First report of Fusarium foetens as a mycotoxin producer

Abstract

Fusarium foetens, a pathogen of Begonia plants, has been recently described as a new fungal species. This Fusarium species causes a destructive vascular wilt disease which leads to the death of the plant. Moreover, Fusarium species are known to produce a huge variety of secondary metabolites such as mycotoxins and phytotoxins. Here, we studied the toxicogenic profile of one F. foetens strain, isolated from maize, employing two methods based on the use of ultra-performance liquid chromatography coupled to mass spectrometry-ion trap-time of flight detection. The mycotoxins beauvericin and fusaric acid were detected in a pure culture of F. foetens. In addition, four fusaric acid analogs (10,11-dihidroxyfusaric acid, hydroxyfusaric acid, dehydrofusaric acid, and a hydroxylated unsaturated fusaric acid analog) were tentatively identified on the basis of their accurate mass and fragmentation patterns. Therefore, these preliminary data indicate that F. foetens isolated from maize is able to produce Fusarium mycotoxins including beauvericin and fusaric acid.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Burmeister HR, Grove MD, Peterson RE, Weisleder D, Plattner RD (1985) Isolation and characterization of two new fusaric acid analogs from Fusarium moniliforme NRRL 13,163. Appl Environ Microbiol 50:311–314

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Capasso R, Evidente A, Cutignano A, Vurro M, Zonno MC, Bottalico A (1996) Fusaric and 9,10-dehydrofusaric acids and their methyl esters from Fusarium nygamai. Phytochemistry 41:1035–1039. https://doi.org/10.1016/0031-9422(95)00716-4

    Article  CAS  Google Scholar 

  3. Crutcher FK, Puckhaber LS, Bell AA, Liu J, Duke SE, Stipanovic RD, Nichols RL (2017) Detoxification of fusaric acid by the soil microbe Mucor rouxii. J Agric Food Chem 65:4989–4992. https://doi.org/10.1021/acs.jafc.7b01655

    Article  CAS  PubMed  Google Scholar 

  4. Curir P, Guglieri L, Dolci M, Capponi A, Aurino G (2000) Fusaric acid production by Fusarium oxysporum f sp lilii and its role in the lily basal rot disease. Eur J Plant Pathol 106:849–856. https://doi.org/10.1023/A:1008739708931

    Article  CAS  Google Scholar 

  5. D’Mello JPF, Placinta CM, Macdonald AMC (1999) Fusarium mycotoxins: a review of global implications for animal health, welfare and productivity. Anim Feed Sci Technol 80:183–205. https://doi.org/10.1016/S0377-8401(99)00059-0

    Article  Google Scholar 

  6. EPPO (2013) PM 7/111 (1) Fusarium foetens. EPPO Bulletin 43:68–80. https://doi.org/10.1111/epp.12021

    Article  Google Scholar 

  7. Ferrer I, Thurman EM (2003) Liquid chromatography/time-of-flight/mass spectrometry (LC/TOF/MS) for the analysis of emerging contaminants. TrAC Trends Anal Chem 22:750–756. https://doi.org/10.1016/S0165-9936(03)01013-6

    Article  CAS  Google Scholar 

  8. Frisvad JC, Andersen B, Thrane U (2008) The use of secondary metabolite profiling in chemotaxonomy of filamentous fungi. Mycol Res 112:231–240. https://doi.org/10.1016/j.mycres.2007.08.018

    Article  CAS  PubMed  Google Scholar 

  9. Gonzalez JM, Alfonso A, Sainz MJ, Botana LM (2016) Production and detection of the natural ionophore beauvericin. Planta Med 82:S1–S381. https://doi.org/10.1055/s-0036-1596691

    Article  Google Scholar 

  10. Gonzalez-Jartin JM, Alfonso A, Sainz MJ, Vieytes MR, Botana LM (2017) UPLC-MS-IT-TOF identification of circumdatins produced by Aspergillus ochraceus. J Agric Food Chem 65:4843–4852. https://doi.org/10.1021/acs.jafc.7b01845

    Article  CAS  Google Scholar 

  11. Gonzalez-Jartin JM, Alfonso A, Sainz MJ, Vieytes MR, Botana LM (2018) Detection of new emerging type-A trichothecenes by untargeted mass spectrometry. Talanta 178:37–42. https://doi.org/10.1016/j.talanta.2017.09.009

    Article  CAS  PubMed  Google Scholar 

  12. Gruber-Dorninger C, Novak B, Nagl V, Berthiller F (2017) Emerging mycotoxins: beyond traditionally determined food contaminants. J Agric Food Chem 65:7052–7070. https://doi.org/10.1021/acs.jafc.6b03413

    Article  CAS  PubMed  Google Scholar 

  13. Harvey RB, Edrington TS, Kubena LF, Elissalde MH, Casper HH, Rottinghaus GE, Turk JR (1996) Effects of dietary fumonisin B1-containing culture material, deoxynivalenol-contaminated wheat, or their combination on growing barrows. Am J Vet Res 57:1790–1794

    CAS  PubMed  Google Scholar 

  14. Huvenne H, Debode J, Maes M, Heungens K (2011) Real-time PCR mediated monitoring of Fusarium foetens in symptomatic and non-symptomatic hosts. Eur J Plant Pathol 131:705–717. https://doi.org/10.1007/s10658-011-9844-9

    Article  Google Scholar 

  15. Klitgaard A, Iversen A, Andersen MR, Larsen TO, Frisvad JC, Nielsen KF (2014) Aggressive dereplication using UHPLC-DAD-QTOF: screening extracts for up to 3000 fungal secondary metabolites. Anal Bioanal Chem 406:1933–1943. https://doi.org/10.1007/s00216-013-7582-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Komada H (1975) Development of a selective medium for quantitative isolation of Fusarium oxysporum from natural soil. Rev Plant Prot Res 8:114–125

    Google Scholar 

  17. Leslie JF, Summerell BA (2006) The Fusarium laboratory manual. Blackwell Publishing, New Jersey. https://doi.org/10.1002/9780470278376

    Google Scholar 

  18. Li-Jun M, van der Does HC, Borkovich KA et al (2010) Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature 464:367–373. https://doi.org/10.1038/nature08850

    Article  CAS  Google Scholar 

  19. Löffler H, Mouris J (1992) Fusaric acid: phytotoxicity and in vitro production by Fusarium oxysporum f. sp. lilii, the causal agent of basal rot in lilies Netherlands. J Plant Pathol 98:107–115. https://doi.org/10.1007/BF01996323

    Article  Google Scholar 

  20. Lopez-Diaz C, Rahjoo V, Sulyok M, Ghionna V, Martín-Vicente A, Capilla J, Di Pietro A, López- Berges MS (2018) Fusaric acid contributes to virulence of Fusarium oxysporum on plant and mammalian hosts. Mol Plant Pathol 19:440–453. https://doi.org/10.1111/mpp.12536

    Article  CAS  PubMed  Google Scholar 

  21. Munkvold GP (2017) Fusarium species and their associated mycotoxins. In: Moretti A, Susca A (eds) Mycotoxigenic fungi. Methods in molecular biology, vol 1542. Humana Press, New York, pp 51–106. https://doi.org/10.1007/978-1-4939-6707-0_4

    Google Scholar 

  22. Nazari F, Sulyok M, Kobarfard F, Yazdanpanah H, Krska R (2015) Evaluation of emerging Fusarium mycotoxins beauvericin, enniatins, fusaproliferin and moniliformin in domestic rice in Iran. Iran J Pharm Res 14:505–512

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Niehaus EM, von Bargen KW, Espino JJ, Pfannmuller A, Humpf HU, Tudzynski B (2014) Characterization of the fusaric acid gene cluster in Fusarium fujikuroi. Appl Microbiol Biotechnol 98:1749–1762. https://doi.org/10.1007/s00253-013-5453-1

    Article  CAS  PubMed  Google Scholar 

  24. O'Donnell K, Kistler HC, Tacke BK, Casper HH (2000) Gene genealogies reveal global phylogeographic structure and reproductive isolation among lineages of Fusarium graminearum, the fungus causing wheat scab. Proc Natl Acad Sci U S A 97:7905–7910. https://doi.org/10.1073/pnas.130193297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Rabie CJ, Marasas WFO, Thiel PG, Lübben A, Vleggaar R (1982) Moniliformin production and toxicity of different Fusarium species from Southern Africa. Appl Environ Microbiol 43:517–521

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sainz MJ, Alfonso A, Botana LM (2015) Considerations about international mycotoxin legislation, food security, an climate change. In: Botana LM, Sainz MJ (eds) Climate change and mycotoxins. De Gruyter, Berlin, pp 153–173. https://doi.org/10.1515/9783110333619-010

    Google Scholar 

  27. Sainz MJ, Gonzalez-Jartin JM, Aguin O, Mansilla JP, Botana LM (2018) Isolation, characterization, and identification of mycotoxin-producing fungi. In: Botana LM (ed) Environmental toxicology. De Gruyter, Berlin, pp 203–245. https://doi.org/10.1515/9783110442045-008

    Google Scholar 

  28. Schroers HJ, Baayen RP, Meffert JP, de Gruyter J, Hooftman M, O'Donnell K (2004) Fusarium foetens, a new species pathogenic to begonia elatior hybrids (Begonia x hiemalis) and the sister taxon of the Fusarium oxysporum species complex. Mycologia 96:393–406. https://doi.org/10.2307/3762070

    Article  PubMed  Google Scholar 

  29. Smedsgaard J (1997) Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. J Chromatogr A 760:264–270. https://doi.org/10.1016/S0021-9673(96)00803-5

    Article  CAS  PubMed  Google Scholar 

  30. Smith JE, Solomons GL, Lewis CW, Anderson JG (1994) Mycotoxins in human nutrition and health. European Commission Directorate-General XII, Bruxelles

    Google Scholar 

  31. Smith TK, McMillan EG, Castillo JB (1997) Effect of feeding blends of Fusarium mycotoxin-contaminated grains containing deoxynivalenol and fusaric acid on growth and feed consumption of immature swine. J Anim Sci 75:2184–2191. https://doi.org/10.2527/1997.7582184x

    Article  CAS  PubMed  Google Scholar 

  32. Streit E, Schatzmayr G, Tassis P, Tzika E, Marin D, Taranu I, Tabuc C, Nicolau A, Aprodu I, Puel O, Oswald IP (2012) Current situation of mycotoxin contamination and co-occurrence in animal feed-focus on Europe. Toxins 4:788–809. https://doi.org/10.3390/toxins4100788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Sulyok M, Berthiller F, Krska R, Schuhmacher R (2006) Development and validation of a liquid chromatography/tandem mass spectrometric method for the determination of 39 mycotoxins in wheat and maize. Rapid Commun Mass Spectrom 20:2649–2659. https://doi.org/10.1002/rcm.2640

    Article  CAS  PubMed  Google Scholar 

  34. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729. https://doi.org/10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van der Gaag D, Raak M (2010) Pest risk assessment Fusarium foetens. Plant Protection Service, Ministry of Agriculture, Nature and Food Quality, The Hague

    Google Scholar 

  36. Wu H-S, BW LD-Y, Ling N, Ying R-R, Raza W, Shen Q-R (2008) Effect of fusaric acid on biomass and photosynthesis of watermelon seedlings leaves. Caryologia 61:258–268. https://doi.org/10.1080/00087114.2008.10589638

    Article  CAS  Google Scholar 

  37. Zhu Q, Zhang H, Duan Y, Chang S, Wei L, Li C, Miao H (2016) Identification of the toxin of sesame Fusarium wilt pathogen and its toxic effect on sesame seedlings. Plant Prot 42:27–33. https://doi.org/10.3969/j.issn.0529-1542.2016.04.004

    CAS  Article  Google Scholar 

  38. Zonno MC, Vurro M, Capasso R, Evidente A, Cutignano A, Sauerborn J, Thomas H (1996) Phytotoxic metabolites produced by Fusarium nygamai from Striga hermonthica. In: Moran VC, Hoffmann (eds) Proceedings of the IX International Symposium on Biological Control of Weeds, University of Cape Town, South Africa, pp 223–226

Download references

Acknowledgments

The research leading to these results has received funding from the following FEDER cofunded grants: from Conselleria de Cultura, Educacion e Ordenación Universitaria, Xunta de Galicia, 2017 GRC GI-1682 (ED431C 2017/01); from CDTI and Technological Funds, supported by Ministerio de Economía, Industria y Competitividad, AGL2014-58210-R, AGL2016-78728-R (AEI/FEDER, UE), ISCIII/PI16/01830, RTC-2016-5507-2, and ITC-20161072; from European Union POCTEP 0161-Nanoeaters-1-E-1, Interreg AlertoxNet EAPA-317-2016, Interreg Agritox EAPA-998-2018, and H2020 778069-EMERTOX. Jesús M. González-Jartín was supported by a fellowship from Programa de Formación de Profesorado Universitario (FPU14/00166), Ministerio de Educación, Cultura y Deporte, Spain.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Amparo Alfonso or Luis M. Botana.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest. The authors have full control of all primary data and allow the journal to review the data if requested.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 49 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

González-Jartín, J.M., Alfonso, A., Sainz, M.J. et al. First report of Fusarium foetens as a mycotoxin producer. Mycotoxin Res 35, 177–186 (2019). https://doi.org/10.1007/s12550-019-00341-3

Download citation

Keywords

  • Fusarium foetens
  • Fusaric acid
  • Mycotoxin
  • Begonia