Advertisement

Mycotoxin Research

, Volume 31, Issue 4, pp 177–183 | Cite as

Immunochemical analysis of fumigaclavine mycotoxins in respiratory tissues and in blood serum of birds with confirmed aspergillosis

  • Hadri Latif
  • Madeleine GrossEmail author
  • Dominik Fischer
  • Michael Lierz
  • Ewald Usleber
Original Article

Abstract

The ergoline alkaloid fumigaclavine A (FuA) is one of the major mycotoxins produced by Aspergillus fumigatus, the main causative fungal agent of avian aspergillosis. To study in situ production of FuA, post-mortem respiratory tissues of various avian species, as well as blood samples of falcons (Falco sp.), were analysed by enzyme immunoassay (EIA). At a detection limit of 1.5 ng/ml, FuA EIA positive results were obtained for tissue samples from seven (64 %) out of 11 birds with confirmed aspergillosis, with a maximum concentration of 38 ng/g, while all controls (n = 7) were negative. No FuA could be detected in blood serum (detection limit 0.7 ng/ml) of 15 falcons, experimentally inoculated with A. fumigatus conidia. Fungal mycelium material from tissue of clinical aspergillosis cases, cultured on malt extract agar, was highly positive in the FuA EIA in milligrams per gram range. Chromatographic analysis of mycelium extracts revealed the co-presence of FuA and the structurally related fumigaclavine C (FuC). Alkaline hydrolysis of FuA and FuC yielded the corresponding deacetylation products, FuB and FuE. This is the first report showing that fumigaclavine alkaloids are produced by A. fumigatus in situ during the course of clinical aspergillosis in birds; however, the role of these compounds in the pathogenesis of this disease is still unknown.

Keywords

Mycotoxin Ergot alkaloids Aspergillosis Falcon Respiratory tissue 

Notes

Acknowledgments

H. Latif was supported by the German Academic Exchange Service (DAAD).

Conflict of interest

None

References

  1. Beernaert LA, Pasmans F, Van Waeyenberghe L, Haesebrouck F, Martel A (2010) Aspergillus infections in birds: a review. Avian Pathol 39:325–331CrossRefPubMedGoogle Scholar
  2. Chotirmall SH, Mirkovic B, Lavelle GM, McElvaney NG (2014) Immunoevasive Aspergillus virulence factors. Mycopathologia 178:363–370CrossRefPubMedGoogle Scholar
  3. Cole RJ, Kirksey JW, Dorner JW, Wilson DM, Johnson JC, Johnson AN, Bedell DM, Springer JP, Chexal KK, Clardy JC, Cox RH (1977) Mycotoxins produced by Aspergillus fumigatus species isolated from molded silage. J Agric Food Chem 25:826–830CrossRefPubMedGoogle Scholar
  4. Denning DW (1998) Invasive aspergillosis. Clin Infect Dis 26:781–805CrossRefPubMedGoogle Scholar
  5. Du RH, Guang Li EG, Cao Y, Song YC, Tan TX (2011) Fumigaclavine C inhibits tumor necrosis factor α production via suppression of toll-like receptor 4 and nuclear factor κB activation in macrophages. Life Sci 89:235–240CrossRefPubMedGoogle Scholar
  6. Fischer D, Lierz M (2015) Diagnostic procedures and available techniques for the diagnosis of aspergillosis in birds. J Exotic Pet Med 24:283–295Google Scholar
  7. Fischer D, Van Waeyenberghe L, Cray C, Gross M, Usleber E, Pasmans F, Martel A, Lierz M (2014) Comparison of diagnostic tools for the detection of aspergillosis in blood samples of experimentally infected falcons. Avian Dis 58:587–598CrossRefPubMedGoogle Scholar
  8. Flieger M, Wurst M, Shelby M (1997) Ergot alkaloids—sources, structures and analytical methods. Folia Microbiol 42:3–30CrossRefGoogle Scholar
  9. Frisvad JC, Rank C, Nielsen KF, Larsen TO (2009) Metabolomics of Aspergillus fumigatus. Med Mycol 47(Suppl I):S53–S71CrossRefPubMedGoogle Scholar
  10. Ge HM, Yu ZG, Zhang J, Wu JH, Tan RX (2009) Bioactive alkaloids from endophytic Aspergillus fumigatus. J Nat Prod 72:753–755CrossRefPubMedGoogle Scholar
  11. Guinea J, Bouza E (2014) Current challenges in the microbiological diagnosis of invasive aspergillosis. Mycopathologia 178:403–416CrossRefPubMedGoogle Scholar
  12. Hof H, Kupfahl C (2009) Gliotoxin in Aspergillus fumigatus: an example that mycotoxins are potential virulence factors. Mycotoxin Res 25:123–131CrossRefPubMedGoogle Scholar
  13. Khosravi AR, Shokri H, Ziglari T, Naeini AR, Mousavi Z, Hashemi H (2008) Outbreak of severe disseminated aspergillosis in a flock of ostrich (Struthio camelus). Mycoses 51:557–559CrossRefPubMedGoogle Scholar
  14. Kousha M, Tadi R, Soubani AO (2011) Pulmonary aspergillosis: a clinical review. Eur Respir Rev 20:156–174CrossRefPubMedGoogle Scholar
  15. Lair-Fulleringer S, Guillot J, Desterque C, Seguin D, Warin S, Chermette R, Bretagne S (2003) Differentiation of Aspergillus fumigatus isolates from breeding turkeys and their environment by genotyping with microsatellite markers. J Clin Microbiol 41:1798–1800PubMedCentralCrossRefPubMedGoogle Scholar
  16. Latif H, Curtui V, Ackermann Y, Gross M, Usleber E (2009) Production and characterization of antibodies against fumigaclavine A. Mycotoxin Res 25:159–164CrossRefPubMedGoogle Scholar
  17. Ma HY, Song YC, Mao YY, Jiang JH, Tan RX, Luo L (2006) Endophytic fungal metabolite fumigaclavine C causes relaxation of isolated rat aortic rings. Planta Med 72:387–392CrossRefPubMedGoogle Scholar
  18. Mayahi M, Esmaeilzadeh S, Kiani R, Fatahinia M (2008) Aspergillus fumigatus infection in a green parrot. Comp Clin Pathol 17:279–281CrossRefGoogle Scholar
  19. Mulinti P, Allen NA, Coyle CM, Gravelat FN, Sheppard DC, Panaccione DG (2014) Accumulation of ergot alkaloids during conidiophore development in Aspergillus fumigatus. Curr Microbiol 68:1–5CrossRefPubMedGoogle Scholar
  20. Nielsen KF, Smedsgaard J (2003) Fungal metabolite screening: database of 474 mycotoxins and fungal metabolites for dereplication by standardised liquid chromatography–UV–mass spectrometry methodology. J Chromatogr A 1002:111–136CrossRefPubMedGoogle Scholar
  21. Olias P, Gruber AD, Winfried B, Hafez HM, Lierz M (2010) Fungal pneumonia as a major cause of mortality in white stork (Ciconia ciconia) chicks. Avian Dis 54:94–98CrossRefPubMedGoogle Scholar
  22. Panaccione DG (2005) Origins and significance of ergot alkaloid diversity in fungi—mini review. FEMS Microbiol Lett 251:9–17CrossRefPubMedGoogle Scholar
  23. Panaccione DG, Beaulieu WT, Cook D (2014) Bioactive alkaloids in vertically transmitted fungal endophytes. Functional Ecol 28:299–314CrossRefGoogle Scholar
  24. Pellegrino M, Alonso V, Vissio CA, Larriestra A, Chiacchiera SM, Bogni C, Cavaglieri L (2013) Gliotoxinogenic Aspergillus fumigatus in the dairy herd environment. Mycotoxin Res 29:71–78CrossRefPubMedGoogle Scholar
  25. Pertz H (1996) Naturally occurring clavines: antagonism/partial agonism at 5-HT2A receptors and antagonism at α1-adrenoceptors in blood vessels. Planta Med 62:387–392CrossRefPubMedGoogle Scholar
  26. Poulding RH (1952) Five cases of aspergillosis in immature gulls. Ibis 94:364–366CrossRefGoogle Scholar
  27. Redig P (2008) Fungal diseases—aspergillosis. In: Samour J (ed) Avian medicine, 2nd edn. Mosby Elsevier, Amsterdam, pp 373–387Google Scholar
  28. Reeves EP, Messina CGM, Doyle S, Kavanagh K (2004) Correlation between gliotoxin production and virulence of Aspergillus fumigatus in Galleria mellonella. Mycopathologia 158:73–79CrossRefPubMedGoogle Scholar
  29. Reissig EC, Uzal FA, Schettino A, Robles CA (2002) Pulmonary aspergillosis in a great rhea (Rhea americana)—case report. Avian Dis 46:754–756CrossRefPubMedGoogle Scholar
  30. Richard JL, DeBey MC (1995) Production of gliotoxin during the pathogenic state in turkey poults by Aspergillus fumigatus Fresenius. Mycopathologia 129:111–115CrossRefPubMedGoogle Scholar
  31. Richard JL, Dvorak TJ, Ross PF (1996) Natural occurrence of gliotoxin in turkeys infected with Aspergillus fumigatus Fresenius. Mycopathologia 134:167–170CrossRefPubMedGoogle Scholar
  32. Robinson SL, Panaccione DG (2012) Chemotypic and genotypic diversity in the ergot alkaloid pathway of Aspergillus fumigatus. Mycologia 104:804–812CrossRefPubMedGoogle Scholar
  33. Schmidt A, Wolff MH (1997) Morphological characteristic of Aspergillus fumigatus strains isolated from patient samples. Mycoses 40:347–351CrossRefPubMedGoogle Scholar
  34. Smedsgaard J (1997) Micro-scale extraction procedure for standardized screening of fungal metabolite production in cultures. J Chromatogr A 760:264–270CrossRefPubMedGoogle Scholar
  35. Spilsbury JF, Wilkinson S (1961) The isolation of festuclavine and two new clavine alkaloids from Aspergillus fumigatus Fres. J Chem Soc 5:2085–2091CrossRefGoogle Scholar
  36. Steiner U, Ahimsa-Mueller MA, Markert A, Kucht S, Groß J, Kauf N, Kuzma M, Zych M, Lamshöft M, Furmanowa M, Knoop V, Drewke C, Leistner E (2006) Molecular characterization of a seed transmitted clavicipitaceous fungus occurring on dicotyledoneous plants (Convolvulaceae). Planta 224:533–544CrossRefPubMedGoogle Scholar
  37. Tell LA (2005) Aspergillosis in mammals and birds: impact on veterinary medicine. Med Mycol 43(Suppl I):71–73CrossRefGoogle Scholar
  38. Tomee JFC, Kauffman HF (2000) Putative virulence factors of Aspergillus fumigatus. Clin Exper Allergy 30:476–484CrossRefGoogle Scholar
  39. Usleber E, Abramson D, Gessler R, Smith DM, Clear RM, Märtlbauer E (1996) Natural contamination of Manitoba barley by 3,15-diacetyldeoxynivalenol and its detection by immunochromatography. Appl Environ Microbiol 62:3858–3860PubMedCentralPubMedGoogle Scholar
  40. Van Waeyenberghe L, Fischer D, Coenye T, Ducatelle R, Haesebrouck F, Pasmans F, Lierz M, Martel A (2012) Susceptibility of adult pigeons and hybrid falcons to experimental aspergillosis. Avian Pathol 41:563–567CrossRefPubMedGoogle Scholar
  41. Wu XF, Fei MJ, Shu RG, Tan RX, Xu Q (2005) Fumigaclavine C, a fungal metabolite, improves experimental colitis in mice via downregulating Th1 cytokine production and matrix metalloproteinase activity. Int Immunopharmacol 5:1543–1553CrossRefPubMedGoogle Scholar
  42. Xavier MO, Soares MP, Meinerz ARM, Nobre MO, Osório LG, Filho RPS, Meireles MCA (2007) Aspergillosis: a limiting factor during recovery of captive Magellanic penguins. Brazil J Microbiol 38:480–484CrossRefGoogle Scholar
  43. Xu J, Song YC, Guo Y, Mei YN, Tan RX (2014) Fumigaclavines D-H, new ergot alkaloids from endophytic Aspergillus fumigatus. Planta Med 80:1131–1137CrossRefPubMedGoogle Scholar
  44. Zafra R, Pérez J, Préz-Écija RA, Borge C, Bustamante R, Carbonero A, Tarradas C (2008) Concurrent aspergillosis and ascites with high mortality in a farm of growing broiler chickens-case report. Avian Dis 52:711–713CrossRefPubMedGoogle Scholar
  45. Zhao Y, Liu J, Wang J, Wang L, Yin H, Tan R (2004) Fumigaclavine C improves concanavalin A-induced liver injury in mice mainly via inhibiting TNF-alpha production and lymphocyte adhesion to extracellular matrices. J Pharm Pharmacol 56:775–782CrossRefPubMedGoogle Scholar

Copyright information

© Society for Mycotoxin Research and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Hadri Latif
    • 1
    • 2
  • Madeleine Gross
    • 1
    Email author
  • Dominik Fischer
    • 3
  • Michael Lierz
    • 3
  • Ewald Usleber
    • 1
  1. 1.Dairy Science, Institute of Veterinary Food Science, Veterinary FacultyJustus Liebig UniversityGiessenGermany
  2. 2.Department of Animal Diseases and Veterinary Public Health, Faculty of Veterinary MedicineBogor Agricultural UniversityBogorIndonesia
  3. 3.Clinic for Birds, Reptiles, Amphibians and Fish, Veterinary FacultyJustus Liebig UniversityGiessenGermany

Personalised recommendations