Skip to main content
Log in

Effect of atrazine on growth and production of AFB1 in Aspergillus section Flavi strains isolated from maize soils

  • Original Article
  • Published:
Mycotoxin Research Aims and scope Submit manuscript

Abstract

Atrazine is one of the most frequently used herbicides in Argentina for controlling broadleaf weeds and annual grasses. Currently, there is limited information on the impact of triazine herbicides on mycotoxin production and growth parameters of toxigenic fungi in maize. The objective of this study was to evaluate the effect of different concentrations of atrazine on the lag phase prior to growth, the growth rate, and on production of aflatoxin B1 (AFB1) of Aspergillus flavus and Aspergillus parasiticus strains, on maize meal extract agar (MMEA) under different water activities (aW) and temperatures. A commercial formulation of atrazine was added to MMEA medium at 0, 5, 10, 50, or 100 mmol/l, adjusted to 0.98, 0.95, and 0.93 aW, and incubated at 28 °C and 37 °C for 21 days. AFB1 was determined by HPLC after 7, 14, and 21 days of incubation. In the control treatments, a significant increase in the time prior to growth was observed and as the aW decreased, at both temperatures, the growth rate of the strains also decreased. A significant increase in growth rate was observed as the concentration of atrazine in the medium increased, for all aW levels tested. The optimal conditions for the accumulation of AFB1 in the control treatments were 0.98 aW and 28 °C, after 7 days of incubation. As the concentration of herbicide increased, AFB1 production also increased (P < 0.05). These results add to the knowledge about consequences with regard to aflatoxin production of the use of excessive atrazine doses in extensive maize culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Barberis CL, Astoreca A, Fernandez-Juri MG, Dalcero AM, Magnoli CE (2010) Effect of antioxidant mixtures on growth and ochratoxin A production of Aspergillus section Nigri species under different water activity conditions on peanut meal extract agar. Toxins 2:1399–1413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barberis CL, Carranza CS, Chiacchiera SM, Magnoli CE (2013) Influence of herbicide glyphosate on growth and aflatoxin B1 production by Aspergillus section Flavi strains isolated from soil on in vitro assay. J Environ Sci Health B 48:1070–1079

    Article  CAS  PubMed  Google Scholar 

  • Bastos AC, Magan N (2009) Trametes versicolor: potential for atrazine bioremediation in calcareous clay soil, under low water availability conditions. Int Biodet Biodeg 63:389–394

    Article  CAS  Google Scholar 

  • Bending GD, Friloux M, Walker A (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic potential. FEMS Microbiol Lett 212:59–63

    Article  CAS  PubMed  Google Scholar 

  • Bennett JW (2010) An overview of the genus Aspergillus. Mol Biol Genom 1:1–17

    Google Scholar 

  • Carranza CS, Barberis CL, Chiacchiera SM, Magnoli CE (2014a) Influence of the pesticides glyphosate, chlorpyrifos and atrazine on growth parameters of nonochratoxigenic Aspergillus section Nigri strains isolated from agricultural soils. J Environ Sci Health, Part B 49:747–755

    Article  CAS  Google Scholar 

  • Carranza CS, Bergesio MV, Barberis CL, Chiacchiera SM, Magnoli CE (2014b) Survey of Aspergillus section Flavi presence in agricultural soils and effect of glyphosate on nontoxigenic A. flavus growth on soil-based medium. J Appl Microbiol 116:1229–1240

    Article  CAS  PubMed  Google Scholar 

  • Carranza CS, Barberis CL, Chiacchiera SM, Magnoli CE (2017) Assessment of growth of Aspergillus spp. from agricultural soils in the presence of glyphosate. Rev Arg Microbiol 49:384–393

    Google Scholar 

  • Carvajal M (2013) Transformación de la aflatoxina B1 de alimentos, en el cancerígeno humano aducto AFB1-ADN. TIP Revista Especializada en Ciencias Químico-Biológicas UNAM 16:109–120

    Article  CAS  Google Scholar 

  • Dallyn H, Fox A (1980) Spoilage of material of reduced water activity by xerophilic fungi. In: Gould G, Corry E (eds) Microbial growth and survival in extremes of environment. Academic Press, London, pp 129–139

    Google Scholar 

  • De Gerónimo E, Aparicio VC, Bárbaro S, Portocarrero R, Jaime S, Costa JL (2014) Presence of pesticides in surface water from four sub-basins in Argentina. Chemosphere 107:423–431

    Article  CAS  Google Scholar 

  • Entry JA, Donnelly PK, Emmingham WH (1996) Mineralization of atrazine and 2,4-D in soils inoculated with Phanerochaete chrysosporium and Trappea darkeri. Appl Soil Ecol 3:85–90

    Article  Google Scholar 

  • European Commission (2004) Commission decision 2004/248/EC of 10 March 2004 concerning the non-inclusion of atrazine in Annex I to council directive 91/414/EEC and the withdrawal of authorizations for plant protection products containing this active substance. Offl J Eur Comm 078:53–55

    Google Scholar 

  • Ficociello B, Sturchio E, Minoia C, Casorri L, Imbriani P, Signorini S (2010) Epigenetics and environmental exposure to xenobiotics. G Ital Med Lav Ergon 32:13–22

    CAS  PubMed  Google Scholar 

  • Geisen R (1996) Multiplex polymerase chain reaction for the detection of potential aflatoxin and sterigmatocystin producing fungi. Appl Microbiol 19:388–392

    Article  CAS  Google Scholar 

  • Giddings JM, Anderson TA, Hall LW Jr, Hosmer AJ, Kendall RJ, Richards RP, Solomon KR, Williams WM (2005) Atrazine in north American surface waters: a probabilistic aquatic ecological risk assessment. SETAC Press, Pensacola, p 392

    Google Scholar 

  • Gopi V, Upgade A, Soundararajan N (2012) Bioremediation potential of individual and consortium non-adapted fungal strains on Azodye containing textile effluent. Adv Appl Sci Res 3:303–311

    CAS  Google Scholar 

  • Graymore M, Stagnitti F, Allison G (2001) Impacts of atrazine in aquatic ecosystems. Environ Int 26:483–495

    Article  CAS  PubMed  Google Scholar 

  • Hasan HAH (1999a) Mode of action of pesticides on aflatoxin biosynthesis and oxidase system activity. Microbiol Res 154:95–102

    Article  CAS  PubMed  Google Scholar 

  • Hasan HAH (1999b) Fungal utilization of organophosphate pesticides and their degradation by Aspergillus flavus and A. sydowii in soil. Folia Microbiol 44:77–84

    Article  CAS  Google Scholar 

  • Hayes T, Haston K, Tsui M, Hoang A, Haeffele C, Vonk A (2003) Atrazine-induced hermaphroditism at 0.1 ppb in American leopard frogs (Rana pipiens): laboratory and field evidence. Environ Health Persp 111:568–575

    Article  CAS  Google Scholar 

  • Ibiene AA, Orji FA, Ezidi CO, Ngwobia CL (2011) Bioremediation of hydrocarbon contaminated soil in the Niger Delta using spent mushroom compost and other organic wastes. Niger J Agric Food Environ 7:1–7

    Google Scholar 

  • International Agency for Research on Cancer (IARC) (1993) Evaluation of carcinogenic risks of chemical to humans. Some naturally-occurring substances: food items and constituents. In: Heterocyclic aromatic amines and mycotoxins, vol 56. IARC monographs, Lyon, pp 359–362

    Google Scholar 

  • Jablonowski ND, Hamacher G, Martinazzo R, Langen U, Köppchen S, Hofmann D, Burauel P (2010) Metabolism and persistence of atrazine in several field soils with different atrazine application histories. J Agric Food Chem 58:12869–12877

    Article  CAS  PubMed  Google Scholar 

  • Klich MA (2002) Biogeography of Aspergillus species in soil and litter. Mycology 94:21–27

    Article  Google Scholar 

  • Krzysko-Łupicka T, Strof W, Kubs K, Skorupa M, Wieczorek P, Lejczak B, Kafarski P (1997) The ability of soil-borne fungi to degrade organophosphonate carbon-to-phosphorus bonds. Appl Microbiol Biotechnol 48:549–552

    Article  PubMed  Google Scholar 

  • Lahlali R, Serrhini MN, Jijakli MH (2005) Studying and modeling the combined effect of water activity and temperature on growth rate of P. expansum. Int J Food Microbiol 103:315–322

    Article  CAS  PubMed  Google Scholar 

  • Lasserre JP, Fack F, Revets D, Planchon S, Renaut J, Hoffmann L, Gutleb AC, Muller CP, Bohn T (2009) Effects of the endocrine disruptors atrazine and PCB 153 on the protein expression of MCF-7 human cells. J Proteome Res 8:5485–5496

    Article  CAS  PubMed  Google Scholar 

  • MacLennan PA, Delzell E, Sathiakumar N, Myers SL, Cheng H, Grizzle W, Chen VW, Wu XC (2002) Cancer incidence among triazine herbicide manufacturing workers. J Occup Environ Med 44:1048–1058

    Article  PubMed  Google Scholar 

  • Madariaga-Navarrete A, Rodríguez-Pastrana BR, Villagómez-Ibarra JR, Acevedo-Sandoval OA, Perry G, Islas-Pelcastre M (2017) Bioremediation model for atrazine contaminated agricultural soils using phytoremediation (using Phaseolus vulgaris L.) and a locally adapted microbial consortium. J Environ Sci Health, Part B 52:367–375

    Article  CAS  Google Scholar 

  • Maldonado CE, Rivera CMC, Izquierdo RF, Palma LDJ (2010) Efectos de rizósfera, microorganismos y fertilización en la biorremediación y fitorremediación de suelos con petróleos crudo nuevo e intemperizado. Universidad y Ciencia 26:121–136

    Google Scholar 

  • Mougin C, Laugero C, Asther M, Dubroca J, Frasse P, Asther M (1994) Biotransformation of the herbicide atrazine by the white rot fungus Phanerochaete chrysosporium. Appl Environ Microbiol 60:705–708

    CAS  PubMed  PubMed Central  Google Scholar 

  • Passone MA, Resnik SL, Etcheverry MG (2005) In vitro effect of phenolic antioxidants on germination, growth and aflatoxin B1 accumulation by peanut Aspergillus section Flavi. J Appl Microbiol 99:682–691

    Article  CAS  PubMed  Google Scholar 

  • Perrone G, Susca A, Cozzi G, Ehrlich K, Varga J, Frisvad JC, Meijer M, Noonim P, Mahakarnchanakul W, Samson RA (2007) Biodiversity of Aspergillus species in some important agricultural products. Stud Mycol 59:53–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pildain MB, Cabral D, Vaamonde G (2005) Poblaciones de Aspergillus flavus en maní cultivado en diferentes zonas agroecológicas de la Argentina, caracterización morfológica y toxigénica. RIA 34:3–19

    Google Scholar 

  • Quinn GP, Keough MJ (2002) Experimental design data analysis for biologists. United Kingdom, Cambridge University Press, Cambridge, p 553

    Book  Google Scholar 

  • Reddy KN, Abbas HK, Zablotowicz RM, Abel CA, Koger CH (2007) Mycotoxin occurrence and Aspergillus flavus soil propagules in a corn and cotton glyphosate-resistant cropping systems. Food Addit Contam 24:1367–1373

    Article  CAS  PubMed  Google Scholar 

  • Ronco AE, Marino DJG, Abelando M, Almada P, Apartin CD (2016) Water quality of the main tributaries of the Paraná Basin: glyphosate and AMPA in surface water and bottom sediments. Environ Monitor Assessment 188(458):458. https://doi.org/10.1007/s10661-016-5467-0

    Article  CAS  Google Scholar 

  • Rothrock CS (1992) Tillage systems and plant disease. Soil Sci 154:308–315

    Article  Google Scholar 

  • Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B (2010) Food and indoor fungi. Centraalboreeau Voorschimmelcultures Utrecht, Utrecht, p 390

    Google Scholar 

  • Samson RA, Visagie CM, Houbraken J, Hong SB, Hubka V, Klaassen CHW, Perrone G, Seifert KA, Susca A, Tanney JB, Varga J, Kocsubé S, Szigeti G, Yaguchi T, Frisvad JC (2014) Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol 78:141–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scursoni JA, Satorre EH (2010) Glyphosate management strategies, weed diversity and soybean yield in Argentina. Crop Prot 29:957–962

    Article  CAS  Google Scholar 

  • Sene L, Converti A, Ribeiro Secchi GA, De Cassia R, Simao G (2010) New aspects on atrazine biodegradation. Braz Arch Biol Technol 53:487–496

    Article  CAS  Google Scholar 

  • Singh B, Singh K (2016) Microbial degradation of herbicides. Crit Rev Microbiol 42:245–261

    Article  CAS  PubMed  Google Scholar 

  • Székács A, Mörtl M, Darvas B (2015) Monitoring pesticide residues in surface and ground water in Hungary: surveys in 1990–2015. J Chem 2015(717948):1–15. https://doi.org/10.1155/2015/717948

    Article  CAS  Google Scholar 

  • Trucksess MW, Stack ME, Nesheim S, Albert R, Romer T (1994) Multifunctional column coupled with liquid chromatography for determination of aflatoxins B1, B2, G1 and G2 in corn, almonds, Brazil nuts, peanuts, and pistachio nuts: collaborative study. J AOAC Int 77:1512–1521

    CAS  PubMed  Google Scholar 

  • Udiković-Kolić N, Colin S, Martin-Laurent F (2012) Evolution of atrazine-degrading capabilities in the environment. Appl Microbiol Biotechnol 96:1175–1189

    Article  CAS  PubMed  Google Scholar 

  • Villamil Lepori EC, Bovi Mitre G, Nassetta M (2013) Situación actual de la contaminación por plaguicidas en Argentina. Rev Int Contam Amb 29:25–43

    Google Scholar 

  • Wiegand C, Krause E, Steinberg C, Pflugmacher S (2001) Toxicokinetics of atrazine in embryos of the zebrafish (Danio rerio). Ecotoxicol Environ Saf 49:199–205

    Article  CAS  PubMed  Google Scholar 

  • Zain ME (2011) Impact of mycotoxins on humans and animals. J Saudi Chem Soc 15:129–144

    Article  CAS  Google Scholar 

Download references

Funding

The study received financial support by Agencia Nacional de Promoción Científica y Tecnológica (ANPCYT-PICT-0943/14) and Secretaría de Ciencia y Técnica, Universidad Nacional de Río Cuarto (SECYT-UNRC-18/453).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carla Lorena Barberis.

Ethics declarations

Conflict of interest

None.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benito, N., Carranza, C.S., Magnoli, C.E. et al. Effect of atrazine on growth and production of AFB1 in Aspergillus section Flavi strains isolated from maize soils. Mycotoxin Res 35, 55–64 (2019). https://doi.org/10.1007/s12550-018-0330-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12550-018-0330-5

Keywords

Navigation