Stachybotrys spp. and the guttation phenomenon

Abstract

The formation of guttation droplets is a long-known property of various fungi. However, their composition, biological function and metabolism in fungi have hardly attracted deeper research interest. The highly toxic mould Stachybotrys (S.) chartarum chemotype S is supposed to play—amongst other factors such as endotoxins and microbial volatile organic compounds (MVOCs)—an important role in indoor air toxicity, mainly after water damage. The way of toxins becoming airborne and leading to exposure via inhalation, however, is still under discussion. We hypothesised that guttation may be a factor for exudation of toxins into the environment. Therefore, selected isolates (n = 15) of our own culture collection of Stachybotrys spp. (S. chartarum chemotype S, S. chartarum chemotype A, S. chlorohalonta) originating from various habitats were cultivated on malt extract agar for 3 weeks. All strains but one produced different amounts of guttation droplets, which were collected quantitatively and subjected to various independent analytical techniques like ELISA, effect-based bioassay (MTT cell culture test) and tandem mass spectrometry (LC-MS/MS). Actually, the toxigenic isolates (n = 5) produced highly toxic guttation droplets, which was confirmed by all methods. The concentration of macrocyclic trichothecenes, such as satratoxin G and H, ranged between the LOD and 7,160 ng/ml exudate and 280 and 4,610 ng/ml as determined by LC-MS/MS, respectively. According to our knowledge, the ability of S. chartarum to produce toxic exudates is reported for the first time, which possibly plays an important role regarding its toxic potential in indoor environments.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Ahearn DG, Price DL, Simmons R, Noble-Wang J, Crow SA Jr (2004) Indoor moulds and their associations with air distribution systems. Adv Appl Microbiol 55:113–138. doi:10.1016/s0065-2164(04)55003-7

    CAS  PubMed  Article  Google Scholar 

  2. Altman FP (1976) Tetrazolium salts and formazans. Prog Histochem Cytochem 9(3):III–51

    Article  Google Scholar 

  3. Andersen B, Nielsen KF, Jarvis BB (2002) Characterization of Stachybotrys from water-damaged buildings based on morphology, growth, and metabolite production. Mycologia 94(3):392–403

    CAS  PubMed  Article  Google Scholar 

  4. Andersen B, Nielsen KF, Thrane U, Szaro T, Taylor JW, Jarvis BB (2003) Molecular and phenotypic descriptions of Stachybotrys chlorohalonata sp. nov. and two chemotypes of Stachybotrys chartarum found in water-damaged buildings. Mycologia 95(6):1227–1238

    CAS  PubMed  Article  Google Scholar 

  5. Bata A, Harrach B, Ujszaszi K, Kis-Tamas A, Lasztity R (1985) Macrocyclic trichothecene toxins produced by Stachybotrys atra strains isolated in Middle Europe. Appl Environ Microbiol 49(3):678–681

    CAS  PubMed Central  PubMed  Google Scholar 

  6. Bisby GR (1943) Stachybotrys. Trans Br Mycol Soc 26(3–4):133–143, doi:http://dx.doi.org/10.1016/S0007-1536(43)80018-8

  7. Bloom E, Grimsley LF, Pehrson C, Lewis J, Larsson L (2009) Molds and mycotoxins in dust from water-damaged homes in New Orleans after hurricane Katrina. Indoor Air 19(2):153–158. doi:10.1111/j.1600-0668.2008.00574.x

    CAS  PubMed  Article  Google Scholar 

  8. Brasel TL, Martin JM, Carriker CG, Wilson SC, Straus DC (2005) Detection of airborne Stachybotrys chartarum macrocyclic trichothecene mycotoxins in the indoor environment. Appl Environ Microbiol 71(11):7376–7388. doi:10.1128/aem.71.11.7376-7388.2005

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  9. Colotelo N (1978) Fungal exudates. Can J Microbiol 24(10):1173–1181. doi:10.1139/m78-191

    CAS  PubMed  Article  Google Scholar 

  10. Cruse M, Telerant R, Gallagher T, Lee T, Taylor JW (2002) Cryptic species in Stachybotrys chartarum. Mycologia 94(5):814–822

    PubMed  Article  Google Scholar 

  11. Dearborn DG, Yike I, Sorenson WG, Miller MJ, Etzel RA (1999) Overview of investigations into pulmonary hemorrhage among infants in Cleveland Ohio. Environ Health Perspect 107(Suppl 3):495–499

    PubMed Central  PubMed  Article  Google Scholar 

  12. Etzel RA, Montana E, Sorenson WG, Kullman GJ, Allan TM, Dearborn DG, Olson DR, Jarvis BB, Miller JD (1998) Acute pulmonary hemorrhage in infants associated with exposure to Stachybotrys atra and other fungi. Arch Pediat Adol Med 152(8):757–762

    CAS  Article  Google Scholar 

  13. Forgacs J, Carll WT, Herring AS, Hinshaw WR (1958) Toxicity of Stachybotrys atra for animals. Trans N Y Acad Sci 20(8):787–808

    CAS  PubMed  Article  Google Scholar 

  14. Gareis M (2006) Diagnostischer Zellkulturtest (MTT-test) für den Nachweis von zytotoxischen Kontaminanten und Rückständen. J Verbr Lebensm 1(4):354–363

    CAS  Article  Google Scholar 

  15. Gareis M, Gareis EM (2007) Guttation droplets of Penicillium nordicum and Penicillium verrucosum contain high concentrations of the mycotoxins ochratoxin A and B. Mycopathologia 163(4):207–214. doi:10.1007/s11046-007-9003-1

    CAS  PubMed  Article  Google Scholar 

  16. Gottschalk C, Bauer J, Meyer K (2006) Determination of macrocyclic trichothecenes in mouldy indoor materials by LC-MS/MS. Mycotox Res 22(3):189–192. doi:10.1007/bf02959275

    CAS  Article  Google Scholar 

  17. Gottschalk C, Bauer J, Meyer K (2008) Detection of satratoxin G and H in indoor air from a water-damaged building. Mycopathologia 166(2):103–107. doi:10.1007/s11046-008-9126-z

    CAS  PubMed  Article  Google Scholar 

  18. Gottschalk C, Barthel J, Engelhardt G, Bauer J, Meyer K (2009) Simultaneous determination of type A, B and D trichothecenes and their occurrence in cereals and cereal products. Food Addit Contam 26:1273–1289

    CAS  Article  Google Scholar 

  19. Grovel O, Pouchus YF, Verbist J-F (2003) Accumulation of gliotoxin, a cytotoxic mycotoxin from Aspergillus fumigatus, in blue mussel (Mytilus edulis). Toxicon 42(3):297–300. doi:http://dx.doi.org/10.1016/S0041-0101(03)00146-6

    Google Scholar 

  20. Hanelt M, Gareis M, Kollarczik B (1994) Cytotoxicity of mycotoxins evaluated by the MTT-cell culture assay. Mycopathologia 128(3):167–174. doi:10.1007/BF01138479

    CAS  PubMed  Article  Google Scholar 

  21. Harrach B, Mirocha CJ, Pathre SV, Palyusik M (1981) Macrocyclic trichothecene toxins produced by a strain of Stachybotrys atra from Hungary. Appl Environ Microbiol 41(6):1428–1432

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Harrach B, Bata A, Bajmocy E, Benko M (1983) Isolation of satratoxins from the bedding straw of a sheep flock with fatal stachybotryotoxicosis. Appl Environ Microbiol 45(5):1419–1422

    CAS  PubMed Central  PubMed  Google Scholar 

  23. Hinkley SF, Jarvis BB (2001) Chromatographic method for Stachybotrys toxins. In: Trucksess MW, Pohland AE (eds) Mycotoxin protocols. Humana Press, New York, pp 173–194

  24. Hodgson MJ, Morey P, Leung WY, Morrow L, Miller D, Jarvis BB, Robbins H, Halsey JF, Storey E (1998) Building-associated pulmonary disease from exposure to Stachybotrys chartarum and Aspergillus versicolor. J Occup Environ Med 40(3):241–249

    CAS  PubMed  Article  Google Scholar 

  25. Hutwimmer S, Wang H, Strasser H, Burgstaller W (2010) Formation of exudate droplets by Metarhizium anisopliae and the presence of destruxins. Mycologia 102(1):1–10

    CAS  PubMed  Article  Google Scholar 

  26. Ivanoff SS (1963) Guttation injuries of plants. Bot Rev 29(2):202–229. doi:10.1007/BF02860821

    CAS  Article  Google Scholar 

  27. Jarvis BB, Miller JD (2005) Mycotoxins as harmful indoor air contaminants. Appl Microbiol Biotechnol 66(4):367–372. doi:10.1007/s00253-004-1753-9

    CAS  PubMed  Article  Google Scholar 

  28. Jarvis BB, Lee YW, Comezoglu SN, Yatawara CS (1986) Trichothecenes produced by Stachybotrys chartarum from Eastern Europe. Appl Environ Microbiol 51(5):915–918

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Jarvis BB, Sorenson WG, Hintikka EL, Nikulin M, Zhou Y, Jiang J, Wang S, Hinkley S, Etzel RA, Dearborn D (1998) Study of toxin production by isolates of Stachybotrys chartarum and Memnoniella echinata isolated during a study of pulmonary hemosiderosis in infants. Appl Environ Microbiol 64(10):3620–3625

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Jarvis B, Hinkley S, Nielsen K (2000) Stachybotrys: an unusual mold associated with water-damaged buildings. Mycotox Res 16(Suppl 1):105–108. doi:10.1007/bf02942994

    Article  Google Scholar 

  31. Jennings DH (1991) The role of droplets in helping to maintain a constant growth rate of aerial hyphae. Mycol Res 95(7):883–884. doi:http://dx.doi.org/10.1016/S0953-7562(09)80054-3

  32. Johanning E, Biagini R, Hull D, Morey P, Jarvis B, Landsbergis P (1996) Health and immunology study following exposure to toxigenic fungi (Stachybotrys chartarum) in a water-damaged office environment. Int Arch Occup Environ Health 68(4):207–218

    CAS  PubMed  Google Scholar 

  33. Johanning E, Gareis M, Hintikka E, Nikulin M, Jarvis B, Dietrich R (1998) Toxicity screening of materials from buildings with fungal indoor air quality problems (Stachybotrys chartarum). Mycotox Res 14(2):60–73

    CAS  Article  Google Scholar 

  34. Kuhn DM, Ghannoum MA (2003) Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective. Clin Microbiol Rev 16(1):144–172

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  35. Mahmoudi M, Gershwin ME (2000) Sick building syndrome. III. Stachybotrys chartarum. J Asthma 37(2):191–198

    CAS  PubMed  Google Scholar 

  36. Märtlbauer E, Gareis M, Terplan G (1988) Enzyme immunoassay for the macrocyclic trichothecene roridin A: production, properties, and use of rabbit antibodies. Appl Environ Microbiol 54(1):225–230

    PubMed Central  PubMed  Google Scholar 

  37. McPhee WJ, Colotelo N (1977) Fungal exudates. I. Characteristics of hyphal exudates in Fusarium culmorum. Can J Bot 55(3):358–365. doi:10.1139/b77-045

    Article  Google Scholar 

  38. Nielsen KF, Gravesen S, Nielsen PA, Andersen B, Thrane U, Frisvad JC (1999) Production of mycotoxins on artificially and naturally infested building materials. Mycopathologia 145(1):43–56. doi:10.1023/A:1007038211176

    CAS  PubMed  Article  Google Scholar 

  39. Samson RA, Houbraken J, Thrane U, Frisvad JC, Andersen B (2010) Food and indoor fungi. CBS-KNAW Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  40. Sorenson WG, Frazer DG, Jarvis BB, Simpson J, Robinson VA (1987) Trichothecene mycotoxins in aerosolized conidia of Stachybotrys atra. Appl Environ Microbiol 53(6):1370–1375

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Sprecher E (1959) Über die Guttation bei Pilzen. Planta 53(6):565–574

    CAS  Article  Google Scholar 

  42. Thom C (1930) The penicillia. Williams & Williams, Baltimore

    Google Scholar 

  43. Wady L, Larsson L (2005) Determination of microbial volatile organic compounds adsorbed on house dust particles and gypsum board using SPME/GC-MS. Indoor Air 15(Suppl 9):27–32

    PubMed  Article  Google Scholar 

  44. White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Shinsky J, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322

Download references

Acknowledgments

We wish to thank Gina Krappmann, Renate Schneider and Petra Peetz (Max Rubner Institute, MRI Kulmbach) for the excellent technical assistance and Eva Herbst (MRI Kulmbach) for cultivating the target strains and collecting the exudates. We also thank Johann Bauer and Karsten Meyer for the possibility to use the LC-MS/MS equipment of the Institute of Animal Hygiene, Technische Universität München-Weihenstephan.

Source of funding

This work was supported by the Brigitte and Wolfram Gedek Foundation.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Christoph Gottschalk.

Additional information

Dedicated to Brigitte Gedek and the Brigitte and Wolfram Gedek Foundation for the long-lasting substantial support for research on mycotoxins

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gareis, M., Gottschalk, C. Stachybotrys spp. and the guttation phenomenon. Mycotoxin Res 30, 151–159 (2014). https://doi.org/10.1007/s12550-014-0193-3

Download citation

Keywords

  • Stachybotrys chartarum
  • Stachybotrys chlorohalonata
  • Guttation
  • Exudate droplets
  • Mycotoxin
  • Macrocyclic trichothecenes
  • Satratoxin
  • Indoor air