Skip to main content
Log in

Transgenic versus conventional corn: fate of fumonisins during industrial dry milling

  • Original Article
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

The aim of this study was to compare the fate of fumonisins in transgenic and non-transgenic corn during industrial dry milling. For this purpose, whole corn samples and their fractions (germ, pericarp, endosperm, corn meal, and grits) were collected from one of the major Brazilian milling plants, totaling 480 samples. There was no significant difference (p > 0.05) between mean fumonisin (FB1 + FB2) levels in transgenic (1130 μg/kg) and non-transgenic (920 μg/kg) whole corn. However, in non-transgenic germ, endosperm and corn meal fraction fumonisin levels were higher (2940 μg/kg, 250 μg/kg and 190 μg/kg, respectively) than in transgenic fractions (2180 μg/kg, 130 μg/kg and 85.0 μg/kg, respectively). Furthermore, the highest percentages of fumonisins were distributed in the germ, corresponding to about 87 and 76% of the total fumonisins present in the whole corn from non-transgenic and transgenic hybrids, respectively. Concerning the endosperm from non-transgenic and transgenic corn, approximately, 23% and 13% of the total fumonisins were retained after the dry milling. Further processing in corn meal (300 to 420 μm particle size) and grits (590 to 1190 μm) decreased the percentages of remaining fumonisins to 4% and 2% (transgenic) and 10% and 3% (non-transgenic corn), respectively. These results suggested that fumonisin concentration was higher in outer and inner non-transgenic fractions when compared to transgenic ones and that the fate of fumonisins during the industrial dry milling could be affected by the transgenic status. However, it was not possible to conclude that the difference was exclusively due to this variable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Abbas HK, Shier WT, Cartwright RD (2007) Effect of temperature, rain fall, and planting date on aflatoxin and fumonisin contamination in commercial Bt and non-Bt corn hybrids in Arkansas. Phytoprotection 88:41–50

    Article  CAS  Google Scholar 

  • Abbas HK, Zablotowicz RM, Weaver MA, Shier WT, Bruns HA, Bellaloui N, Accinelli C, Abel CA (2013) Implications of Bt traits on mycotoxin contamination in maize: overview and recent experimental results in Southern United States. J Agric Food Chem 61:11759–11770

    Article  CAS  PubMed  Google Scholar 

  • Abbas HK, Bellaloui N, Bruns HA (2016) Investigating transgenic corn hybrids as a method for mycotoxin control. J Food Nutr Sci 7:44–54

    CAS  Google Scholar 

  • Aldred D, Olsen M, Magan N (2004) The use of HACCP in the control of mycotoxins. In: Magan N, Olsen M (eds) Mycotoxin in food: detection and control. Woodhead Publishing, Cambridge, pp 139–173

    Chapter  Google Scholar 

  • Bakan B, Melcion D, Richard-Molard D, Cahagnier B (2002) Fungal growth and Fusarium mycotoxin content in isogenic traditional maize and genetically modified maize grown in France and Spain. J Agric Food Chem 50:728–731

    Article  CAS  PubMed  Google Scholar 

  • Barroso VM, Rocha LO, Reis TA, Reis GM, Duarte AP, Michelotto MD, Correa B (2017) Fusarium verticillioides and fumonisin contamination in Bt and non-Bt maize cultivated in Brazil. Mycotoxin Res 33:121–127

    Article  CAS  PubMed  Google Scholar 

  • Bordini JG, Ono MA, Garcia GT, Fazani VHF, Vizoni K, Rodrigues KCB, Hirooka EY, Ono EYS (2017) Impact of industrial dry-milling on fumonisin redistribution in non-transgenic corn in Brazil. Food Chem 220:438–443

    Article  CAS  PubMed  Google Scholar 

  • Bowers E, Hellmich R, Munkvold G (2014) Comparison of fumonisin contamination using HPLC and ELISA methods in Bt and near-isogenic maize hybrids infested with European corn borer or Western bean cutworm. J Agric Food Chem 62:6463–6472

    Article  CAS  PubMed  Google Scholar 

  • Brasil (2017) Resolução RDC n° 138, de 8 de Fevereiro de 2017. Altera a Resolução da Diretoria Colegiada—RDC n° 7, de 18 de fevereiro de 2011, que dispõe sobre limites máximos tolerados (LMT) para micotoxinas em alimentos, para alterar os LMT da micotoxina deoxinivalenol (DON) em trigo e produtos de trigo prontos para oferta ao consumidor e os prazos para sua aplicação. Diário Oficial da União da República Federativa do Brasil, Brasília, Distrito Federal, 08 de fev. de 2017, Seção 1, p 45

  • Brera C, Debegnach F, Grossi S, Miraglia M (2004) Effect of industrial processing on the distribution of fumonisin B1 in dry-milling corn fractions. J Food Prot 67:1261–1266

    Article  PubMed  Google Scholar 

  • Broggi LE, Resnik SL, Pacin AM, Gonzalez HHL, Cano G, Taglieri D (2002) Distribution of fumonisins in dry-milled corn fractions in Argentina. Food Addit Contam 19:465–469

    Article  CAS  PubMed  Google Scholar 

  • Bryla M, Szymczyk K, Jedrzejczak R, Obiedzinski MW (2015) Free and hidden fumonisins in various fractions of maize dry milled under model conditions. LWT Food Sci Technol 64:171–176

    Article  CAS  Google Scholar 

  • Bullerman LB, Bianchini A (2007) Stability of mycotoxins during food processing. Int J Food Microbiol 119:140–146

    Article  CAS  PubMed  Google Scholar 

  • Burger H-M, Shephard GS, Louw W, Rheeder JP, Gelderblom WCA (2013) The mycotoxin distribution in maize milling fractions under experimental conditions. Int J Food Microbiol 165:57–64

    Article  CAS  PubMed  Google Scholar 

  • Castells M, Marín S, Sanchis V, Ramos AJ (2008) Distribution of fumonisins and aflatoxins in corn fraction during industrial cornflake processing. Int J Food Microbiol 123:81–87

    Article  CAS  PubMed  Google Scholar 

  • CONAB – Companhia Nacional de Abastecimento (2017) Acompanhamento da safra brasileira de grãos. Primeiro levantamento, v. 4 - safra 2016/17. In Portuguese. Available on line: www.conab.gov.br/info-agro/safras/graos/boletim-da-safra-de-graos?start=20.Boletim_Graos_outubro_2016.pdf. Accessed 04 Oct 2017

  • Du D, Geng C, Zhang X, Zhang Z, Zheng Y, Zhang F, Lin Y, Qiu F (2014) Transgenic maize lines expressing a cry1C* gene are resistant to insect pests. Plant Mol Biol Report 32:549–557

    Article  CAS  Google Scholar 

  • European Commission – EC (2007) Commission regulation (EC) N° 1126/2007 of 28 September 2007 amending regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs as regards Fusarium toxins in maize and maize products. Off J Eur Union L255:14–17

    Google Scholar 

  • Gelineau-van Waes J, Starr L, Maddox J, Aleman F, Voss KA, Wilberding J, Riley RT (2005) Maternal fumonisin exposure and risk for neural tube defects: mechanisms in an in vivo mouse model. Birth Defects Res A Clin Mol Teratol 73:487–497

    Article  CAS  PubMed  Google Scholar 

  • Hammond BG, Campell KW, Pilcher CD, Degooyer TA, Robinson AE, McMillen BL, Spangler SM, Riordan SG, Rice LG, Richard JL (2004) Lower fumonisin mycotoxin levels in the grain of Bt corn grown in the United States in 2000-2002. J Agric Food Chem 52:1390–1397

    Article  CAS  PubMed  Google Scholar 

  • Howard PC, Eppley RM, Stack ME, Warbritton A, Voss KA, Lorentzen RJ, Kovach RM, Bucci TJ (2001) Fumonisin B1 carcinogenicity in a two-year feeding study using F344 rats and B6C3F1 mice. Environ Health Perspect 109(Suppl. 2):277–282

    CAS  PubMed  PubMed Central  Google Scholar 

  • IAPAR—Instituto Agronômico do Paraná. Available online: http://www.iapar.br/modules/conteudo/conteudo.php?conteudo=2015. Accessed 30 Nov 2018a

  • IAPAR—Instituto Agronômico do Paraná. Available online: http://www.iapar.br/modules/conteudo/conteudo.php?conteudo=2085. Accessed 30 Nov 2018b

  • IAPAR—Instituto Agronômico do Paraná. Available online: http://www.iapar.br/modules/conteudo/conteudo.php?conteudo=2236. Accessed 30 Nov 2018c

  • IARC—International Agency for Research on Cancer (2002) Some traditional herbal medicines, some mycotoxins, naphthalene and styrene. IARC monographs on the evaluation of carcinogenic risks to humans, vol 82. International Agency for Research on Cancer, Lyon, pp 1–556

    Google Scholar 

  • IBGE – Instituto Brasileiro de Geografia e Estatística (2018) Levantamento Sistemático da Produção Agrícola. Rio de Janeiro 30:1–82 In Portuguese. Accessed 22 June 2018

    Google Scholar 

  • Magan N, Aldred D (2007) Post-harvest control strategies: minimizing mycotoxins in the food chain. Int J Food Microbiol 119:131–139

    Article  CAS  PubMed  Google Scholar 

  • Marín S, Homedes V, Sanchis V, Ramos AJ, Magan N (1999) Impact of Fusarium moniliforme and F. proliferatum colonisation of maize on calorific losses and fumonisin production under different environmental conditions. J Stored Prod Res 35:15–26

    Article  Google Scholar 

  • Marín S, Ramos AJ, Cano-Sancho G, Sanchis V (2013) Mycotoxins: occurrence, toxicology, and exposure assessment. Food Chem Toxicol 60:218–237

    Article  CAS  PubMed  Google Scholar 

  • Marshall A-L, Venuti DJ, Eastman DJ (2017) Fumonisin exposure in Guatemalan women of child-bearing age: a potential link to the observed high incidence of frontoethmoidal encephalocele. Ann Glob Health 83:3–11

    Google Scholar 

  • Missmer SA, Suarez L, Felkner M, Wang E, Merrill AH Jr, Rothman KL, Hendricks KA (2006) Exposure to fumonisins and the occurrence of neural tube defects along the Texas-Mexico border. Environ Health Perspect 114:237–241

    Article  PubMed  Google Scholar 

  • Munkvold GP, Hellmich RL, Rice LG (1999) Comparison of fumonisin concentrations in kernels of transgenic Bt maize hybrids and non-transgenic hybrids. Plant Dis 83:130–138

    Article  PubMed  Google Scholar 

  • Pietri A, Zanetti M, Bertuzzi T (2009) Distribution of aflatoxins and fumonisins in dry-milled maize fractions. Food Addit Contam 26:372–380

    Article  CAS  Google Scholar 

  • Pósa R, Stoev S, Kovács M, Donkó T, Repa I, Magyar T (2016) A comparative pathological finding in pigs exposed to fumonisin B1 and/or Mycoplasma hyopneumoniae. Toxicol Ind Health 32:998–1012

    Article  CAS  PubMed  Google Scholar 

  • Rheeder JP, Marasas WFO, Thiel PG, Sydenham EW, Shephard GS, van Schalkwyk DJ (1992) Fusarium moniliforme and fumonisins in corn in relation to human esophageal cancer in Transkei. Phytopathology 82:353–357

    Article  Google Scholar 

  • Riedel S, Abel S, Swanevelder S, Gelderblom WCA (2015) Induction of an altered lipid phenotype by two cancer promoting treatments in rat liver. Food Chem Toxicol 78:96–104

    Article  CAS  PubMed  Google Scholar 

  • Savi GD, Piacentini KC, Marchi D, Scussel VM (2016) Fumonisins B1 and B2 in the corn-milling process and corn-based products, and evaluation of estimated daily intake. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 33:339–345

    CAS  PubMed  Google Scholar 

  • Scudamore KA, Patel S (2009) Fusarium mycotoxins in milling streams from the commercial milling of maize imported to the UK, and relevance to current legislation. Food Addit Contam 26:744–753

    Article  CAS  Google Scholar 

  • Shephard GS, Sydenham EW, Thiel PG, Gelderblom WCA (1990) Quantitative determination of fumonisins B1 and B2 by high performance liquid chromatography with fluorescence detection. J Liq Chromatogr 13:2077–2087

    Article  CAS  Google Scholar 

  • Stock RA, Lewis JM, Klopfenstein TJ, Milton CT (2000) Review of new information on the use of wet and dry milling feed by-products in feedlot diets. J Anim Sci 77(E-Suppl):1–12

    Article  Google Scholar 

  • Szabó A, Szabó-Fodor J, Fébel H, Mézes M, Repa I, Kovács M (2016) Acute hepatic effects of low-dose fumonisin B1 in rats. Acta Vet Hung 64:436–448

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Aoyama S, Sugiura Y, Wang DS, Lee US, Hirooka EY, Yu S-Z (1993) A limited survey of fumonisins in corn and corn-based products in Asian countries. Mycotoxin Res 9:27–34

    Article  CAS  PubMed  Google Scholar 

  • Ueno Y, Iijima K, Wang S-D, Sugiura Y, Sekijima M, Tanaka T, Yu S-Z (1997) Fumonisins as a possible contributory risk factor for primary liver cancer: a 3-year study of corn harvested in Haimen, China, by HPLC and ELISA. Food Chem Toxicol 35:1143–1150

    Article  CAS  PubMed  Google Scholar 

  • Vanara F, Reyneri A, Blandino M (2009) Fate of fumonisin B1 in the processing of whole maize kernel during dry-milling. Food Control 20:235–238

    Article  CAS  Google Scholar 

  • Vanara F, Scarpino V, Blandino M (2018) Fumonisin distribution in maize dry-milling products and by-products: impact of two industrial degermination systems. Toxins 10:357 (15 pages). https://doi.org/10.3390/toxins10090357

    Article  CAS  PubMed Central  Google Scholar 

  • Vendruscolo CP, Frias NC, Carvalho CB, Sá LRM, Belli CB, Baccarin RYA (2016) Leukoencephalomalacia outbreak in horses due to consumption of contaminated hay. J Vet Intern Med 30:1979–1881

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the CAPES (Co-ordination for Formation of High Level Professionals)—Nanobiotechnology Network Program (04/CII-2008), CNPq (The Brazilian Government Organization for Grant Aid and Fellowship to Brazilian Researchers)—grant no. 405452/2016-0, FINEP, the Araucária Foundation (Project announcement 09/2016, Research project agreement 001/2017—grant no. 47396), and Paraná Fund/SETI. The CNPq research productivity fellowship supported E.Y.S. Ono (grant no. 307710/2014-9) and M.A. Ono (grant no. 310852/2014-5); the CAPES/National Post-doctoral Program (CAPES/PNPD) scholarship supported I.R. Amador, and CAPES/Doctoral scholarship supported J. G. Bordini and M.T. Hirozawa.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisabete Yurie Sataque Ono.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Table S1

(DOC 31 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bordini, J.G., Ono, M.A., Garcia, G.T. et al. Transgenic versus conventional corn: fate of fumonisins during industrial dry milling. Mycotoxin Res 35, 169–176 (2019). https://doi.org/10.1007/s12550-019-00343-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-019-00343-1

Keywords

Navigation