide derivative on the A549 human epithelioid lung cell line. Mycopathologia 151:155–159. CrossRefPubMedGoogle Scholar
  52. Pariza MW, Johnson EA (2001) Evaluating the safety of microbial enzyme preparations used in food processing: update for a new century. Regul Toxicol Pharmacol 33:173–186. CrossRefPubMedGoogle Scholar
  53. Paterson RRM, Lima N (2010) How will climate change affect mycotoxins in food? Food Res Int 43:1902–1914. CrossRefGoogle Scholar
  54. Perrone G, Gallo A, Logrieco AF (2014) Biodiversity of Aspergillus section Flavi in Europe in relation to the management of aflatoxin risk. Front Microbiol 5:1–5. CrossRefGoogle Scholar
  55. Piecková E, Wilkins K (2004) Airway toxicity of house dust and its fungal composition. Ann Agric Environ Med 11:67–73PubMedGoogle Scholar
  56. Qian G, Tang L, Guo X, Wang F, Massey ME, Su J, Guo TL, Williams JH, Phillips TD, Wang JS (2014) Aflatoxin B1 modulates the expression of phenotypic markers and cytokines by splenic lymphocytes of male F344 rats. J Appl Toxicol 34(3):241–249. CrossRefGoogle Scholar
  57. Rao CY, Fink RC, Wolfe LB, Liberman DF, Burge HA (2016) A study of Aflatoxin production by growing on wallboard. Journal of the American Biological Safety Association 2(4):36–42Google Scholar
  58. Ren P, Ahearn DG, Crow Jr SA (1999) Comparative study of Aspergillus mycotoxin production on enriched media and construction material. J Ind Microbiol Biotechnol 23(3):209–213Google Scholar
  59. Roilides E, Lamaignere CG, Farmaki E (2002) Cytokines in immunodeficient fungal infections: an emerging patients therapy. Int J Infect Dis 6:154–163CrossRefPubMedGoogle Scholar
  60. Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B (2010) Food and indoor fungi. Fungal Biodiversity Centre Utrecht, The NetherlandsGoogle Scholar
  61. Samson RA, Visagie CM, Houbraken J, Hong S-B, Hubka V, Klaassen CHW, Perrone G, Seifert KA, Susca A, Tanney JB, Varga J, Kocsubé S, Szigeti G, Yaguchi T, Frisvad JC (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78:141–173Google Scholar
  62. Schweer KE, Jakob B, Liss B, H2 C, Fischer G, Vehreschild M, Cornely OA, Vehreschild JJ (2016) Domestic mould exposure and invasive aspergillosis—air sampling of Aspergillus spp. spores in homes of hematological patients, a pilot study. Med Mycol 54:576–583.
  63. Sharma D, Dutta BK, Singh AB (2010) Exposure to indoor fungi in different working environments: a comparative study. Aerobiologia (Bologna) 26:327–337. CrossRefGoogle Scholar
  64. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191CrossRefGoogle Scholar
  65. Soares C, Rodrigues P, Peterson SW, Lima N, Venâncio A (2012) Three new species of Aspergillus section Flavi isolated from almonds and maize in Portugal. Mycologia 104:682–697. CrossRefPubMedGoogle Scholar
  66. Suganuma M, Okabe S, Marino MW, Sakai A, Sueoka E, Fujiki H (1999) Essential role of tumor necrosis factor a (TNF-a) in tumor promotion as revealed by TNF-a deficient mice. Cancer Res 59:4516–4518PubMedGoogle Scholar
  67. Turner MD, Nedjai B, Hurst T, Pennington DJ (2014) Cytokines and chemokines: at the crossroads of cell signalling and inflammatory disease. Biochim Biophys Acta—Mol Cell Res 1843:2563–2582. CrossRefGoogle Scholar
  68. Van Vleet TR, Klein PJ, Coulombe RA (2002) Metabolism and cytotoxicity of aflatoxin B1 in cytochrome P-450 expressin human lung cells. J Toxicol Environ Health A 65:853–867. CrossRefPubMedGoogle Scholar
  69. Varga J, Frisvad JC, Samson RA (2011) Two new aflatoxin producing species, and an overview of Aspergillus section Flavi. Stud Mycol 69:57–80. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Viegas S, Veiga L, Malta-Vacas J, Sabino R, Figueredo P, Almeida A, Viegas C, Carolino E (2012) Occupational exposure to aflatoxin (AFB1) in poultry production. J Toxicol Environ Health A 75:1330–1340. CrossRefPubMedGoogle Scholar
  71. Yu J, Bhatnagar D, Cleveland TE (2004) Completed sequence of a aflatoxin pathway gene cluster in Aspergillus parasiticus. FEBS Lett 564:126–130. CrossRefPubMedGoogle Scholar
  72. Zhao M, Xia L, Chen GQ (2012) Protein kinase c delta in apoptosis: a brief overview. Arch Immunol Ther Exp 60:361–372.;10.1007/s00005-012-0188-8

Copyright information

© Society for Mycotoxin (Research Gesellschaft für Mykotoxinforschung e.V.) and Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Daniela Jakšić
    • 1
  • Sándor Kocsubé
    • 2
  • Ottó Bencsik
    • 2
  • Anita Kecskeméti
    • 2
  • András Szekeres
    • 2
  • Dubravko Jelić
    • 3
  • Nevenka Kopjar
    • 4
  • Csaba Vágvölgyi
    • 2
  • János Varga
    • 2
  • Maja Šegvić Klarić
    • 1
    Email author
  1. 1.Department of Microbiology, Faculty of Pharmacy and BiochemistryUniversity of ZagrebZagrebCroatia
  2. 2.Department of Microbiology, Faculty of Science and InformaticsUniversity of SzegedSzegedHungary
  3. 3.Fidelta Ltd.ZagrebCroatia
  4. 4.Mutagenesis UnitInstitute for Medical Research and Occupational HealthZagrebCroatia

Personalised recommendations